Schirmer MD, Giese A-K, Fotiadis P, Etherton MR, Cloonan L, Viswanathan A, Greenberg SM, Wu O, Rost NS. Spatial Signature of White Matter Hyperintensities in Stroke Patients. Front Neurol 2019;10:208.Abstract
White matter hyperintensity (WMH) is a common phenotype across a variety of neurological diseases, particularly prevalent in stroke patients; however, vascular territory dependent variation in WMH burden has not yet been identified. Here, we sought to investigate the spatial specificity of WMH burden in patients with acute ischemic stroke (AIS). We created a novel age-appropriate high-resolution brain template and anatomically delineated the cerebral vascular territories. We used WMH masks derived from the clinical T2 Fluid Attenuated Inverse Recovery (FLAIR) MRI scans and spatial normalization of the template to discriminate between WMH volume within each subject's anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA) territories. Linear regression modeling including age, sex, common vascular risk factors, and TOAST stroke subtypes was used to assess for spatial specificity of WMH volume (WMHv) in a cohort of 882 AIS patients. Mean age of this cohort was 65.23 ± 14.79 years, 61.7% were male, 63.6% were hypertensive, 35.8% never smoked. Mean WMHv was 11.58c ± 13.49 cc. There were significant differences in territory-specific, relative to global, WMH burden. In contrast to PCA territory, age (0.018 ± 0.002, < 0.001) and small-vessel stroke subtype (0.212 ± 0.098, < 0.001) were associated with relative increase of WMH burden within the anterior (ACA and MCA) territories, whereas male sex (-0.275 ± 0.067, < 0.001) was associated with a relative decrease in WMHv. Our data establish the spatial specificity of WMH distribution in relation to vascular territory and risk factor exposure in AIS patients and offer new insights into the underlying pathology.
Gökçay F, Arsava EM, Baykaner T, Vangel M, Garg P, Wu O, Singhal AB, Furie KL, Sorensen AG, Ay H. Age-dependent susceptibility to infarct growth in women. Stroke 2011;42(4):947-51.Abstract

It is not known if there is a relationship between gender and tissue outcome in human ischemic stroke. We sought to identify whether the proportion of initially ischemic to eventually infarcted tissue was different between men and women with ischemic stroke.


We studied 141 consecutive patients with acute ischemic stroke who had a baseline MRI obtained within 12 hours of symptom onset, a follow-up imaging on Day 4 or later, and diffusion-weighted imaging/mean transmit time mismatch on initial MRI. Lesion growth was calculated as percentage of mismatch tissue that underwent infarction on follow-up (percentage mismatch lost). Multivariable analyses explored the effect of gender and other predictors of tissue outcome on percentage mismatch lost.


There was no difference in median percentage mismatch lost between men (19%) and women (11%; P=0.720). There was, however, an interaction between gender and age; median percentage mismatch lost was 7% (0% to 12%) in women and 18% (1% to 35%) in men younger than the population median (71 years, P=0.061). The percentage mismatch lost was not different between men and women ≥71 years old (25% in both groups). The linear regression model revealed gender (P=0.027) and the interaction between age and gender (P=0.023) as independent predictors of percentage mismatch lost.


There is an age-by-gender interaction in tissue outcome after ischemic stroke; brain infarcts in women <70 years grow approximately 50% less than infarcts in their male counterparts. These findings extend the well-known concept that there is a differential age-by-gender effect on stroke incidence, mortality, and functional outcome to the tissue level.

Schwamm LH, Wu O, Song SS, Latour LL, Ford AL, Hsia AW, Muzikansky A, Betensky RA, Yoo AJ, Lev MH, Boulouis G, Lauer A, Cougo P, Copen WA, Harris GJ, Warach S. Intravenous thrombolysis in unwitnessed stroke onset: MR WITNESS trial results. Ann Neurol 2018;83(5):980-993.Abstract
OBJECTIVE: Most acute ischemic stroke (AIS) patients with unwitnessed symptom onset are ineligible for intravenous thrombolysis due to timing alone. Lesion evolution on fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) correlates with stroke duration, and quantitative mismatch of diffusion-weighted MRI with FLAIR (qDFM) might indicate stroke duration within guideline-recommended thrombolysis. We tested whether intravenous thrombolysis ≤4.5 hours from the time of symptom discovery is safe in patients with qDFM in an open-label, phase 2a, prospective study (NCT01282242). METHODS: Patients aged 18 to 85 years with AIS of unwitnessed onset at 4.5 to 24 hours since they were last known to be well, treatable within 4.5 hours of symptom discovery with intravenous alteplase (0.9mg/kg), and presenting with qDFM were screened across 14 hospitals. The primary outcome was the risk of symptomatic intracranial hemorrhage (sICH) with preplanned stopping rules. Secondary outcomes included symptomatic brain edema risk, and functional outcomes of 90-day modified Rankin Scale (mRS). RESULTS: Eighty subjects were enrolled between January 31, 2011 and October 4, 2015 and treated with alteplase at median 11.2 hours (IQR = 9.5-13.3) from when they were last known to be well. There was 1 sICH (1.3%) and 3 cases of symptomatic edema (3.8%). At 90 days, 39% of subjects achieved mRS = 0-1, as did 48% of subjects who had vessel imaging and were without large vessel occlusions. INTERPRETATION: Intravenous thrombolysis within 4.5 hours of symptom discovery in patients with unwitnessed stroke selected by qDFM, who are beyond the recommended time windows, is safe. A randomized trial testing efficacy using qDFM appears feasible and is warranted in patients without large vessel occlusions. Ann Neurol 2018;83:980-993.
Threlkeld ZD, Bodien YG, Rosenthal ES, Giacino JT, Nieto-Castanon A, Wu O, Whitfield-Gabrieli S, Edlow BL. Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. Cortex 2018;106:299-308.Abstract
Integrity of the default mode network (DMN) is believed to be essential for human consciousness. However, the effects of acute severe traumatic brain injury (TBI) on DMN functional connectivity are poorly understood. Furthermore, the temporal dynamics of DMN reemergence during recovery of consciousness have not been studied longitudinally in patients with acute severe TBI. We performed resting-state functional magnetic resonance imaging (rs-fMRI) to measure DMN connectivity in 17 patients admitted to the intensive care unit (ICU) with acute severe TBI and in 16 healthy control subjects. Eight patients returned for follow-up rs-fMRI and behavioral assessment six months post-injury. At each time point, we analyzed DMN connectivity by measuring intra-network correlations (i.e. positive correlations between DMN nodes) and inter-network anticorrelations (i.e. negative correlations between the DMN and other resting-state networks). All patients were comatose upon arrival to the ICU and had a disorder of consciousness (DoC) at the time of acute rs-fMRI (9.2 ± 4.6 days post-injury): 2 coma, 4 unresponsive wakefulness syndrome, 7 minimally conscious state, and 4 post-traumatic confusional state. We found that, while DMN anticorrelations were absent in patients with acute DoC, patients who recovered from coma to a minimally conscious or confusional state while in the ICU showed partially preserved DMN correlations. Patients who remained in coma or unresponsive wakefulness syndrome in the ICU showed no DMN correlations. All eight patients assessed longitudinally recovered beyond the confusional state by 6 months post-injury and showed normal DMN correlations and anticorrelations, indistinguishable from those of healthy subjects. Collectively, these findings suggest that recovery of consciousness after acute severe TBI is associated with partial preservation of DMN correlations in the ICU, followed by long-term normalization of DMN correlations and anticorrelations. Both intra-network DMN correlations and inter-network DMN anticorrelations may be necessary for full recovery of consciousness after acute severe TBI.
Schröder J, Cheng B, Malherbe C, Ebinger M, Köhrmann M, Wu O, Kang D-W, Liebeskind DS, Tourdias T, Singer OC, Campbell B, Luby M, Warach S, Fiehler J, Kemmling A, Fiebach JB, Gerloff C, Thomalla G. Impact of Lesion Load Thresholds on Alberta Stroke Program Early Computed Tomographic Score in Diffusion-Weighted Imaging. Front Neurol 2018;9:273.Abstract
Background and aims: Assessment of ischemic lesions on computed tomography or MRI diffusion-weighted imaging (DWI) using the Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is widely used to guide acute stroke treatment. However, it has never been defined how many voxels need to be affected to label a DWI-ASPECTS region ischemic. We aimed to assess the effect of various lesion load thresholds on DWI-ASPECTS and compare this automated analysis with visual rating. Materials and methods: We analyzed overlap of individual DWI lesions of 315 patients from the previously published predictive value of fluid-attenuated inversion recovery study with a probabilistic ASPECTS template derived from 221 CT images. We applied multiple lesion load thresholds per DWI-ASPECTS region (>0, >1, >10, and >20% in each DWI-ASPECTS region) to compute DWI-ASPECTS for each patient and compared the results to visual reading by an experienced stroke neurologist. Results: By visual rating, median ASPECTS was 9, 84 patients had a DWI-ASPECTS score ≤7. Mean DWI lesion volume was 22.1 (±35) ml. In contrast, by use of >0, >1-, >10-, and >20%-thresholds, median DWI-ASPECTS was 1, 5, 8, and 10; 97.1% (306), 72.7% (229), 41% (129), and 25.7% (81) had DWI-ASPECTS ≤7, respectively. Overall agreement between automated assessment and visual rating was low for every threshold used (>0%: κ = 0.020 1%: κ = 0.151; 10%: κ = 0.386; 20% κ = 0.381). Agreement for dichotomized DWI-ASPECTS ranged from fair to substantial (≤7: >10% κ = 0.48; >20% κ = 0.45; ≤5: >10% κ = 0.528; and >20% κ = 0.695). Conclusion: Overall agreement between automated and the standard used visual scoring is low regardless of the lesion load threshold used. However, dichotomized scoring achieved more comparable results. Varying lesion load thresholds had a critical impact on patient selection by ASPECTS. Of note, the relatively low lesion volume and lack of patients with large artery occlusion in our cohort may limit generalizability of these findings.
Etherton MR, Barreto AD, Schwamm LH, Wu O. Neuroimaging Paradigms to Identify Patients for Reperfusion Therapy in Stroke of Unknown Onset. Front Neurol 2018;9:327.Abstract
Despite the proven efficacy of intravenous alteplase or endovascular thrombectomy for the treatment of patients with acute ischemic stroke, only a minority receive these treatments. This low treatment rate is due in large part to delay in hospital arrival or uncertainty as to the exact time of onset of ischemic stroke, which renders patients outside the current guideline-recommended window of eligibility for receiving these therapeutics. However, recent pivotal clinical trials of late-window thrombectomy now force us to rethink the value of a simplistic chronological formulation that "time is brain." We must recognize a more nuanced concept that the rate of tissue death as a function of time is not invariant, that still salvageable tissue at risk of infarction may be present up to 24 h after last-known well, and that those patients may strongly benefit from reperfusion. Multiple studies have sought to address this clinical dilemma using neuroimaging methods to identify a radiographic time-stamp of stroke onset or evidence of salvageable ischemic tissue and thereby increase the number of patients eligible for reperfusion therapies. In this review, we provide a critical analysis of the current state of neuroimaging techniques to select patients with unwitnessed stroke for revascularization therapies and speculate on the future direction of this clinically relevant area of stroke research.
Copen WA, Schwamm LH, González RG, Wu O, Harmath CB, Schaefer PW, Koroshetz WJ, Sorensen AG. Ischemic stroke: effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology 2001;221(1):27-34.Abstract
PURPOSE: To determine whether the evolution of the core apparent diffusion coefficient (ADC) of water in ischemic stroke varies with patient age or infarct etiology. MATERIALS AND METHODS: One hundred forty-seven patients with stroke underwent 236 diffusion-weighted magnetic resonance imaging examinations. Etiologies of lesions were classified according to predefined criteria; in 224 images, the diagnosis of lacune could be firmly established or excluded. ADC was measured in the center of each lesion and in contralateral normal-appearing brain. A model was used to describe the time course of relative ADC (rADC), which is calculated by dividing the lesion ADC by the contralateral ADC, and to test for age- or etiology-related differences in this time course. RESULTS: Transition from decreasing to increasing rADC was estimated at 18.5 hours after stroke onset. In subgroup analysis, transition was earlier in nonlacunes than in lacunes (P =.02). There was a trend toward earlier transition in patients older than the median age of 66.0 years, compared with younger patients (P =.06). Pseudonormalization was estimated at 216 hours. Among nonlacunes, the rate of subsequent rADC increase was more rapid in younger patients than in older patients (P =.001). Within the smaller sample of lacunes, however, no significant age-related difference in this rate was found. CONCLUSION: Differences in ADC depending on the patient's age and infarct etiology suggest differing rates of ADC progression.
Wu O, Koroshetz WJ, Ostergaard L, Buonanno FS, Copen WA, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Sorensen AG. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 2001;32(4):933-42.Abstract
BACKGROUND AND PURPOSE: Tissue signatures from acute MR imaging of the brain may be able to categorize physiological status and thereby assist clinical decision making. We designed and analyzed statistical algorithms to evaluate the risk of infarction for each voxel of tissue using acute human functional MRI. METHODS: Diffusion-weighted MR images (DWI) and perfusion-weighted MR images (PWI) from acute stroke patients scanned within 12 hours of symptom onset were retrospectively studied and used to develop thresholding and generalized linear model (GLM) algorithms predicting tissue outcome as determined by follow-up MRI. The performances of the algorithms were evaluated for each patient by using receiver operating characteristic curves. RESULTS: At their optimal operating points, thresholding algorithms combining DWI and PWI provided 66% sensitivity and 83% specificity, and GLM algorithms combining DWI and PWI predicted with 66% sensitivity and 84% specificity voxels that proceeded to infarct. Thresholding algorithms that combined DWI and PWI provided significant improvement to algorithms that utilized DWI alone (P=0.02) but no significant improvement over algorithms utilizing PWI alone (P=0.21). GLM algorithms that combined DWI and PWI showed significant improvement over algorithms that used only DWI (P=0.02) or PWI (P=0.04). The performances of thresholding and GLM algorithms were comparable (P>0.2). CONCLUSIONS: Algorithms that combine acute DWI and PWI can assess the risk of infarction with higher specificity and sensitivity than algorithms that use DWI or PWI individually. Methods for quantitatively assessing the risk of infarction on a voxel-by-voxel basis show promise as techniques for investigating the natural spatial evolution of ischemic damage in humans.
Sorensen AG, Wu O, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ, Reese TG, Rosen BR, Wedeen VJ, Weisskoff RM. Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 1999;212(3):785-92.Abstract
PURPOSE: To (a) determine the optimal choice of a scalar metric of anisotropy and (b) determine by means of magnetic resonance imaging if changes in diffusion anisotropy occurred in acute human ischemic stroke. MATERIALS AND METHODS: The full diffusion tensor over the entire brain was measured. To optimize the choice of a scalar anisotropy metric, the performances of scalar indices in simulated models and in a healthy volunteer were analyzed. The anisotropy, trace apparent diffusion coefficient (ADC), and eigenvalues of the diffusion tensor in lesions and contralateral normal brain were compared in 50 patients with stroke. RESULTS: Changes in anisotropy in patients were quantified by using fractional anisotropy because it provided the best performance in terms of contrast-to-noise ratio as a function of signal-to-noise ratio in simulations. The anisotropy of ischemic white matter decreased (P = .01). Changes in anisotropy in ischemic gray matter were not significant (P = .63). The trace ADC decreased for ischemic gray matter and white matter (P < .001). The first and second eigenvalues decreased in both ischemic gray and ischemic white matter (P < .001). The third eigenvalue decreased in ischemic gray (P = .001) and white matter (P = .03). CONCLUSION: Gray matter is mildly anisotropic in normal and early ischemic states. However, early white matter ischemia is associated with not only changes in trace ADC values but also significant changes in the anisotropy, or shape, of the water self-diffusion tensor.
Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. Delayed rt-PA treatment in a rat embolic stroke model: diagnosis and prognosis of ischemic injury and hemorrhagic transformation with magnetic resonance imaging. J Cereb Blood Flow Metab 2001;21(8):964-71.Abstract
The authors characterized effects of late recombinant tissue plasminogen activator (rt-PA) administration in a rat embolic stroke model with magnetic resonance imaging (MRI), to assess potential MRI correlates, or predictors, or both, of rt-PA-induced hemorrhage. Diffusion-, perfusion-, and postcontrast T1-weighted MRI were performed between 4 and 9 hours and at 24 hours after embolic stroke in spontaneously hypertensive rats. Treatment with either rt-PA or saline was started 6 hours after stroke. A spectrophotometric hemoglobin assay quantified hemorrhage severity. Before treatment, relative cerebral blood flow index (rCBFi) and apparent diffusion coefficient (ADC) in the ischemic territory were 30% +/- 23% and 60% +/- 5% (of contralateral), respectively, which increased to 45% +/- 39% and 68% +/- 4% 2 hours after rt-PA. After 24 hours, rCBFi and ADC were 27% +/- 27% and 59 +/- 5%. Hemorrhage volume after 24 hours was significantly greater in rt-PA-treated animals than in controls (8.7 +/- 3.7 microL vs. 5.1 +/- 2.4 microL, P < 0.05). Before rt-PA administration, clear postcontrast T1-weighted signal intensity enhancement was evident in areas of subsequent bleeding. These areas had lower rCBFi levels than regions without hemorrhage (23% +/- 22% vs. 36% +/- 29%, P < 0.05). In conclusion, late thrombolytic therapy does not necessarily lead to successful reperfusion. Hemorrhage emerged in areas with relatively low perfusion levels and early blood-brain barrier damage. Magnetic resonance imaging may be useful for quantifying effects of thrombolytic therapy and predicting risks of hemorrhagic transformation.
Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, Gyldensted C, Rosen BR. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31(5):1097-103.Abstract
BACKGROUND AND PURPOSE: The heterogeneity of microvascular flows is known to be an important determinant of the efficacy of oxygen delivery to tissue. Studies in animals have demonstrated decreased flow heterogeneity (FH) in states of decreased perfusion pressure. The purpose of the present study was to assess microvascular FH changes in acute stroke with use of a novel perfusion-weighted MRI technique and to evaluate the ability of combined diffusion-weighted MRI and FH measurements to predict final infarct size. METHODS: Cerebral blood flow, FH, and plasma mean transit time (MTT) were measured in 11 patients who presented with acute (<12 hours after symptom onset) stroke. Final infarct size was determined with follow-up MRI or CT scanning. RESULTS: In normal brain tissue, the distribution of relative flows was markedly skewed toward high capillary flow velocities. Within regions of decreased cerebral blood flow, plasma MTT was prolonged. Furthermore, subregions were identified with significant loss of the high-flow component of the flow distribution, thereby causing increased homogeneity of flow velocities. In parametric maps that quantify the acute deviation of FH from that of normal tissue, areas of extreme homogenization of capillary flows predicted final infarct size on follow-up scans of 10 of 11 patients. CONCLUSIONS: Flow heterogeneity and MTT can be rapidly assessed as part of a routine clinical MR examination and may provide a tool for planning of individual stroke treatment, as well as in targeting and evaluation of emerging therapeutic strategies.
Ay H, Buonanno FS, Rordorf G, Schaefer PW, Schwamm LH, Wu O, Gonzalez RG, Yamada K, Sorensen GA, Koroshetz WJ. Normal diffusion-weighted MRI during stroke-like deficits. Neurology 1999;52(9):1784-92.Abstract
BACKGROUND: Diffusion-weighted MRI (DWI) represents a major advance in the early diagnosis of acute ischemic stroke. When abnormal in patients with stroke-like deficit, DWI usually establishes the presence and location of ischemic brain injury. However, this is not always the case. OBJECTIVE: To investigate patients with stroke-like deficits occurring without DWI abnormalities in brain regions clinically suspected to be responsible. METHODS: We identified 27 of 782 consecutive patients scanned when stroke-like neurologic deficits were still present and who had normal DWI in the brain region(s) clinically implicated. Based on all the clinical and radiologic data, we attempted to arrive at a pathophysiologic diagnosis in each. RESULTS: Best final diagnosis was a stroke mimic in 37% and a cerebral ischemic event in 63%. Stroke mimics (10 patients) included migraine, seizures, functional disorder, transient global amnesia, and brain tumor. The remaining patients were considered to have had cerebral ischemic events: lacunar syndrome (7 patients; 3 with infarcts demonstrated subsequently) and hemispheric cortical syndrome (10 patients; 5 with TIA, 2 with prolonged reversible deficits, 3 with infarction on follow-up imaging). In each of the latter three patients, the regions destined to infarct showed decreased perfusion on the initial hemodynamically weighted MRI (HWI). CONCLUSIONS: Normal DWI in patients with stroke-like deficits should stimulate a search for nonischemic cause of symptoms. However, more than one-half of such patients have an ischemic cause as the best clinical diagnosis. Small brainstem lacunar infarctions may escape detection. Concomitant HWI can identify some patients with brain ischemia that is symptomatic but not yet to the stage of causing DWI abnormality.
Wu O, Østergaard L, Koroshetz WJ, Schwamm LH, O'Donnell J, Schaefer PW, Rosen BR, Weisskoff RM, Sorensen GA. Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magn Reson Med 2003;50(4):856-64.Abstract
A common technique for calculating cerebral blood flow (CBF) and mean transit time (MTT) is to track a bolus of contrast agent using perfusion-weighted MRI (PWI) and to deconvolve the change in concentration with an arterial input function (AIF) using singular value decomposition (SVD). This method has been shown to often overestimate the volume of tissue that infarcts and in cases of severe vasculopathy to produce CBF maps that are inconsistent with clinical presentation. This study examines the effects of tracer arrival time differences between tissue and a user-selected global AIF on flow estimates. CBF and MTT were calculated in both numerically simulated and clinically acquired PWI data where the AIF and tissue signals were shifted backward and forward in time with respect to one another. Results show that when the AIF leads the tissue, CBF is underestimated independent of extent of delay, but dependent on MTT. When the AIF lags the tissue, flow may be over- or underestimated depending on MTT and extent of timing differences. These conditions may occur in practice due to the application of a user-selected AIF that is not the "true AIF" and therefore caution must be taken in interpreting CBF and MTT estimates.