Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke 2002;33(8):2100-4.Abstract
BACKGROUND AND PURPOSE: Thrombolytic therapy with recombinant tissue plasminogen activator (rtPA) after stroke increases risk of hemorrhagic transformation, particularly in areas with blood-brain barrier leakage. Our aim was to characterize acute effects of rtPA administration on the integrity of microvascular barriers. METHODS: Stroke was induced in spontaneously hypertensive rats by unilateral embolic middle cerebral artery occlusion. Six hours after stroke, rtPA was intravenously administered (n=10). Controls received saline (n=4). Extravasation of the large-diameter contrast agent monocrystalline iron oxide nanocolloid (MION) was assessed with susceptibility contrast-enhanced MRI during rtPA injection. In addition, we performed perfusion MRI and diffusion-weighted MRI. After MRI, 2 hours after rtPA treatment, intracerebral hemorrhage was quantified with a spectrophotometric hemoglobin assay. RESULTS: Late rtPA treatment resulted in increased hemorrhage volume (8.4+/-1.7 versus 2.9+/-0.9 micro L in controls; P<0.05). In MION-injected animals, during rtPA administration, transverse relaxation rate change (DeltaR2*) increased from 12.4+/-6.0 to 31.6+/-19.2 s(-1) (P<0.05) in areas with subsequent hemorrhage. Significant DeltaR2* changes were absent in nonhemorrhagic areas, in animals without injected MION, and in saline-treated animals. Thrombolytic therapy did not improve perfusion in regions with hemorrhagic transformation (cerebral blood flow index was 22.8+/-19.7% [of contralateral] at 0.5 hours before and 22.4+/-18.0% at 1 hour after rtPA administration). CONCLUSIONS: The DeltaR2* changes during rtPA delivery in MION-injected animals indicate extravasation of MION, which reflects increased permeability of the blood-brain barrier. This implies that late rtPA treatment rapidly aggravates early ischemia-induced damage to microvascular barriers, thereby enhancing hemorrhagic transformation.
Ay H, Koroshetz WJ, Benner T, Vangel MG, Wu O, Schwamm LH, Sorensen GA. Transient ischemic attack with infarction: a unique syndrome?. Ann Neurol 2005;57(5):679-86.Abstract
It is debated whether transient symptoms associated with infarction (TSI) are best considered a minor ischemic stroke, a subtype of transient ischemic attack (TIA), or a separate ischemic brain syndrome. We studied clinical and imaging features to establish similarities and differences among ischemic stroke, TIA without infarction, and TSI. Eighty-seven consecutive patients with TIA and 74 patients with ischemic stroke were studied. All underwent diffusion-weighted imaging on admission. Symptom duration and infarct volume were determined in each group. Thirty-six patients (41.3%) with TIA had acute infarct(s). Although TIA-related infarcts were smaller than those associated with ischemic stroke (mean, 0.7 vs 27.3 ml; p < 0.001), there was no lesion size threshold that distinguished ischemic stroke from TSI. In contrast, the symptom duration probability density curve was not broad, but instead peaked early with only a few patients having symptoms for longer than 200 minutes. The probability density function for symptom duration was similar between TIA with or without infarction. The in-hospital recurrent ischemic stroke and TIA rate was 19.4% in patients with TSI and 1.3% in those with ischemic stroke. TIA with infarction appears to have unique features separate from TIA without infarction and ischemic stroke. We propose identifying TSI as a separate clinical syndrome with distinct prognostic features.
Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, Rosen BR, Finklestein SP. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A 2001;98(22):12766-71.Abstract
Functional recovery after stroke has been associated with brain plasticity; however, the exact relationship is unknown. We performed behavioral tests, functional MRI, and histology in a rat stroke model to assess the correlation between temporal changes in sensorimotor function, brain activation patterns, cerebral ischemic damage, and cerebrovascular reactivity. Unilateral stroke induced a large ipsilateral infarct and acute dysfunction of the contralateral forelimb, which significantly recovered at later stages. Forelimb impairment was accompanied by loss of stimulus-induced activation in the ipsilesional sensorimotor cortex; however, local tissue and perfusion were only moderately affected and cerebrovascular reactivity was preserved in this area. At 3 days after stroke, extensive activation-induced responses were detected in the contralesional hemisphere. After 14 days, we found reduced involvement of the contralesional hemisphere, and significant responses in the infarction periphery. Our data suggest that limb dysfunction is related to loss of brain activation in the ipsilesional sensorimotor cortex and that restoration of function is associated with biphasic recruitment of peri- and contralesional functional fields in the brain.
Ozsunar Y, Grant EP, Huisman TAGM, Schaefer PW, Wu O, Sorensen GA, Koroshetz WJ, Gonzalez GR. Evolution of water diffusion and anisotropy in hyperacute stroke: significant correlation between fractional anisotropy and T2. AJNR Am J Neuroradiol 2004;25(5):699-705.Abstract
BACKGROUND AND PURPOSE: We hypothesized that, in acute cerebral ischemic stroke, anisotropic diffusion increases if T2 signal intensity is not substantially elevated and decreases once T2 hyperintensity becomes apparent. Our purpose was to correlate fractional anisotropy (FA) measurements with the clinical time of stroke onset, apparent diffusion coefficients (ADC), and T2 signal intensity. METHODS: Tensor diffusion-weighted images (DWIs) of 25 patients were obtained within 12 hours of symptom onset. Trace DWIs, ADCs, FAs, and echo-planar T2-weighted images (T2WI) were generated. Stroke and contralateral normal volumes of interest (VOIs) were outlined on DWIs and projected onto the inherently coregistered ADC map, FA map, and echo-planar T2WI. Mean signal intensity of the ischemic and contralateral normal VOIs were compared for relatives change in ADC, FA, and signal intensity on T2WIs. RESULTS: A significant negative correlation was observed between FA and T2 signal-intensity change (r = -0.61, P =.00009). A trend of correlation between FA signal intensity and time of onset were found (r = -0.438, P =.025). No significant correlation was found between ADC and FA values (r = -0.302, P =.134). The mean ADC reduction in the ipsilateral ischemic volume was 31% +/- 11 compared with the contralateral normal side. CONCLUSION: Change in FA is inversely correlated with T2 signal intensity and, to a lesser extent, the time of onset, but it is not well correlated with ADC values in the acute stage.
Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, Rosen BR, Lo EH. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 2003;23(2):510-7.Abstract
The pattern and role of brain plasticity in stroke recovery has been incompletely characterized. Both ipsilesional and contralesional changes have been described, but it remains unclear how these relate to functional recovery. Our goal was to correlate brain activation patterns with tissue damage, hemodynamics, and neurologic status after temporary stroke, using functional magnetic resonance imaging (fMRI). Transverse relaxation time (T2)-weighted, diffusion-weighted, and perfusion MRI were performed at days 1 (n = 7), 3 (n = 7), and 14 (n = 7) after 2 hr unilateral middle cerebral artery occlusion in rats. Functional activation and cerebrovascular reactivity maps were generated from contrast-enhanced fMRI during forelimb stimulation and hypercapnia, respectively. Before MRI, rats were examined neurologically. We detected loss of activation responses in the ipsilesional sensorimotor cortex, which was related to T2 lesion size (r = -0.858 on day 3, r = -0.979 on day 14; p < 0.05). Significant activation responses in the contralesional hemisphere were detected at days 1 and 3. The degree of shift in balance of activation between the ipsilesional and contralesional hemispheres, characterized by the laterality index, was linked to the T2 and apparent diffusion coefficient in the ipsilesional contralesional forelimb region of the primary somatosensory cortex and primary motor cortex at day 1 (r = -0.807 and 0.782, respectively; p < 0.05) and day 14 (r = -0.898 and -0.970, respectively; p < 0.05). There was no correlation between activation parameters and perfusion status or cerebrovascular reactivity. Finally, we found that the laterality index and neurologic status changed in parallel over time after stroke, so that when all time points were grouped together, neurologic status was inversely correlated with the laterality index (r = -0.571; p = 0.016). This study suggests that the degree of shift of activation balance toward the contralesional hemisphere early after stroke increases with the extent of tissue injury and that functional recovery is associated mainly with preservation or restoration of activation in the ipsilesional hemisphere.
Hjort N, Christensen S, Sølling C, Ashkanian M, Wu O, Røhl L, Gyldensted C, Andersen G, Østergaard L. Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol 2005;58(3):462-5.Abstract
A 78-year-old woman suffered a stroke inside a magnetic resonance scanner while being imaged because of a brief transient ischemic attack 2 hours earlier. Diffusion-weighted images obtained 11 minutes after stroke showed tissue injury not found on initial images. The data show early, abrupt diffusion changes in hypoperfused tissue, adding to our understanding of the progression of microstructural abnormalities in the hyperacute phase of stroke.
Yamada K, Wu O, Gonzalez GR, Bakker D, Østergaard L, Copen WA, Weisskoff RM, Rosen BR, Yagi K, Nishimura T, Sorensen GA. Magnetic resonance perfusion-weighted imaging of acute cerebral infarction: effect of the calculation methods and underlying vasculopathy. Stroke 2002;33(1):87-94.Abstract
BACKGROUND AND PURPOSE: Various calculation methods are available to estimate the transit-time on MR perfusion-weighted imaging (PWI). Each method may affect the results of PWI. Steno-occlusive disease in the parent vessels is another factor that may affect the results of the PWI. The purpose of this study was to elucidate the effect of the calculation methods and underlying vasculopathy on PWI. METHODS: From a pool of 113 patients who had undergone PWI during the study period, a total of 12 patients with nonlacunar ischemic strokes who were scanned within 24 hours after onset of symptom were selected for the study. The patient population consisted of 6 patients who had extracranial internal carotid artery stenosis (>70%) and 6 individuals without stenosis. Seven different postprocessing methods were evaluated: first moment, ratio of area to peak, time to peak (TTP), relative TTP, arrival time, full-width at half-maximum, and deconvolution methods. Follow-up MR or CT images were used to determine the areas that evolved into infarcts, which served as the gold standard. Sensitivity and specificity of each transit time technique were calculated. RESULTS: Calculation methods with high sensitivity were the first moment (sensitivity, 74%), TTP (sensitivity, 77%), and deconvolution methods (sensitivity, 81% to 94%). Between the 2 groups with and without internal carotid artery stenosis, the specificity of most of the techniques was lower in the internal carotid artery stenosis group. The first moment and deconvolution methods maintained relatively high specificity even in the stenosis group. CONCLUSIONS: The calculation technique and presence of underlying vasculopathy have a direct impact on the results of PWI. The methods with high sensitivity even in the presence of steno-occlusive disease were the first moment and deconvolution methods with arterial input function derived from the peri-infarct arteries; the deconvolution method was the superior choice because of higher lesion conspicuity.
Gottrup C, Thomsen K, Locht P, Wu O, Sorensen GA, Koroshetz WJ, Østergaard L. Applying instance-based techniques to prediction of final outcome in acute stroke. Artif Intell Med 2005;33(3):223-36.Abstract
OBJECTIVE: Acute cerebral stroke is a frequent cause of death and the major cause of adult neurological disability in the western world. Thrombolysis is the only established treatment of ischemic stroke; however, its use carries a substantial risk of symptomatic intracerebral hemorrhage. A clinical tool to guide the use of thrombolysis would be very valuable. One of the major goals of such a tool would be the identification of potentially salvageable tissue. This requires an accurate prediction of the extent of infarction if untreated. In this study, we investigate the applicability of highly flexible instance-based (IB) methods for such predictions. METHODS AND MATERIALS: Based on information obtained from magnetic resonance imaging of 14 patients with acute stroke, we explored three different implementations of the IB method: k-NN, Gaussian weighted, and constant radius search classification. Receiver operating characteristics analysis, in particular area under the curve (AUC), was used as performance measure. RESULTS: We found no significant difference (P = 0.48) in performance for the optimal k-NN (k = 164, AUC = 0.814 +/- 0.001) and Gaussian weight (sigma = 0.17, AUC = 0.813 +/- 0.001) implementations, while they were both significantly better (P < 1 x 10(-6) for both) than the constant radius implementation (R = 0.28, AUC = 0.809 +/- 0.001). Qualitative analyses of the distribution of instances in the feature space indicated that non-infarcted instances tends to cluster together while infarcted instances are more dispersed, and that there may not exist a stringent boundary separating infarcted from non-infarcted instances. CONCLUSIONS: This study shows that IB methods can be used, and may be advantageous, for predicting final infarct in patients with acute stroke, but further work must be done to make them clinically applicable.
Kimberly TW, Battey TWK, Wu O, Singhal AB, Campbell BCV, Davis SM, Donnan GA, Sheth KN. Novel Imaging Markers of Ischemic Cerebral Edema and Its Association with Neurological Outcome. Acta Neurochir Suppl 2016;121:223-6.Abstract
Ischemic cerebral edema (ICE) is a recognized cause of secondary neurological deterioration after large hemispheric stroke, but little is known about the scope of its impact. To study edema in less severe stroke, our group has developed several markers of cerebral edema using brain magnetic resonance imaging (MRI). These tools, which are based on categorical and volumetric measurements in serial diffusion-weighted imaging (DWI), are applicable to a wide variety of stroke volumes. Further, these metrics provide distinct volumetric measurements attributable to ICE, infarct growth, and hemorrhagic transformation. We previously reported that ICE independently predicted neurological outcome after adjustment for known risk factors. We found that an ICE volume of 11 mL or greater was associated with worse neurological outcome.
Cheng B, Brinkmann M, Forkert ND, Treszl A, Ebinger M, Köhrmann M, Wu O, Kang D-W, Liebeskind DS, Tourdias T, Singer OC, Christensen S, Luby M, Warach S, Fiehler J, Fiebach JB, Gerloff C, Thomalla G. Quantitative measurements of relative fluid-attenuated inversion recovery (FLAIR) signal intensities in acute stroke for the prediction of time from symptom onset. J Cereb Blood Flow Metab 2013;33(1):76-84.Abstract
In acute stroke magnetic resonance imaging, a 'mismatch' between visibility of an ischemic lesion on diffusion-weighted imaging (DWI) and missing corresponding parenchymal hyperintensities on fluid-attenuated inversion recovery (FLAIR) data sets was shown to identify patients with time from symptom onset ≤4.5 hours with high specificity. However, moderate sensitivity and suboptimal interpreter agreement are limitations of a visual rating of FLAIR lesion visibility. We tested refined image analysis methods in patients included in the previously published PREFLAIR study using refined visual analysis and quantitative measurements of relative FLAIR signal intensity (rSI) from a three-dimensional, segmented stroke lesion volume. A total of 399 patients were included. The rSI of FLAIR lesions showed a moderate correlation with time from symptom onset (r=0.382, P<0.001). A FLAIR rSI threshold of <1.0721 predicted symptom onset ≤4.5 hours with slightly increased specificity (0.85 versus 0.78) but also slightly decreased sensitivity (0.47 versus 0.58) as compared with visual analysis. Refined visual analysis differentiating between 'subtle' and 'obvious' FLAIR hyperintensities and classification and regression tree algorithms combining information from visual and quantitative analysis also did not improve diagnostic accuracy. Our results raise doubts whether the prediction of stroke onset time by visual image judgment can be improved by quantitative rSI measurements.
Ay H, Arsava ME, Vangel M, Oner B, Zhu M, Wu O, Singhal A, Koroshetz WJ, Sorensen GA. Interexaminer difference in infarct volume measurements on MRI: a source of variance in stroke research. Stroke 2008;39(4):1171-6.Abstract
BACKGROUND AND PURPOSE: The measurement of ischemic lesion volume on diffusion- (DWI) and perfusion-weighted MRI (PWI) is examiner dependent. We sought to quantify the variance imposed by measurement error in DWI and PWI lesion volume measurements in ischemic stroke. METHODS: Fifty-eight consecutive patients with DWI and PWI within 12 hours of symptom onset and follow-up MRI on >or= day-5 were studied. Two radiologists blinded to each other measured lesion volumes by manual outlining on each image. Interexaminer reliability was evaluated by intraclass correlation coefficients (ICC) and relative paired difference or RPD (ratio of difference between 2 measurements to their mean). The ratio of between-examiner variability to between-subject variability (variance ratio) was calculated for each imaging parameter. RESULTS: The correlation (ICC) between examiners ranged from 0.93 to 0.99. The median RPD was 10.0% for DWI, 14.1% for mean transit time, 18.9% for cerebral blood flow, 21.0% for cerebral blood volume, 16.8% for DWI/MTT mismatch, and 6.3% for chronic T2-weighted images. There was negative correlation between RPD and lesion volume in all but chronic T2-weighted images. The variance ratio ranged between 0.02 and 0.10. CONCLUSIONS: Despite high correlation between volume measurements of abnormal regions on DWI and PWI by different examiners, substantial differences in individual measurements can still occur. The magnitude of variance from measurement error is primarily determined by the type of imaging and lesion volume. Minimizing this source of variance will better enable imaging to deliver on its promise of smaller sample size.
Auriel E, Edlow BL, Reijmer YD, Fotiadis P, Ramirez-Martinez S, Ni J, Reed AK, Vashkevich A, Schwab K, Rosand J, Viswanathan A, Wu O, Gurol EM, Greenberg SM. Microinfarct disruption of white matter structure: a longitudinal diffusion tensor analysis. Neurology 2014;83(2):182-8.Abstract
OBJECTIVE: To evaluate the local effect of small asymptomatic infarctions detected by diffusion-weighted imaging (DWI) on white matter microstructure using longitudinal structural and diffusion tensor imaging (DTI). METHODS: Nine acute to subacute DWI lesions were identified in 6 subjects with probable cerebral amyloid angiopathy who had undergone high-resolution MRI both before and after DWI lesion detection. Regions of interest (ROIs) corresponding to the site of the DWI lesion (lesion ROI) and corresponding site in the nonlesioned contralateral hemisphere (control ROI) were coregistered to the pre- and postlesional scans. DTI tractography was additionally performed to reconstruct the white matter tracts containing the ROIs. DTI parameters (fractional anisotropy [FA], mean diffusivity [MD]) were quantified within each ROI, the 6-mm lesion-containing tract segments, and the entire lesion-containing tract bundle. Lesion/control FA and MD ratios were compared across time points. RESULTS: The postlesional scans (performed a mean 7.1 ± 4.7 months after DWI lesion detection) demonstrated a decrease in median FA lesion/control ROI ratio (1.08 to 0.93, p = 0.038) and increase in median MD lesion/control ROI ratio (0.97 to 1.17, p = 0.015) relative to the prelesional scans. There were no visible changes on postlesional high-resolution T1-weighted and fluid-attenuated inversion recovery images in 4 of 9 lesion ROIs and small (2-5 mm) T1 hypointensities in the remaining 5. No postlesional changes in FA or MD ratios were detected in the 6-mm lesion-containing tract segments or full tract bundles. CONCLUSIONS: Asymptomatic DWI lesions produce chronic local microstructural injury. The cumulative effects of these widely distributed lesions may directly contribute to small-vessel-related vascular cognitive impairment.
Kimberly TW, Wu O, Arsava ME, Garg P, Ji R, Vangel M, Singhal AB, Ay H, Sorensen GA. Lower hemoglobin correlates with larger stroke volumes in acute ischemic stroke. Cerebrovasc Dis Extra 2011;1(1):44-53.Abstract
BACKGROUND: Hemoglobin tetramers are the major oxygen-carrying molecules within the blood. We hypothesized that a lower hemoglobin level and its reduced oxygen-carrying capacity would associate with larger infarction in acute ischemic stroke patients. METHODS: We studied 135 consecutive patients with acute ischemic stroke and perfusion brain MRI. We explored the association of admission hemoglobin with initial infarct volumes on acute images and the volume of infarct expansion on follow-up images. Multivariable linear regression was performed to analyze the independent effect of hemoglobin on imaging outcomes. RESULTS: Bivariate analyses showed a significant inverse correlation between hemoglobin and initial volume in diffusion-weighted imaging (r = -0.20, p = 0.02) and absolute infarct growth (r = -0.20, p = 0.02). Multivariable linear regression modeling revealed that hemoglobin remained independently predictive of larger infarct volumes acutely (p < 0.005) and with greater infarct expansion (p < 0.01) after adjusting for known covariates. CONCLUSIONS: Hemoglobin level at the time of acute ischemic stroke associates with larger infarcts and increased infarct growth. Clarification of the mechanism of this effect may yield novel insights for therapy.
Copen WA, Morais LT, Wu O, Schwamm LH, Schaefer PW, González GR, Yoo AJ. In Acute Stroke, Can CT Perfusion-Derived Cerebral Blood Volume Maps Substitute for Diffusion-Weighted Imaging in Identifying the Ischemic Core?. PLoS One 2015;10(7):e0133566.Abstract
BACKGROUND AND PURPOSE: In the treatment of patients with suspected acute ischemic stroke, increasing evidence suggests the importance of measuring the volume of the irreversibly injured "ischemic core." The gold standard method for doing this in the clinical setting is diffusion-weighted magnetic resonance imaging (DWI), but many authors suggest that maps of regional cerebral blood volume (CBV) derived from computed tomography perfusion imaging (CTP) can substitute for DWI. We sought to determine whether DWI and CTP-derived CBV maps are equivalent in measuring core volume. METHODS: 58 patients with suspected stroke underwent CTP and DWI within 6 hours of symptom onset. We measured low-CBV lesion volumes using three methods: "objective absolute," i.e. the volume of tissue with CBV below each of six published absolute thresholds (0.9-2.5 mL/100 g), "objective relative," whose six thresholds (51%-60%) were fractions of mean contralateral CBV, and "subjective," in which two radiologists (R1, R2) outlined lesions subjectively. We assessed the sensitivity and specificity of each method, threshold, and radiologist in detecting infarction, and the degree to which each over- or underestimated the DWI core volume. Additionally, in the subset of 32 patients for whom follow-up CT or MRI was available, we measured the proportion of CBV- or DWI-defined core lesions that exceeded the follow-up infarct volume, and the maximum amount by which this occurred. RESULTS: DWI was positive in 72% (42/58) of patients. CBV maps' sensitivity/specificity in identifying DWI-positive patients were 100%/0% for both objective methods with all thresholds, 43%/94% for R1, and 83%/44% for R2. Mean core overestimation was 156-699 mL for objective absolute thresholds, and 127-200 mL for objective relative thresholds. For R1 and R2, respectively, mean±SD subjective overestimation were -11±26 mL and -11±23 mL, but subjective volumes differed from DWI volumes by up to 117 and 124 mL in individual patients. Inter-rater agreement regarding the presence of infarction on CBV maps was poor (kappa = 0.21). Core lesions defined by the six objective absolute CBV thresholds exceeded follow-up infarct volumes for 81%-100% of patients, by up to 430-1002 mL. Core estimates produced by objective relative thresholds exceeded follow-up volumes in 91% of patients, by up to 210-280 mL. Subjective lesions defined by R1 and R2 exceeded follow-up volumes in 18% and 26% of cases, by up to 71 and 15 mL, respectively. Only 1 of 23 DWI lesions (4%) exceeded final infarct volume, by 3 mL. CONCLUSION: CTP-derived CBV maps cannot reliably substitute for DWI in measuring core volume, or even establish which patients have DWI lesions.