Frozen steady states in active systems

Citation:

Volker Schaller, Christoph A. Weber, Benjamin Hammerich, Erwin Frey, and Andreas R. Bausch. 2011. “Frozen steady states in active systems.” Proceedings of the National Academy of Sciences, 108, 48, Pp. 19183-19188.

Abstract:

Even simple active systems can show a plethora of intriguing phenomena and often we find complexity where we would have expected simplicity. One striking example is the occurrence of a quiescent or absorbing state with frozen fluctuations that at first sight seems to be impossible for active matter driven by the incessant input of energy. While such states were reported for externally driven systems through macroscopic shear or agitation, the investigation of frozen active states in inherently active systems like cytoskeletal suspensions or active gels is still at large. Using high-density motility assay experiments, we demonstrate that frozen steady states can arise in active systems if active transport is coupled to growth processes. The experiments are complemented by agent-based simulations which identify the coupling between self-organization, growth, and mechanical properties to be responsible for the pattern formation process.