Publications

2011
Volker Schaller, Christoph A. Weber, Benjamin Hammerich, Erwin Frey, and Andreas R. Bausch. 2011. “Frozen steady states in active systems.” Proceedings of the National Academy of Sciences, 108, 48, Pp. 19183-19188. Publisher's VersionAbstract
Even simple active systems can show a plethora of intriguing phenomena and often we find complexity where we would have expected simplicity. One striking example is the occurrence of a quiescent or absorbing state with frozen fluctuations that at first sight seems to be impossible for active matter driven by the incessant input of energy. While such states were reported for externally driven systems through macroscopic shear or agitation, the investigation of frozen active states in inherently active systems like cytoskeletal suspensions or active gels is still at large. Using high-density motility assay experiments, we demonstrate that frozen steady states can arise in active systems if active transport is coupled to growth processes. The experiments are complemented by agent-based simulations which identify the coupling between self-organization, growth, and mechanical properties to be responsible for the pattern formation process.
Volker Schaller, Christoph A. Weber, Erwin Frey, and Andreas R. Bausch. 2011. “Polar pattern formation: hydrodynamic coupling of driven filaments.” Soft Matter, 7, Pp. 3213–3218. Publisher's VersionAbstract
How order can emerge spontaneously from a disordered system has always fascinated scientists from numerous disciplines. Especially in active systems like flocks animals, self-propelled microorganisms or the cytoskeleton, a unifying understanding of the pattern formation remains elusive. This is attributed to the inherent complexity of most model systems that prevents a thorough identification of the fundamental mechanisms that are responsible for the intriguing self-organizing phenomena in active systems. Here we show that long ranged hydrodynamic interactions play a crucial role in the pattern forming mechanisms in the high density motility assay, a precisely controllable minimal model system consisting of highly concentrated filaments that are driven on the nanoscale. Stability and size of the patterns depend on long ranged hydrodynamic interactions that are self-induced by the coherently moving filaments. The hydrodynamic interactions not only influence the spatial and temporal scale of the patterns but also affect the dynamics of a particular cluster in close proximity to confining boundaries or other surrounding clusters.
2010
Volker Schaller, Christoph A. Weber, Christine Semmrich, Erwin Frey, and Andreas R Bausch. 2010. “Polar patterns of driven filaments.” Nature, 467, 7311, Pp. 73–77. Publisher's VersionAbstract
The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems? generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system may thus provide new insight into emerging order in the broad class of active fluids and self-propelled particles.

Pages