Multimodal Ambulatory Sleep Detection Using LSTM Recurrent Neural Networks


Sano A, Chen W, Lopez-Martinez D, Taylor S, Picard R. Multimodal Ambulatory Sleep Detection Using LSTM Recurrent Neural Networks. Journal of Biomedical and Health Informatics. 2018.


Unobtrusive and accurate ambulatory methods are needed to monitor long-term sleep patterns for improving health. Previously developed ambulatory sleep detection methods rely either in whole or in part on self-reported diary data as ground truth, which is a problem since people often do not fill them out accurately. This paper presents an algorithm that uses multimodal data from smartphones and wearable technologies to detect sleep/wake state and sleep onset/offset using a type of recurrent neural network with long-short-term memory (LSTM) cells for synthesizing temporal information. We collected 5580 days of multimodal data from 186 participants and compared the new method for sleep/wake classification and sleep onset/offset detection to (1) non-temporal machine learning methods and (2) a state-of-the-art actigraphy software. The new LSTM method achieved a sleep/wake classification accuracy of 96.5%, and sleep onset/offset detection F1 scores of 0.86 and 0.84 respectively, with mean absolute errors of 5.0 and 5.5 min, respectively, when compared with sleep/wake state and sleep onset/offset assessed using actigraphy and sleep diaries. The LSTM results were statistically superior to those from non-temporal machine learning algorithms and the actigraphy software. We show good generalization of the new algorithm by comparing participant-dependent and participant-independent models, and we show how to make the model nearly realtime with slightly reduced performance.