The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function

Citation:

Sánchez AG, Scóccola CG, Ross AJ, Percival W, Manera M, Montesano F, Mazzalay X, Cuesta AJ, Eisenstein DJ, Kazin E, et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function. Monthly Notices of the Royal Astronomical Society. 2012;425 :415-437.

Date Published:

September 1, 201

Abstract:

We obtain constraints on cosmological parameters from the sphericallyaveraged redshift-space correlation function of the CMASS Data Release 9(DR9) sample of the Baryonic Oscillation Spectroscopic Survey (BOSS). Wecombine this information with additional data from recent cosmicmicrowave background (CMB), supernova and baryon acoustic oscillationmeasurements. Our results show no significant evidence of deviationsfrom the standard flat Λ cold dark matter model, whose basicparameters can be specified by Ωm = 0.285 ±0.009, 100 Ωb = 4.59 ± 0.09, ns =0.961 ± 0.009, H0 = 69.4 ± 0.8 kms-1 Mpc-1 and σ8 = 0.80 ±0.02. The CMB+CMASS combination sets tight constraints on the curvatureof the Universe, with Ωk = -0.0043 ± 0.0049, andthe tensor-to-scalar amplitude ratio, for which we find r < 0.16 atthe 95 per cent confidence level (CL). These data show a clear signatureof a deviation from scale invariance also in the presence of tensormodes, with ns < 1 at the 99.7 per cent CL. We deriveconstraints on the fraction of massive neutrinos of fν< 0.049 (95 per cent CL), implying a limit of ∑mν< 0.51 eV. We find no signature of a deviation from a cosmologicalconstant from the combination of all data sets, with a constraint ofwDE = -1.033 ± 0.073 when this parameter is assumedtime-independent, and no evidence of a departure from this value when itis allowed to evolve as wDE(a) = w0 +wa(1 - a). The achieved accuracy on our cosmologicalconstraints is a clear demonstration of the constraining power ofcurrent cosmological observations.

Website