The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey


Tegmark M, Blanton MR, Strauss MA, Hoyle F, Schlegel D, Scoccimarro R, Vogeley MS, Weinberg DH, Zehavi I, Berlind A, et al. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey. The Astrophysical Journal. 2004;606 :702-740.

Date Published:

May 1, 2004


We measure the large-scale real-space power spectrum P(k) by using asample of 205,443 galaxies from the Sloan Digital Sky Survey, covering2417 effective square degrees with mean redshift z~0.1. We employ amatrix-based method using pseudo-Karhunen-Loève eigenmodes,producing uncorrelated minimum-variance measurements in 22 k-bands ofboth the clustering power and its anisotropy due to redshift-spacedistortions, with narrow and well-behaved window functions in the range0.02hMpc-1-1. We pay particularattention to modeling, quantifying, and correcting for potentialsystematic errors, nonlinear redshift distortions, and the artificialred-tilt caused by luminosity-dependent bias. Our results are robust toomitting angular and radial density fluctuations and are consistentbetween different parts of the sky. Our final result is a measurement ofthe real-space matter power spectrum P(k) up to an unknown overallmultiplicative bias factor. Our calculations suggest that this biasfactor is independent of scale to better than a few percent fork<0.1hMpc-1, thereby making our results useful forprecision measurements of cosmological parameters in conjunction withdata from other experiments such as the Wilkinson Microwave AnisotropyProbe satellite. The power spectrum is not well-characterized by asingle power law but unambiguously shows curvature. As a simplecharacterization of the data, our measurements are well fitted by a flatscale-invariant adiabatic cosmological model withhΩm=0.213+/-0.023 and σ8=0.89+/-0.02for L* galaxies, when fixing the baryon fractionΩbm=0.17 and the Hubble parameterh=0.72; cosmological interpretation is given in a companion paper.