D. D. Deliyski, R. E. Hillman, and D. D. Mehta, “Laryngeal high-speed videoendoscopy: Rationale and recommendation for accurate and consistent terminology,” Journal of Speech, Language, and Hearing Research, vol. 58, no. 5, pp. 1488-1492, 2015. Publisher's VersionAbstract

    Abstract Purpose: The authors discuss the rationale behind the term laryngeal high-speed videoendoscopy to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method: Commentary on the advantages of using accurate and consistent terminology in the field of voice research is provided. Specific justification is described for each component of the term high-speed videoendoscopy, which is compared and contrasted with alternative terminologies in the literature. Results: In addition to the ubiquitous high-speed descriptor, the term endoscopy is necessary to specify the appropriate imaging technology and distinguish among modalities such as ultrasound, magnetic resonance imaging, and nonendoscopic optical imaging. Furthermore, the term video critically indicates the electronic recording of a sequence of optical still images representing scenes in motion, in contrast to strobed images using high-speed photography and non-optical high-speed magnetic resonance imaging. High-speed videoendoscopy thus concisely describes the technology and can be appended by the desired anatomical nomenclature such as laryngeal. Conclusions: Laryngeal high-speed videoendoscopy strikes a balance between conciseness and specificity when referring to the typical high-speed imaging method performed on human participants. Guidance for the creation of future terminology provides clarity and context for current and future experiments and the dissemination of results among researchers.

    N. Roy, et al., “Evidence-based clinical voice assessment: A systematic review,” American Journal of Speech-Language Pathology, vol. 22, pp. 212-226, 2013. Publisher's VersionAbstract

    PurposeTo determine what research evidence exists to support the use of voice measures in the clinical assessment of patients with voice disorders. MethodThe American Speech-Language-Hearing Association (ASHA) National Center for Evidence-Based Practice in Communication Disorders staff searched 29 databases for peer-reviewed English-language articles between January 1930 and April 2009 that included key words pertaining to objective and subjective voice measures, voice disorders, and diagnostic accuracy. The identified articles were systematically assessed by an ASHA-appointed committee employing a modification of the critical appraisal of diagnostic evidence rating system. ResultsOne hundred articles met the search criteria. The majority of studies investigated acoustic measures (60%) and focused on how well a test method identified the presence or absence of a voice disorder (78%). Only 17 of the 100 articles were judged to contain adequate evidence for the measures studied to be formally considered for inclusion in clinical voice assessment. ConclusionResults provide evidence for selected acoustic, laryngeal imaging-based, auditory-perceptual, functional, and aerodynamic measures to be used as effective components in a clinical voice evaluation. However, there is clearly a pressing need for further high-quality research to produce sufficient evidence on which to recommend a comprehensive set of methods for a standard clinical voice evaluation.

    D. D. Mehta, D. D. Deliyski, and R. E. Hillman, “Commentary on why laryngeal stroboscopy really works: Clarifying misconceptions surrounding Talbot's law and the persistence of vision,” Journal of Speech, Language, and Hearing Research, vol. 53, no. 5, pp. 1263-1267, 2010. Publisher's VersionAbstract

    PURPOSE: The purpose of this article is to clear up misconceptions that have propagated in the clinical voice literature that inappropriately cite Talbot's law (1834) and the theory of persistence of vision as the scientific principles that underlie laryngeal stroboscopy. METHOD: After initial research into Talbot's (1834) original studies, it became clear that his experiments were not designed to explain why stroboscopy works. Subsequently, a comprehensive literature search was conducted for the purpose of investigating the general principles of stroboscopic imaging from primary sources. RESULTS: Talbot made no reference to stroboscopy in designing his experiments, and the notion of persistence of vision is not applicable to stroboscopic motion. Instead, two visual phenomena play critical roles: (a) the flicker-free perception of light and (b) the perception of apparent motion. In addition, the integration of stroboscopy with video-based technology in today's voice clinic requires additional complexities to include synchronization with camera frame rates. CONCLUSIONS: References to Talbot's law and the persistence of vision are not relevant to the generation of stroboscopic images. The critical visual phenomena are the flicker-free perception of light intensity and the perception of apparent motion from sampled images. A complete understanding of how laryngeal stroboscopy works will aid in better interpreting clinical findings during voice assessment.