G. A. Alzamendi, et al., “
Bayesian estimation of vocal function measures using laryngeal high-speed videoendoscopy and glottal airflow estimates: An in vivo case study,”
The Journal of the Acoustical Society of America, vol. 147, no. 5, pp. EL434-EL439, 2020.
Publisher's VersionAbstractThis study introduces the in vivo application of a Bayesian framework to estimate subglottal pressure, laryngeal muscle activation, and vocal fold contact pressure from calibrated transnasal high-speed videoendoscopy and oral airflow data. A subject-specific, lumped-element vocal fold model is estimated using an extended Kalman filter and two observation models involving glottal area and glottal airflow. Model-based inferences using data from a vocally healthy male individual are compared with empirical estimates of subglottal pressure and reference values for muscle activation and contact pressure in the literature, thus providing baseline error metrics for future clinical investigations.
Paper J. T. Heaton, et al., “
Aerodynamically driven phonation of individual vocal folds under general anesthesia in canines,”
The Laryngoscope, vol. 130, no. 8, pp. 1980-1988, 2020.
Publisher's VersionAbstract
Objectives/Hypothesis
We previously developed an instrument called the Aerodynamic Vocal Fold Driver (AVFD) for intraoperative magnified assessment of vocal fold (VF) vibration during microlaryngoscopy under general anesthesia. Excised larynx testing showed that the AVFD could provide useful information about the vibratory characteristics of each VF independently. The present investigation expands those findings by testing new iterations of the AVFD during microlaryngoscopy in the canine model.
Study Design
Animal model.
Methods
The AVFD is a handheld instrument that is positioned to contact the phonatory mucosa of either VF during microlaryngoscopy. Airflow delivered through the AVFD shaft to the subglottis drives the VF into phonation‐like vibration, which enables magnified observation of mucosal‐wave function with stroboscopy or high‐speed video. AVFD‐driven phonation was tested intraoperatively (n = 26 VFs) using either the original instrument design or smaller and larger versions three‐dimensionally printed from a medical grade polymer. A high‐fidelity pressure sensor embedded within the AVFD measured VF contact pressure. Characteristics of individual VF phonation were compared with typical two‐fold phonation and compared for VFs scarred by electrocautery (n = 4) versus controls (n = 22).
Results
Phonation was successful in all 26 VFs, even when scar prevented conventional bilateral phonation. The 15‐mm‐wide AVFD fits best within the anteroposterior dimension of the musculo‐membranous VF, and VF contact pressure correlated with acoustic output, driving pressures, and visible modes of vibration.
Conclusions
The AVFD can reveal magnified vibratory characteristics of individual VFs during microlaryngoscopy (e.g., without needing patient participation), potentially providing information that is not apparent or available during conventional awake phonation, which might facilitate phonosurgical decision making.
Level of Evidence
NA
H. Ghasemzadeh, D. D. Deliyski, D. S. Ford, J. B. Kobler, R. E. Hillman, and D. D. Mehta, “
Method for vertical calibration of laser-projection transnasal fiberoptic high-speed videoendoscopy,”
Journal of Voice, vol. 34, no. 6, pp. 847-861, 2020.
Publisher's VersionAbstractThe ability to provide absolute calibrated measurement of the laryngeal structures during phonation is of paramount importance to voice science and clinical practice. Calibrated three-dimensional measurement could provide essential information for modeling purposes, for studying the developmental aspects of vocal fold vibration, for refining functional voice assessment and treatment outcomes evaluation, and for more accurate staging and grading of laryngeal disease. Recently, a laser-calibrated transnasal fiberoptic endoscope compatible with high-speed videoendoscopy (HSV) and capable of providing three-dimensional measurements was developed. The optical principle employed is to project a grid of 7 × 7 green laser points across the field of view (FOV) at an angle relative to the imaging axis, such that (after calibration) the position of each laser point within the FOV encodes the vertical distance from the tip of the endoscope to the laryngeal tissues. The purpose of this study was to develop a precise method for vertical calibration of the endoscope. Investigating the position of the laser points showed that, besides the vertical distance, they also depend on the parameters of the lens coupler, including the FOV position within the image frame and the rotation angle of the endoscope. The presented automatic calibration method was developed to compensate for the effect of these parameters. Statistical image processing and pattern recognition were used to detect the FOV, the center of FOV, and the fiducial marker. This step normalizes the HSV frames to a standard coordinate system and removes the dependence of the laser-point positions on the parameters of the lens coupler. Then, using a statistical learning technique, a calibration protocol was developed to model the trajectories of all laser points as the working distance was varied. Finally, a set of experiments was conducted to measure the accuracy and reliability of every step of the procedure. The system was able to measure absolute vertical distance with mean percent error in the range of 1.7% to 4.7%, depending on the working distance.
M. E. Powell, et al., “
Efficacy of videostroboscopy and high-speed videoendoscopy to obtain functional outcomes from perioperative ratings in patients with mass lesions,”
Journal of Voice, vol. 34, no. 5, pp. 769-782, 2020.
Publisher's VersionAbstract
Objectives
A major limitation of comparing the efficacy of videostroboscopy (VS) and high-speed videoendoscopy (HSV) is the lack of an objective reference by which to compare the functional assessment ratings of the two techniques. For patients with vocal fold mass lesions, intraoperative measures of lesion size and depth may serve as this objective reference. This study compared the relationships between the pre- to postoperative change in VS and HSV visual-perceptual ratings to intraoperative measures of lesion size and depth.
Design
Prospective visual-perceptual study with intraoperative measures of lesion size and depth.
Methods
VS and HSV samples were obtained preoperatively and postoperatively from 28 patients with vocal fold lesions and from 17 vocally healthy controls. Two experienced clinicians rated amplitude, mucosal wave, vertical phase difference, left-right phase asymmetry, and vocal fold edge on a visual-analog scale using both imaging techniques. The change in perioperative ratings from VS and HSV was compared between groups and correlated to intraoperative measures of lesion size and depth.
Results
HSV was as reliable as VS for ratings of amplitude and edge, and substantially more reliable for ratings of mucosal wave and left-right phase asymmetry. Both VS and HSV had mild-moderate correlations between change in perioperative ratings and intraoperative measures of lesion area. Change in function could be obtained in more patients and for more parameters using HSV than VS. Group differences were noted for postoperative ratings of amplitude and edge; however, these differences were within one level of the visual-perceptual rating scale. The presence of asynchronicity in VS recordings renders vibratory features either uninterpretable or potentially distorted and thus should not be rated.
Conclusions
Amplitude and edge are robust vibratory measures for perioperative functional assessment, regardless of imaging modality. HSV is indicated for evaluation of subepithelial lesions or if asynchronicity is present in the VS image sequence.