Publications by Year: 2018

2018
J. P. Cortés, et al., “Ambulatory assessment of phonotraumatic vocal hyperfunction using glottal airflow measures estimated from neck-surface acceleration,” PLoS One, vol. 13, no. 12, pp. e0209017, 2018. Publisher's VersionAbstract
Phonotraumatic vocal hyperfunction (PVH) is associated with chronic misuse and/or abuse of voice that can result in lesions such as vocalfold nodules. The clinical aerodynamic assessment of vocal function has been recently shown to differentiate between patients with PVH and healthy controls to provide meaningful insight into pathophysiological mechanisms associated with these disorders. However, all current clinical assessment of PVH is incomplete because of its inability to objectively identify the type and extent of detrimental phonatory function that is associated with PVH during daily voice use. The current study sought to address this issue by incorporating, for the first time in a comprehensive ambulatory assessment, glottal airflow parameters estimated from a neck-mounted accelerometer and recorded to a smartphone-based voice monitor. We tested this approach on 48 patients with vocal fold nodules and 48 matched healthy-control subjects who each wore the voice monitor for a week. Seven glottal airflow features were estimated every 50 ms using an impedance-based inverse filtering scheme, and seven high-order summary statistics of each feature were computed every 5 minutes over voiced segments. Based on a univariate hypothesis testing, eight glottal airflow summary statistics were found to be statistically different between patient and healthy-control groups. L1-regularized logistic regression for a supervised classification task yielded a mean (standard deviation) area under the ROC curve of 0.82 (0.25) and an accuracy of 0.83 (0.14). These results outperform the state-of-the-art classification for the same classification task and provide a new avenue to improve the assessment and treatment of hyperfunctional voice disorders.
Paper
M. Brockmann-Bauser, J. E. Bohlender, and D. D. Mehta, “Acoustic perturbation measures improve with increasing vocal intensity in individuals with and without voice disorders,” Journal of Voice, vol. 32, no. 2, pp. 162-168, 2018. Publisher's VersionAbstract

Objective

In vocally healthy children and adults, speaking voice loudness differences can significantly confound acoustic perturbation measurements. This study examines the effects of voice sound pressure level (SPL) on jitter, shimmer, and harmonics-to-noise ratio (HNR) in adults with voice disorders and a control group with normal vocal status.

Study Design

This is a matched case-control study.

Methods

We assessed 58 adult female voice patients matched according to approximate age and occupation with 58 vocally healthy women. Diagnoses included vocal fold nodules (n = 39, 67.2%), polyps (n = 5, 8.6%), and muscle tension dysphonia (n = 14, 24.1%). All participants sustained the vowel /a/ at soft, comfortable, and loud phonation levels. Acoustic voice SPL, jitter, shimmer, and HNR were computed using Praat. The effects of loudness condition, voice SPL, pathology, differential diagnosis, age, and professional voice use level on acoustic perturbation measures were assessed using linear mixed models and Wilcoxon signed rank tests.

Results

In both patient and normative control groups, increasing voice SPL correlated significantly (P < 0.001) with decreased jitter and shimmer, and increased HNR. Voice pathology and differential diagnosis were not linked to systematically higher jitter and shimmer. HNR levels, however, were statistically higher in the patient group than in the control group at comfortable phonation levels. Professional voice use level had a significant effect (P < 0.05) on jitter, shimmer, and HNR.

Conclusions

The clinical value of acoustic jitter, shimmer, and HNR may be limited if speaking voice SPL and professional voice use level effects are not controlled for. Future studies are warranted to investigate whether perturbation measures are useful clinical outcome metrics when controlling for these effects.

Paper