Publications by Year: 2019

2019
D. D. Mehta, et al., “Toward development of a vocal fold contact pressure probe: Bench-top validation of a dual-sensor probe using excised human larynx models,” Applied Sciences, vol. 9, no. 20, pp. 4360, 2019. Publisher's VersionAbstract
A critical element in understanding voice production mechanisms is the characterization of vocal fold collision, which is widely considered a primary etiological factor in the development of common phonotraumatic lesions such as nodules and polyps. This paper describes the development of a transoral, dual-sensor intraglottal/subglottal pressure probe for the simultaneous measurement of vocal fold collision and subglottal pressures during phonation using two miniature sensors positioned 7.6 mm apart at the distal end of a rigid cannula. Proof-of-concept testing was performed using excised whole-mount and hemilarynx human tissue aerodynamically driven into self-sustained oscillation, with systematic variation of the superior–inferior positioning of the vocal fold collision sensor. In the hemilarynx experiment, signals from the pressure sensors were synchronized with an acoustic microphone, a tracheal-surface accelerometer, and two high-speed video cameras recording at 4000 frames per second for top–down and en face imaging of the superior and medial vocal fold surfaces, respectively. As expected, the intraglottal pressure signal exhibited an impulse-like peak when vocal fold contact occurred, followed by a broader peak associated with intraglottal pressure build-up during the de-contacting phase. As subglottal pressure was increased, the peak amplitude of the collision pressure increased and typically reached a value below that of the average subglottal pressure. Results provide important baseline vocal fold collision pressure data with which computational models of voice production can be developed and in vivo measurements can be referenced.
Paper
G. Maguluri, D. Mehta, J. Kobler, J. Park, and N. Iftimia, “Synchronized, concurrent optical coherence tomography and videostroboscopy for monitoring vocal fold morphology and kinematics,” Biomedical Optics Express, vol. 10, no. 9, pp. 4450-4461, 2019. Publisher's VersionAbstract
Voice disorders affect a large number of adults in the United States, and their clinical evaluation heavily relies on laryngeal videostroboscopy, which captures the medial-lateral and anterior-posterior motion of the vocal folds using stroboscopic sampling. However, videostroboscopy does not provide direct visualization of the superior-inferior movement of the vocal folds, which yields important clinical insight. In this paper, we present a novel technology that complements videostroboscopic findings by adding the ability to image the coronal plane and visualize the superior-inferior movement of the vocal folds. The technology is based on optical coherence tomography, which is combined with videostroboscopy within the same endoscopic probe to provide spatially and temporally co-registered images of the mucosal wave motion, as well as vocal folds subsurface morphology. We demonstrate the capability of the rigid endoscopic probe, in a benchtop setting, to characterize the complex movement and subsurface structure of the aerodynamically driven excised larynx models within the 50 to 200 Hz phonation range. Our preliminary results encourage future development of this technology with the goal of its use for in vivo laryngeal imaging.
Paper
M. Motie-Shirazi, et al., “Toward development of a vocal fold contact pressure probe: Sensor characterization and validation using synthetic vocal fold models,” Applied Sciences, vol. 9, no. 15, pp. 3002, 2019. Publisher's VersionAbstract
Excessive vocal fold collision pressures during phonation are considered to play a primary role in the formation of benign vocal fold lesions, such as nodules. The ability to accurately and reliably acquire intraglottal pressure has the potential to provide unique insights into the pathophysiology of phonotrauma. Difficulties arise, however, in directly measuring vocal fold contact pressures due to physical intrusion from the sensor that may disrupt the contact mechanics, as well as difficulty in determining probe/sensor position relative to the contact location. These issues are quantified and addressed through the implementation of a novel approach for identifying the timing and location of vocal fold contact, and measuring intraglottal and vocal fold contact pressures via a pressure probe embedded in the wall of a hemi-laryngeal flow facility. The accuracy and sensitivity of the pressure measurements are validated against ground truth values. Application to in vivo approaches are assessed by acquiring intraglottal and VF contact pressures using a synthetic, self-oscillating vocal fold model in a hemi-laryngeal configuration, where the sensitivity of the measured intraglottal and vocal fold contact pressure relative to the sensor position is explored.
Paper
D. D. Mehta and J. H. Van Stan, “Ambulatory phonation monitoring,” in The SAGE Encyclopedia of Human Communication Sciences and Disorders, J. S. Damico and M. Ball, Ed. 2019, pp. 90–91.
K. L. Marks, J. Z. Lin, A. Fox, L. E. Toles, and D. D. Mehta, “Impact of non-modal phonation on estimates of subglottal pressure from neck-surface acceleration in healthy speakers,” Journal of Speech, Language, and Hearing Research, vol. 62, no. 9, pp. 3339-3358, 2019. Publisher's VersionAbstract

Purpose

The purpose of this study was to evaluate the effects of nonmodal phonation on estimates of subglottal pressure (Ps) derived from the magnitude of a neck-surface accelerometer (ACC) signal and to confirm previous findings regarding the impact of vowel contexts and pitch levels in a larger cohort of participants.

Method

Twenty-six vocally healthy participants (18 women, 8 men) were asked to produce a series of p-vowel syllables with descending loudness in 3 vowel contexts (/a/, /i/, and /u/), 3 pitch levels (comfortable, high, and low), and 4 elicited phonatory conditions (modal, breathy, strained, and rough). Estimates of Ps for each vowel segment were obtained by averaging the intraoral air pressure plateau before and after each segment. The root-mean-square magnitude of the neck-surface ACC signal was computed for each vowel segment. Three linear mixed-effects models were used to statistically assess the effects of vowel, pitch, and phonatory condition on the linear relationship (slope and intercept) between Ps and ACC signal magnitude.

Results

Results demonstrated statistically significant linear relationships between ACC signal magnitude and Ps within participants but with increased intercepts for the nonmodal phonatory conditions; slopes were affected to a lesser extent. Vowel and pitch contexts did not significantly affect the linear relationship between ACC signal magnitude and Ps.

Conclusion

The classic linear relationship between ACC signal magnitude and Ps is significantly affected when nonmodal phonation is produced by a speaker. Future work is warranted to further characterize nonmodal phonatory characteristics to improve the ACC-based prediction of Ps during naturalistic speech production.

Paper
A. J. Ortiz, et al., “Automatic speech and singing classification in ambulatory recordings for normal and disordered voices,” The Journal of the Acoustical Society of America, vol. 146, no. 1, pp. EL22–EL27, 2019. Publisher's VersionAbstract
Ambulatory voice monitoring is a promising tool for investigating phonotraumatic vocal hyperfunction (PVH), associated with the development of vocal fold lesions. Since many patients with PVH are professional vocalists, a classifier was developed to better understand phonatory mechanisms during speech and singing. Twenty singers with PVH and 20 matched healthy controls were monitored with a neck-surface accelerometer–based ambulatory voice monitor. An expert-labeled ground truth data set was used to train a logistic regression on 15 subject-pairs with fundamental frequency and autocorrelation peak amplitude as input features. Overall classification accuracy of 94.2% was achieved on the held-out test set.
Paper
O. Murton, S. Shattuck-Hufnagel, J. - Y. Choi, and D. D. Mehta, “Identifying a creak probability threshold for an irregular pitch period detection algorithm,” The Journal of the Acoustical Society of America, vol. 145, no. 5, pp. EL379–EL385, 2019. Publisher's VersionAbstract
Irregular pitch periods (IPPs) are associated with grammatically, pragmatically, and clinically significant types of nonmodal phonation, but are challenging to identify. Automatic detection of IPPs is desirable because accurately hand-identifying IPPs is time-consuming and requires training. The authors evaluated an algorithm developed for creaky voice analysis to automatically identify IPPs in recordings of American English conversational speech. To determine a perceptually relevant threshold probability, frame-by-frame creak probabilities were compared to hand labels, yielding a threshold of approximately 0.02. These results indicate a generally good agreement between hand-labeled IPPs and automatic detection, calling for future work investigating effects of linguistic and prosodic context.
Paper
D. D. Mehta, V. M. Espinoza, M. Zanartu, J. H. Van Stan, and R. E. Hillman, “The difference between first and second harmonic amplitudes correlates between glottal airflow and neck-surface accelerometer signals during phonation,” The Journal of the Acoustical Society of America, vol. 145, no. 5, pp. EL386–EL392, 2019. Publisher's VersionAbstract
Miniature high-bandwidth accelerometers on the anterior neck surface are used in laboratory and ambulatory settings to obtain vocal function measures. This study compared the widely applied L1–L2 measure (historically, H1–H2)—the difference between the log-magnitude of the first and second harmonics—computed from the glottal airflow waveform with L1–L2 derived from the raw neck-surface acceleration signal in 79 vocally healthy female speakers. Results showed a significant correlation (r = 0.72) between L1–L2 values estimated from both airflow and accelerometer signals, suggesting that raw accelerometer-based estimates of L1–L2 may be interpreted as reflecting glottal physiological parameters and voice quality attributes during phonation.
Paper
J. A. Whitfield, Z. Kriegel, A. M. Fullenkamp, and D. D. Mehta, “Effects of concurrent manual task performance on connected speech acoustics in individuals with Parkinson disease,” Journal of Speech, Language, and Hearing Research, vol. 62, no. 7, pp. 2099–2117, 2019. Publisher's VersionAbstract
Purpose: Prior investigations suggest that simultaneous
performance of more than 1 motor-oriented task may
exacerbate speech motor deficits in individuals with
Parkinson disease (PD). The purpose of the current
investigation was to examine the extent to which
performing a low-demand manual task affected the
connected speech in individuals with and without PD.
Method: Individuals with PD and neurologically healthy
controls performed speech tasks (reading and
extemporaneous speech tasks) and an oscillatory
manual task (a counterclockwise circle-drawing
task) in isolation (single-task condition) and concurrently
(dual-task condition).
Results: Relative to speech task performance, no changes
in speech acoustics were observed for either group when
the low-demand motor task was performed with the
concurrent reading tasks. Speakers with PD exhibited
a significant decrease in pause duration between the
single-task (speech only) and dual-task conditions
for the extemporaneous speech task, whereas control
participants did not exhibit changes in any speech
production variable between the single- and dual-task
conditions.
Conclusions: Overall, there were little to no changes in
speech production when a low-demand oscillatory motor
task was performed with concurrent reading. For the
extemporaneous task, however, individuals with PD
exhibited significant changes when the speech and manual
tasks were performed concurrently, a pattern that was
not observed for control speakers.
Supplemental Material: https://doi.org/10.23641/asha.
8637008
Paper
J. A. Whitfield and D. D. Mehta, “Examination of clear speech in Parkinson disease using passage-level vowel space metrics,” Journal of Speech, Language, and Hearing Research, vol. 62, no. 7, pp. 2082–2098, 2019. Publisher's VersionAbstract
Purpose: The purpose of the current study was to characterize
clear speech production for speakers with and without
Parkinson disease (PD) using several measures of working
vowel space computed from frequently sampled formant
trajectories.
Method: The 1st 2 formant frequencies were tracked for
a reading passage that was produced using habitual and
clear speaking styles by 15 speakers with PD and 15 healthy
control speakers. Vowel space metrics were calculated
from the distribution of frequently sampled formant frequency
tracks, including vowel space hull area, articulatory–acoustic
vowel space, and multiple vowel space density (VSD)
measures based on different percentile contours of the
formant density distribution.
Results: Both speaker groups exhibited significant
increases in the articulatory–acoustic vowel space and
VSD10, the area of the outermost (10th percentile)
contour of the formant density distribution, from habitual
to clear styles. These clarity-related vowel space increases
were significantly smaller for speakers with PD than
controls. Both groups also exhibited a significant increase
in vowel space hull area; however, this metric was not
sensitive to differences in the clear speech response
between groups. Relative to healthy controls, speakers
with PD exhibited a significantly smaller VSD90, the area
of the most central (90th percentile), densely populated
region of the formant space.
Conclusions: Using vowel space metrics calculated from
formant traces of the reading passage, the current work
suggests that speakers with PD do indeed reach the more
peripheral regions of the vowel space during connected
speech but spend a larger percentage of the time in more
central regions of formant space than healthy speakers.
Additionally, working vowel space metrics based on the
distribution of formant data suggested that speakers with
PD exhibited less of a clarity-related increase in formant
space than controls, a trend that was not observed for
perimeter-based measures of vowel space area.
Paper