Introduction

Useful forms of energy. Since diffuse (ca. 170 Wm⁻²) current, conversion should integration and storage. Curve of the many routes used to energy into heat, electricity is competitive with fossil fuel's world market price.

"Over 50% of energy use in modern houses is spent in warming up water for heating, washing, and cooking."

“Over 50% of energy use in modern houses is spent in warming up water for heating, washing, and cooking.”

The efficiency of the collector depends crucially on: the **selectivity** (solar absorbance / thermal emittance), and the **stability** (high operating temperatures) of the absorber.
Diamond-like carbon (DLC) is tough with suitable optical gap

Diamond-like carbon (DLC) is tough with suitable optical gap

Diamond-like carbon (DLC) is tough with suitable optical gap

- **a-C, bulk modulus**: bulk modulus $B\text{_{sp}}$ as a function of coordination z
- **a-C, optical gap**: optical gap as a function of sp3 fraction (%)
- **a-C:H/Au, TEM image**: image of a-C:H/Au
- **DLC with metal, absorption**: absorption coefficient as a function of wavelength (nm)

Simulation and design of metal-containing DLC

Structural models

Properties
- Structural
- Electronic
- Optical
- Mechanical
Structural models

Models of 70-100% sp3 DLC and Ag/Cu-DLC

sp3-bonded C

sp2-bonded C

PBEsol DFT for structural optimization

“amorphous diamond”

3% at. Me - DLC
Graphitization of DLC with metal incorporation: 7% decrease in sp³-bonded C for 1% increase in metal content

\[\Delta \text{sp}^3 \] (\%)

\[\text{[Me]} \] (% at.)

\[\text{sp}^3 \] (\%)

Theory

Experiment¹

\[\text{Slope: } \sim -8.5\% \]

Electronic properties

The metallic inclusions introduce states into the DLC band gap

\[w(\epsilon) = \sum \left(\frac{N g_i(\epsilon)}{g(\epsilon) - 1} \right)^2 / N(N-1), \quad g_i: \text{PDOS on atom } \text{“i”} \]
Electronic properties

The metallic inclusions introduce states into the DLC band gap

\[w(\epsilon) = \sum \left(\frac{N\epsilon_i(\epsilon)}{g(\epsilon)-1} \right)^2 / N(N-1), \quad g_i: \text{PDOS on atom } "i" \]

\[\text{model a-C}^1 \]

Optical properties

Metal incorporation in DLC enhances absorption in the visible

Time-dependent DFT (Bootstrap approximation for the xc kernel)

Metal incorporation in DLC softens the material

Finite deformation (stress-strain) approach
Metal incorporation in DLC enhances absorption in the visible; The composite softens but retains good mechanical strength

\[\sim 1.6 \times 10^3 \text{ cm}^{-1} / 5\% \text{ sp}^2 \]

\[\sim 10 \text{ GPa} / 5\% \text{ sp}^3 \]
Design of metal-containing DLC
DLC with 70-80% sp³-bonded C and < 3% at. metal shows high absorption in the visible ($\alpha > 10^5 \text{ cm}^{-1}$) and good mechanical strength ($\kappa > 300 \text{ GPa}$, $\gamma > 500 \text{ GPa}$)

Georgios A. Tritsaris, Christos Mathioudakis, Pantelis C. Kelires, and Efthimios Kaxiras, Submitted

Acknowledgements
GT wishes to thank Panagiotis Patsalas (Univ. of Ioannina, GR) and Jun Yan (SLAC Stanford Univ., USA) for the helpful discussions

Financial Support
Strategic Infrastructure Project NEW INFRASTRUCTURE/ΣΤΡΑΤΗ/0308/04 of DESMI 2008, which is co-financed by the European Regional Development Fund, the European Social Fund, the Cohesion Fund and the Research Promotion Foundation of the Republic of Cyprus
Design of metal-containing DLC

DLC with 70-80% sp³-bonded C and < 3% at. metal shows high absorption in the visible ($\alpha > 10^5$ cm⁻¹) and good mechanical strength ($K > 300$ GPa, $Y > 500$ GPa)

Georgios A. Tritsaris, Christos Mathioudakis, Pantelis C. Kelires, and Efthimios Kaxiras, Submitted

Acknowledgements

GT wishes to thank Panagiotis Patsalas (Univ. of Ioannina, GR) and Jun Yan (SLAC Stanford Univ., USA) for the helpful discussions

Financial Support

Strategic Infrastructure Project NEW INFRASTRUCTURE/ΣΤΡΑΤΗ/0308/04 of DESMI 2008, which is co-financed by the European Regional Development Fund, the European Social Fund, the Cohesion Fund and the Research Promotion Foundation of the Republic of Cyprus