Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons

Citation:

Lin M-W, Ling C, Agapito LA, Kioussis N, Zhang Y, Cheng MM-C, Wang WL, Kaxiras E, Zhou Z. Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons. Physical Review B. 2011;84 :125411.
pdf587 KB

Abstract:

We report electrical transport measurements on a suspended ultra-low-disorder graphene nanoribbon (GNR) with nearly atomically smooth edges that reveal a high mobility exceeding 3000 cm2 V−1 s−1 and an intrinsic band gap. The experimentally derived band gap is in quantitative agreement with the results of our electronic structure calculations on chiral GNRs with comparable width taking into account the electron-electron interactions, indicating that the origin of the band gap in nonarmchair GNRs is partially due to the magnetic zigzag edges

Last updated on 06/04/2015