Bounds on nanoscale nematicity in single-layer FeSe/SrTiO3


Huang D, Webb TA, Fang S, Song C-L, Chang C-Z, Moodera JS, Kaxiras E, Hoffman JE. Bounds on nanoscale nematicity in single-layer FeSe/SrTiO3. PHYSICAL REVIEW B. 2016;93 (12).

Date Published:

MAR 18


We use scanning tunneling microscopy (STM) and quasiparticle interference (QPI) imaging to investigate the low-energy orbital texture of single-layer FeSe/SrTiO3. We develop a T-matrix model of multiorbital QPI to disentangle scattering intensities from Fe 3d(xz) and 3d(yz) bands, enabling the use of STM as a nanoscale detection tool of nematicity. By sampling multiple spatial regions of a single-layer FeSe/SrTiO3 film, we quantitatively exclude static xz/yz orbital ordering with domain size larger than delta r(2) = 20 nm x 20 nm, xz/yz Fermi wave vector difference larger than delta k = 0.014 pi, and energy splitting larger than delta E = 3.5 meV. The lack of detectable ordering pinned around defects places qualitative constraints on models of fluctuating nematicity.