Dynamics of the Photogenerated Hole at the Rutile TiO2(110)/Water Interface: A Nonadiabatic Simulation Study

Citation:

Tritsaris GA, Vinichenko D, Kolesov G, Friend CM, Kaxiras E. Dynamics of the Photogenerated Hole at the Rutile TiO2(110)/Water Interface: A Nonadiabatic Simulation Study. Journal of Physical Chemistry C . 2014;118 :27393-27401.

Abstract:

Hydrogen production in photoelectrochemical cells constitutes an important avenue toward carbon-free fuel. The most convenient process for hydrogen production is the splitting of water molecules, which necessitates a catalytic
reaction involving a semiconductor. Here, we introduce a framework for the study of photocatalyzed reactions on semiconductor surfaces based on time-dependent density functional theory that explicitly accounts for the evolution of electronically excited states. Within this framework, we investigate the possibility of hole-mediated splitting of molecularly adsorbed water on a representative metal oxide surface the rutile TiO2(110). We find that oxidative dehydrogenation of water is possible in synergy with thermal effects at temperatures between 60 and 100 K only when defects like Ti interstitials are present in the subsurface region. This study presents a general computational strategy for describing photoexcited semiconductor/adsorbate interfaces and also demonstrates that the occurrence of water dissociation on the rutile TiO2(110) surface depends sensitively on the local atomic environment and external parameters such as temperature.

Last updated on 09/07/2015