Effect of nanoscale flows on the surface structure of nanoporous catalysts

Citation:

Montemore MM, Montessori A, Succi S, Barroo C, Falcucci G, Bell DC, Kaxiras E. Effect of nanoscale flows on the surface structure of nanoporous catalysts. JOURNAL OF CHEMICAL PHYSICS. 2017;146 (21).

Date Published:

JUN 7

Abstract:

The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O-2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (approximate to 300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results. Published by AIP Publishing.