Revealing the Empty-State Electronic Structure of Single-Unit-Cell FeSe/SrTiO3

Citation:

Huang D, Song C-L, Webb TA, Fang S, Chang C-Z, Moodera JS, Kaxiras E, Hoffman JE. Revealing the Empty-State Electronic Structure of Single-Unit-Cell FeSe/SrTiO3. PHYSICAL REVIEW LETTERS. 2015;115 (1).

Date Published:

JUL 2

Abstract:

We use scanning tunneling spectroscopy to investigate the filled and empty electronic states of superconducting single-unit-cell FeSe deposited on SrTiO3(001). We map the momentum-space band structure by combining quasiparticle interference imaging with decay length spectroscopy. In addition to quantifying the filled-state bands, we discover a Gamma-centered electron pocket 75 meV above the Fermi energy. Our density functional theory calculations show the orbital nature of empty states at Gamma and explain how the Se height is a key tuning parameter of their energies, with broad implications for electronic properties.
Last updated on 11/18/2016