Photoplethysmography: A measure for the function of the autonomic nervous system in focal impaired awareness seizures

Citation:

Rima El Atrache, Eleonora Tamilia, Fatemeh Mohammadpour Touserkani, Sarah Hammond, Christos Papadelis, Kush Kapur, Michele Jackson, Bethany Bucciarelli, Melissa Tsuboyama, Rani A Sarkis, and Tobias Loddenkemper. 2020. “Photoplethysmography: A measure for the function of the autonomic nervous system in focal impaired awareness seizures.” Epilepsia.

Abstract:

OBJECTIVES: Photoplethysmography (PPG) reflects variations of blood perfusion in tissues, which may signify seizure-related autonomic changes. The aim of this study is to assess the variability of PPG signals and their value in detecting peri-ictal changes in patients with focal impaired awareness seizures (FIASs). METHODS: PPG data were recorded using a wearable sensor placed on the wrist or ankle of children with epilepsy admitted for long-term video-electroencephalographic monitoring. We analyzed PPG data in four different periods: seizure-free, preictal, ictal, and postictal. Multiple features were automatically extracted from the PPG signal-frequency, duration, amplitude, increasing and decreasing slopes, smoothness, and area under the curve (AUC)-and were used to identify preictal, ictal, or postictal changes by comparing them with seizure-free periods and with each other using a linear mixed-effects model. RESULTS: We studied PPG in 11 patients (18 FIASs), including seizure-free, preictal, and postictal periods, and a subset of eight patients (12 FIASs) including the ictal period. Compared to the seizure-free period, we found significant changes in PPG (1) during the ictal period across all features; (2) during the preictal period in amplitude, duration, increasing slope, and AUC; and (3) during the postictal period in decreasing slope. SIGNIFICANCE: Specific PPG changes can be seen before, during, and after FIASs. The peri-ictal changes in the PPG features of patients with FIASs suggest potential applications of PPG monitoring for seizure detection.