A geometrically adaptable heart valve replacement

Citation:

Sophie C. Hofferberth, Mossab Y. Saeed, Lara Tomholt, Matheus C. Fernandes, Christopher J. Payne, Karl Price, Gerald R. Marx, Jesse J. Esch, David W. Brown, Jonathan Brown, Peter E. Hammer, Richard W. Bianco, James C. Weaver, Elazer R. Edelman, and Pedro J. Del Nido. 2020. “A geometrically adaptable heart valve replacement.” Science Translational Medicine, 12, 531, Pp. eaay4006. Publisher's Version Copy at https://tinyurl.com/y8xw3ddy
[pdf]1.51 MB

Abstract:

Congenital heart valve disease has life-threatening consequences that warrant early valve replacement; however, the development of a growth-accommodating prosthetic valve has remained elusive. Thousands of children continue to face multiple high-risk open-heart operations to replace valves that they have outgrown. Here, we demonstrate a biomimetic prosthetic valve that is geometrically adaptable to accommodate somatic growth and structural asymmetries within the heart. Inspired by the human venous valve, whose geometry is optimized to preserve functionality across a wide range of constantly varying volume loads and diameters, our balloon-expandable synthetic bileaflet valve analog exhibits similar adaptability to dimensional and shape changes. Benchtop and acute in vivo experiments validated design functionality, and in vivo survival studies in growing sheep demonstrated that mechanical valve expansion accommodated growth. As illustrated in this work, dynamic size adaptability with preservation of unidirectional flow in prosthetic valves thus offers a paradigm shift in the treatment of heart valve disease.
Last updated on 11/06/2020