The Impact of Regulation on Innovation*

Philippe Aghion, Antonin Bergeaud, John Van Reenen

College de France and LSE, Banque de France, MIT and Centre for Economic Performance, LSE

March 2019

Abstract

We study the impact of labor regulation on innovation. We exploit the threshold in labor market regulations in France which means that when a firm reaches 50 employees, costs increase substantially. We show theoretically and empirically that the prospect of these regulatory costs discourages firms just below the threshold from innovating (as measured by patent counts). This relationship emerges when looking nonparametrically at patent density around the regulatory threshold and also in a parametric exercise where we examine the heterogeneous response of firms to exogenous market size shocks (from export market growth). On average, firms innovate more when they experience a positive market size shock, but this relationship significantly weakens when a firm is just below the regulatory threshold. Using information on citations we show suggestive evidence (consistent with our model) that regulation deters radical innovation much less than incremental innovation. This suggests that with size-dependent regulation, companies innovate less, but if they do try to innovate, they “swing for the fence”.

JEL classification: O31, L11, L51, J8, L25

Keywords: Innovation, regulation, patent, firm size.

*We would like to thank Costas Meghir for tremendous help with an earlier version of this paper and Matthieu Lequien for his invaluable help with the data.
1 Introduction

There is a considerable literature on the economic impacts of regulations, but relatively few studies on the impact of regulation on technological innovation. Most analyses focus on the static costs (and benefits) of regulation rather than on its dynamic effects. Yet these potential effects on innovation and growth are likely to be much more important in the long-run. Harberger triangles may be small, but rectangles can be very large. Many scholars have been concerned that slower growth in countries with heavy labor regulation, could be due to firms being reluctant to innovate due to the burden of red tape. The slower growth of Southern European countries and parts of Latin America have often been blamed on onerous labor laws (see for example, Gust and Marquez, 2004; Bentolila and Bertola, 1990, Bassanini et al., 2009).

Identifying the innovation effects of labor regulation is very challenging. The OECD, World Bank, IMF and other agencies have developed various indices of the importance of these regulations, based on examination of laws and (sometimes) surveys of managers. These indices are then often included in econometric models and sometimes found to be significant. Unfortunately, these macro indices of labor law are correlated with many other unobservable factors that are hard to convincingly control for.\(^1\) To address this issue we exploit the well-known fact that many of these regulations are size contingent, only kicking in when a firm gets sufficiently large. In particular, the burden of French labor legislation substantially increases when firms employ 50 or more workers. Firms of 50 workers or more must create a works council (“committee d’entreprise”) with a minimum budget of 0.3% of total payroll, establish a health and safety committee, appoint a union representative and so on (see Appendix A for a more thorough presentation of size contingent regulations in France). Several authors have found that these regulations have an important effect on the size of firms (Garicano et al., 2016; Gourio and Roys, 2014; Ceci-Renaud and Chevalier, 2011). Unlike the US firm size distribution, for example, in France there is a clear spike in the number of firms that are just below this regulatory threshold.\(^2\)

Existing models that seek to rationalize these patterns have not considered how this regulation could affect innovation, as technology has been assumed exogenous. But when

\(^1\)Furthermore, it may be that the more innovative countries are less likely to adopt such regulations (e.g. Saint-Paul, 2002).

\(^2\)Often, it is hard to see such discontinuities in the size distribution at regulation thresholds (e.g. Hsieh and Olken, 2014).
firms are choosing whether or not to invest in innovation, regulations are also likely to matter. Intuitively, firms may invest less in R&D as there is a very high cost to growing if the firm crosses the regulatory threshold. In the first part of the paper we formalize this intuition in a step-by-step model of endogenous innovation. Our model delivers two main predictions. First, a regulatory threshold should discourage innovation mostly for firms below the threshold that are close to the threshold. Second, the discouraging effect of the regulatory threshold on innovation by firms close to the threshold, should be weaker for more important innovations.

We take these predictions to the data. More specifically, we use the discontinuous increase in regulation cost at the regulatory threshold size to test the theory in two ways. First, we investigate non-parametrically how innovation changes with firm size. As expected there is a sharp fall in the fraction of innovative firms just to the left of the regulatory threshold which is suggestive of a chilling effect of the regulation on the desire to grow. Furthermore, this relationship is only visible for lower value patents (as measured by future citations) - there is no visible effect for highly cited patents. The idea is that regulation may deter low quality innovations which have little social value, but if a firm is going to innovate it will try to “strike for the fence” to avoid being only slightly to the right of the threshold. Intuitively, the growth benefits of innovation are less if it brings the firm into the regulatory regime.

Although the descriptive evidence is suggestive, there could be many other reasons why firms are heterogeneous near the regulatory threshold, so we turn to a stronger test using the panel dimension of our data. Specifically, based on the view that an increase in market size should have a robust positive effect on innovation (e.g. Acemoglu and Linn, 2004), we examine the heterogeneous response of firms with different sizes to exogenous demand shocks. We use an shock based measure based on changes in growth in export product markets (HS6 by country) interacted with a firm’s initial distribution of exports across export markets (see Hummels et al., 2014; Mayer et al., 2016 and Aghion et al., 2018). We first show that these positive market size shocks significantly raise innovative activity. We then examine the heterogeneity in firm responsiveness to these export shocks depending on lagged firm size. We show that there is a sharp reduction in firm responsiveness to innovation exactly before the regulatory threshold. Consistent with intuition and our simple model, firms appear reluctant to take advantage of exogenous market growth through innovating when they will be hit by a tsunami of labor regulation. As noted above, the impact of regulation may be less problematic if it discusses only incremental
innovations. In our empirical analysis, we uncover evidence that the fall in innovation just before the threshold is strongest for low value patents (as measured by future citations) and not observable for the patents which subsequently receive many citations.

In the rest of the Introduction we turn first to some related literature, then in Section 2 we sketch our theory, our empirical analysis in Section 3 and some concluding remarks in Section 4.

Related Literature

Our paper is related to a vast literature examining the effects of regulation (particular labor laws) on economic outcomes. Several recent papers in this literature take structural approaches such as Braguinsky et al. (2011) on Portugal and Garicano et al., 2016 on France. Gner et al. (2006, 2008) also consider a Lucas model with size-contingent regulation. None of these papers allows firms to influence their productivity through innovation choices as we do, however.

One branch of the literature looks at whether labor laws can encourage some kinds of innovation. Acharya et al. (2013a) argue that higher firing costs reduce the risk of firms holding up employees’ innovative investments by dismissing them ex post. They find evidence in favor of this using macro time series variation for four OECD countries. Acharya et al. (2013b) also finds positive effects using staggered roll out of employment protection across US states. Griffith and Macartney (2014) use multinational firms patenting activity across subsidiaries located in different countries with various levels of employment protection laws (EPL). Using this cross sectional identification, they find that radical innovation was negatively effected by EPL, but incremental innovation was, if anything, boosted. Relatedly, there are many papers examining the impact of union power (which is affected by labor regulation) on innovation. This literature tends to find that the impact of unions and regulation are ambiguous and contingent on the type of innovation (e.g. radical/incremental) and other features of the economic environment (e.g. negative

\[3\]

This is the same empirical variation used by Autor et al. (2007) who actually found falls in TFP and employment.

\[4\]

See also Cette et al. (2016) who document a negative effect of EPL on capital intensity, R&D expenditures and hiring of high skill workers.

\[5\]

Note that this is the opposite of what we find using our within country identification. Labor regulation discourages low value innovation, but has no impact on high value innovation.

\[6\]

See Menezes-Filho et al. (1998) for a survey and evidence. The common view is that the risk of ex post hold-up by unions reduces innovation incentives (Grout, 1984). But if employees need to make sunk investments there could be hold up by firms (this is the intuition of the Acharya et al., 2013a,b papers).
effects are stronger in high labor turnover industries).

Another recent literature has documented empirically how distortions can affect aggregate productivity through misallocations of resources away from more productive firms and towards less productive firms. As Restuccia and Rogerson (2008) have argued, these distortions mean that more efficient firms produce too little and employ too few workers. Hsieh and Klenow (2009) show that these misallocations account for a significant proportion of the difference in aggregate productivity between the US, China and India and Bartelsman et al. (2013) confirm this using micro data on OECD countries. One issue with these approaches is that the causes of the random distortions are a bit of a “black box”. We contribute by this literature by introducing an explicit source of distortion, namely the regulatory firm size threshold, and by looking at how this regulation interacts with exogenous export shocks for firms with different size.

The heterogeneous effects of demand shocks on types of innovation is also a theme in the literature of the effects of the business cycle on innovation (Schumpeter, 1939; Shleifer, 1986; Barlevy, 2007; Aghion et al., 2012). Recent work by Manso et al. (2019) suggests that large positive demand shocks (booms) generate more R&D, but this tends to “exploitative” (incremental) rather than “exploratory” (radical) innovation. We find that the impact of regulation following a demand shocks discourages incremental (but not radical) innovation.

Finally, our paper is also related to the more general literature using tax “kinks” to identify behavioral parameters (e.g. Saez, 2010; Chetty et al., 2011; Kleven and Waseem, 2013). Kaplow (2013) discusses issues in the optimal structure of size-related regulations. We contribute to this literature by bringing innovation and patenting into the picture.

The structure of the paper is as follows. Section 2 develops a simple model of how the amount and importance of innovation can be affected by firm size regulation. Section 3 develops the empirical analysis. Section 4 concludes.

7 See also Parente and Prescott (2000) or Bloom and Van Reenen (2007).
8 In development economics many scholars have pointed to the “missing middle”, i.e. a preponderance of very small firms in poorer countries compared to richer countries (see Banerjee and Duflo, 2005, or Jones, 2011). Besley and Burgess (2000) suggest that heavy labor regulation in India is a reason why the formal manufacturing sector is much smaller in some Indian states compared to others.
9 See e.g. Bergeaud and Ray (2017) for a discussion. Another issue, is that regulatory distortions in these models typically only have second order effects on welfare if they preserve the size ranking of firms (see Hopenhayn, 2014). If regulations can also affect growth through innovation (as we argue), then they might have first order effects on welfare.
2 Theory

2.1 Benchmark model without regulation

We consider an economy with a continuum of individuals with intertemporal utility of consumption

\[U(c) = \int e^{-\rho t} \ln c_t dt \]

and where the consumption good (or final good) is produced using a continuum of intermediate inputs. In each input sector \(i \) there are two potential producers, \(E_i \) and \(F_i \). The final good is produced according to:

\[\ln y = \int_0^1 \ln x_i \, di, \]

where

\[x_i = x_{E_i} + x_{F_i} \]

and

\[x_j = A_j l_j \]

where: (i) \(l_j \) is the amount of labor used by firm \(j \in \{E_i, F_i\} \) to produce the amount \(x_j \) of intermediate input; (ii) \(A_j = \gamma^{k_j} \) is firm \(j \)'s current productivity, where \(\gamma > 1 \) and \(k_j \) is firm \(j \)'s current technological level.

Then we know that the equilibrium profit of a technological leader in sector \(i \) is equal to:

\[\pi_j = 1 - \frac{1}{(A_j/A_{fi})}, \]

where \(A_{fi} \) is the next best technology (or fringe technology) in sector \(i \).

We first consider the case where the maximum technological gap \(|k_{E_i} - k_{F_i}| \) between the leader and the follower in any intermediate sector, is equal to 1. Then sectors can be either unleveled, with a technological gap equal to one between the leader and the follower, or neck-and-neck with a technological gap of zero between the leader and the follower.

In an unleveled sector the leader’s profit flow is equal to (see Aghion et al., 2005):

\[\pi_1 = 1 - \frac{1}{\gamma}, \]

whereas the follower’s profit is equal to zero:

\[\pi_{-1} = 0 \]
More over, the leader will employ

\[l_1 = \frac{1}{\gamma \omega} \]

units of labor, where \(\omega = w/y \) is the output-adjusted wage rate which is constant in steady-state and which we take here as given for simplicity. The follower will employ

\[l_{-1} = 0 \]

units of labor as it does not operate.

In a neck-and-neck sector, we follow Aghion et al. (2005) and assume a positive degree of collusion between the two firms in that sector, which leads to asymmetric equilibrium where each of the two competing firms in the sector makes profits:

\[\pi_0 = (1 - \Delta)\pi_1, \]

where \(\Delta \in (1/2, 1] \), and where each of the two firms employs

\[l_0 = \frac{1}{2\gamma \omega} \]

units of labor.

Innovation takes place step-by-step: to move up one technological step with Poisson probability \(n_m \) (resp. \(n_m + h \))\(^{10}\) a firm currently in stage \(m \) must invest \(\alpha \frac{n^2}{2} \) units of labor in R&D. Then, if \(V_m \) denotes the productivity-adjusted market value of a firm currently in stage \(m \), where \(m \in \{-1, 0, 1\} \), we have the Bellman equations:\(^{11}\)

\[
\begin{align*}
\rho V_1 &= \pi_1 + (n_{-1} + h)(V_0 - V_1); \quad \text{(B1)} \\
\rho V_1 &= \pi_1 + (n_{-1} + h)(V_0 - V_1); \quad \text{(1)} \\
\rho V_0 &= \pi_0 + \pi_{n_0}(V_{-1} - V_0) + \max\{n_0(V_1 - V_0) - \alpha \frac{n^2}{2} \}; \quad \text{(2)} \\
\rho V_{-1} &= \pi_{-1} + \max\{(n_{-1} + h)(V_0 - V_{-1}) - \alpha \frac{n^2_{-1}}{2} \}; \quad \text{(3)}
\end{align*}
\]

\(^{10}\)The parameter \(h \) is a \(*\text{help}\)* factor which captures the fact that, due to knowledge spillovers from frontier firms, it is easier to catch with the technological frontier than to push up the frontier (see Aghion et al, 2005).

\(^{11}\)Here we make use of the Euler equation:

\[r - g = \rho. \]
where
\[n_0 = \bar{n}_0 \]
in a symmetric equilibrium, and where, by first order conditions:
\[V_1 - V_0 = \alpha n_0 \] \((4) \)
\[V_0 - V_{-1} = \alpha n_{-1}. \] \((5) \)

Eliminating the \(V \)'s between the equations (1), (2), (3), (4) and (5), yields two equations in the two unknowns \(n_{-1} \) and \(n_0 \), namely:
\[\frac{n_0^2}{2} + (\rho + h)n_0 - (\pi_1 - \pi_0) = 0; \] \((6) \)
\[\frac{n_{-1}^2}{2} + (\rho + n_0 + h)n_{-1} - (\pi_0 - \pi_{-1}) - \frac{n_0^2}{2} = 0. \] \((7) \)

2.2 Effect of the labor regulatory threshold

Introducing a regulation cost \(\tau \) for firms that employ \(l \geq 1/\gamma \omega \) units of labor, will only affect leaders in unleveled sectors (as in levelled sectors \(l = \frac{1}{2\gamma \omega} \leq 1/\gamma \omega \), thereby leading to the net equilibrium profit flows:
\[\hat{\pi}_1 = \pi_1 - \tau; \] \[\hat{\pi}_0 = \pi_0; \] \[\hat{\pi}_{-1} = \pi_{-1}. \]

Then \(n_{-1} \) and \(n_0 \) will satisfy:
\[\frac{n_{-1}^2}{2} + (\rho + n_0 + h)n_{-1} - (\pi_0 - \pi_{-1}) - \frac{n_0^2}{2} = 0, \] \((7) \)
It is easy to show that \(n_0 \) is more sharply decreasing in \(\tau \) than \(n_{-1} \). In other words, firms that are below - but closer to - the regulation threshold will reduce innovation intensity by more than firms far below the threshold, but \(n_{-1} \) will also go down as \(\tau \) increases.

\[^{12}\text{Differentiate equation (7) with respect to } \tau: \]
\[n_{-1} \frac{\partial n_{-1}}{\partial \tau} + (\rho + n_0 + h) \frac{\partial n_{-1}}{\partial \tau} - n_0 \frac{\partial n_0}{\partial \tau} = 0, \]
\[(\rho + h + n_{-1} + n_0) \frac{\partial n_{-1}}{\partial \tau} = \frac{\partial n_0}{\partial \tau} n_0 \]
We can also show that
\[\left| \frac{\partial^2 n_0}{\partial \tau \partial \gamma} \right| < 0. \]

In other words, a regulation cost is less discouraging the bigger the size of the innovation.
To prove this claim, note first that solving the quadratic equation in \(n_0 \) yields:
\[n_0 = -(\rho + h) + \sqrt{(\rho + h)^2 + 2\Delta(\pi_1 - \tau)}. \]

This in turn implies that:
\[\frac{\partial n_0}{\partial \tau} = -\frac{\Delta}{\sqrt{(\rho + h)^2 + 2\Delta(\pi_1 - \tau)}} \]

which, in absolute value, is clearly decreasing in \(\pi_1 \). But \(\pi_1 \) is itself increasing in the size of innovation \(\gamma \). This establishes the claim.

2.3 Predictions

The main predictions from the above model are:

Prediction 1: A regulatory threshold reduces innovation mostly for firms below the threshold but close to the threshold.

Prediction 2: The discouraging effect of the regulatory threshold on innovation by firms close to the threshold, is weaker for more drastic innovations.

In the remaining part of the paper we confront these predictions to the data.

3 Empirical analysis

3.1 Data

Our data comes from the French fiscal authority which consistently collects balance sheets of all French firms on a yearly basis from 1994 to 2007 (“FICUS”). We restrict attention

\[\frac{\partial n_{-1}}{\partial \tau} = \frac{\partial n_0}{\partial \tau} \left(\frac{n_0}{n_{-1} + n_0 + \rho + h} \right) \]

Since \(\frac{n_0}{n_{-1} + n_0 + \rho + h} < 1 \), it follows that the impact of the regulation on employment for the laggard firm \((\frac{\partial n_{-1}}{\partial \tau})\) is less than the impact on the firms in the levelled sectors \((\frac{\partial n_0}{\partial \tau})\).
to non-government businesses and take patenting information from Lequien et al. (2017). This uses the PATSTAT Spring 2016 database and matches it to FICUS using an algorithm which matches the name of the affiliate (holder of the IP rights) on the patent front page to a firm whose name and address is the closest. The accuracy of the algorithm is weaker for firms that are below 10 employees so we focus on firms larger than this. Since we are interested in a regulation that affects firms at 50 employees, we also focus on firms below an upper size threshold. Consequently, in our main results we stick to an employment bandwidth of between 10 and 100 employees - i.e. we restrict the main sample to firms with between 10 and 100 workers in 1994 (or the first year they appear in the data). More details about the data source are given in Appendix B.

Our main sample consists of 154,582 distinct firms over 1,439,396 observations. Of course, the majority of these firms do not innovate, as defined as having at least one patent over the sample period. We report basic descriptive statistics in Table 1, we can see that on average, firms file on average 0.023 patents per year and, conditional on innovating, 0.44 per year. As is well known, the distribution of innovation is highly skewed with a small number of firms owning a large share of the patents in our sample. However, since we do not include the largest French firms in our data, the skewness is less pronounced than what is documented by Aghion et al. (2018).

3.2 Nonparametric evidence

Figure 1 shows the share of firms with at least one patent in each employment size bin (measured in the current year t) over all our main sample (see Panel A of Table 1). Over the size distribution as a whole, there is an almost linear relation with size: larger firms are increasingly likely to patent (see Akcigit and Kerr, 2018, for example). However, just before the regulatory threshold at 50 employees there appears to be a discontinuity as the share of innovative firms suddenly decreases. The innovation outcome measure is taken over the whole sample period from 1994 to 2007, but the same is true if we consider different definition of innovative firm as reported in Online Appendix Figure C1.

Figure 2 repeats this analysis by the quality of the patent. We measure quality by the using the number of future citations. For each cohort-year of patents we calculate whether

We show robustness of the results to changing this bandwidth (see in particular Table C2 in Appendix C). Note that the sample selection allows employment that can be more than 100 employees or lower than 10 employees in some years.
Table 1: Descriptive statistics

<table>
<thead>
<tr>
<th>Panel A: All firms</th>
<th>Mean</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>p90</th>
<th>p99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>30</td>
<td>13</td>
<td>21</td>
<td>37</td>
<td>58</td>
<td>152</td>
</tr>
<tr>
<td>Sales</td>
<td>5,780</td>
<td>1,031</td>
<td>2,204</td>
<td>5,161</td>
<td>11,387</td>
<td>47,220</td>
</tr>
<tr>
<td>Patents</td>
<td>0.023</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Innovative</td>
<td>0.045</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.26</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Subset of innovative firms</th>
<th>Mean</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>p90</th>
<th>p99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>46</td>
<td>18</td>
<td>32</td>
<td>53</td>
<td>89</td>
<td>269</td>
</tr>
<tr>
<td>Sales</td>
<td>10,167</td>
<td>1,904</td>
<td>4,252</td>
<td>9,000</td>
<td>17,811</td>
<td>89,646</td>
</tr>
<tr>
<td>Patents</td>
<td>0.44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.57</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: These are descriptive statistics on our data. Panel A is all firms and Panel B conditions on firms who filed for a patent at least once over the 1994 to 2007 period (“Innovative” firms). We restrict to firms who have between 10 to 100 employees in 1994 (or the the first year they enter the sample). There are 154,582 firms and 1,294,139 observations in Panel A and 4,180 firms and 66,844 observations in Panel B.

The patent was in the top 10% of the citation distribution (squares) or the other 90%. The Figure shows the fraction of firms at each employment level who had these types of patents. It is clear that the drop-off in patents just below the regulatory threshold is barely visible for patents in the top of the quality distribution and invisible for others. This is consistent with the idea that the regulation discourages low value innovations but not higher value innovation.\(^\text{14}\)

3.3 Parametric analysis

3.3.1 Estimation equation

We now turn to our parametric investigation of how firms respond to market size shocks. More specifically, we estimate the regression equation (8):

\[
\Delta Y_{i,t} = \beta L_{i,t-2}^* + \gamma [\Delta S_{i,t-2} \times P(\log(L_{i,t-2}))] + \delta [\Delta S_{i,t-2} \times L_{i,t-2}^*] + \psi_{s(i,t)} + \tau_t + \epsilon_{i,t} \tag{8}
\]

\(^{14}\)As with Figure 1, Figure 2 considers the innovation outcome over the whole period of observations. Variations around this can be found in Figure C2 in the Online Appendix C.
Figure 1: Share of innovative firms at each employment level

Notes: share of firms with at least one priority patent against employment at \(t \). All observations are pooled together. Employment bins have been aggregated so as to include at least 10,000 firms. The sample is based on all firms with initial employment between 10 and 100 (154,582 firms and 1,439,396 observations, see Panel A of Table 1).

Figure 2: Share of innovative firms at each employment level and quality of innovation

Notes: share of firms with at least one priority patent in the top 10% most cited (grey line) and the share of firms with at least one priority patent among the bottom 90% most cited in the year (black line). All observations are pooled together. Employment bins have been aggregated so as to include at least 10,000 firms. The sample is based on all firms with initial employment between 10 and 100 (154,582 firms and 1,439,396 observations, see Panel A of Table 1).
where: $Y_{i,t}$ is a measure of innovation; $L_{i,t}^\star$ is a binary variable that takes value 1 if firm i is close to, but below the regulatory threshold at time t; $\Delta S_{i,t-2}$ is an exogenous shock that triggers shifts in innovation; $\psi_{s(i,t)}$ is a set of industry dummies and τ_t is a set of time dummies ($s(i,t)$ denotes the main sector of activity of firm i at t), $\mathcal{P}(\log(L_{i,t-2}))$ is a polynomial in $\log(L_{i,t-2})$ and $\varepsilon_{i,t}$ is an error term. We use a two year lag of the shock since there is likely to be some delay between the market opportunity shock, the an increase in research effort and the filing of a patent application. We use growth rates of Y defined as:15

$$\tilde{\Delta}Y_{i,t} = \begin{cases} \frac{Y_t - Y_{t-1}}{Y_t + Y_{t-1}} & \text{if } Y_t + Y_{t-1} > 0 \\ 0 & \text{otherwise} \end{cases}$$

3.3.2 Shocks

To construct the innovation shifters $S_{i,t-2}$, we rely on international trade data to build export demand shocks following Mayer et al. (2016) and Aghion et al. (2018). The construction of such shocks are explained at length in Aghion et al. (2018). In a nutshell, we look at how foreign demand for a given product changes over time by measuring the change in imports to all countries worldwide but France. We then build a product/destination portfolio for each French firm i, and weight the foreign demands for each product by the relative importance of that product for firm i. More specifically, firm i’s export demand shock at date t is defined as:

$$S_{i,t} = \sum_{s,j \in \Omega(i,t_0)} \omega_{i,s,j,t_0} \tilde{\Delta}I_{s,j,t}, \quad (9)$$

where: $\Omega(i,t_0)$ is the set of products and destinations associated with positive export quantities by firm i in the first year t_0 in which we observe that firm in the custom data;16 ω_{i,s,j,t_0} is the relative importance of product s and destination j for firm i at t_0, defined as firm i’s exports of product s to country j divided by total exports of firm i in that year; $I_{s,j,t}$ is country j’s demand for product s, defined as the sum of its imports of product s from all countries except France.

15This is essentially the same as in Davis and Haltiwanger (1992) for employment dynamics except that we set the variable equal to zero when a firm does not patent for two periods. Results are robust to considering other types of growth rates (see the last 3 columns of Table C2 in Appendix C).

16French customs data are available from 1994.
3.3.3 Testing the main prediction

To estimate equation (8), we need to make some further restrictions in our use of the dataset. First, shock \(S \) is only defined for exporting firms, that is, firms that appear at least once in the customs data from 1994 to 2007. Second, in order to increase the accuracy of our shock measure, we restrict attention to the manufacturing sector. Not only are most innovative firms within the manufacturing sector, but these firms are also more likely to take part in the production of the goods they export (see Mayer et al., 2016). Our main regression sample is therefore composed of 21,740 firms and 186,337 observations.

Table 2 presents the results of estimating equation (1), i.e. regressing the change in patents today on the lagged shock. Column (1) shows, consistently with earlier work, that firms facing a positive exogenous export shock are significantly more likely to increase their patenting activity. A 10% increase in market size increases patents by about 3%. Column (2) includes a control for the lagged level of log(employment) and also its interaction with the shock. The interaction coefficient is positive and significant, indicating that there is a general tendency for larger firms to respond more to the shock than smaller firms. This is what we should expect since both, the market size effect and the competition effect of a positive export shock, are more positive for more productive firms (see Aghion, et. al, 2018). Column (3) generalizes this specification by adding in a quadratic term in lagged employment and its interaction with the shock.

Column (4) of Table 2 returns to the simpler specification of column (1) and includes a dummy a the firm was just below the regulatory threshold (45-49 employees) at \(t - 2 \) and the interaction of this dummy with the shock. Our key coefficient is on this interaction, and it is clearly negative and significant. This is our main result: innovation in firms just below the threshold is significantly less likely to respond to positive demand opportunities than in firms further away from the threshold. Our interpretation is that when a firm is near the threshold, there is a large “tax” on growth because of the regulatory cost of becoming larger than 50 employees. Consequently, such a firm will be more reluctant to invest in innovation in response to this new demand opportunity. Indeed, they may even cut their innovative activities to avoid the risk of crossing the threshold. It might be the case that the negative interaction of the threshold and the shock could be due to some omitted nonlinearities. Hence in column (5) we also include lagged employment and its interaction with the shock (as in column (2)). These do have explanatory power,
but our key interaction coefficient remains significant and negative and we treat this as our preferred specification. Column (6) adds quadratic employment term and its interaction following column (3). Our key interaction remains significant and these additional nonlinearities are insignificant.

We depict the relationship between innovation and the shock in Figure 2. This figure plots the implied marginal effect of the market size shock on innovation for different firm sizes using the coefficients in column (5) of Table 2. We see that innovation in larger firms tends to respond more positively to the export shock than in smaller firms. But at the regulatory threshold there is a sharp fall in the derivative of innovation with respect to the shock, consistent with our model.

Column (7) of Table 2 shows the results from a tough robustness test where we include a full set of firm dummies. Given that the regression equation is already specified in first differences, this amounts to allowing firm-specific time trends. The key interaction between the market size shock and the threshold dummy remains significant. The sample underlying Table 2 is limited to manufacturing firms. Column (8) also adds in non-manufacturing firms. The relationship remains negative, although with a smaller coefficient and is less precisely determined. This is likely to be because patents are a much more noisy measure of innovation in non-manufacturing firms. Does the number of patents simply fall because firms are less likely to grow and relatively smaller firms do less innovation? Column (9) provides a crude test by including the growth of employment on the right hand side of the regression. This variable is endogenous, of course, yet it is interesting to see, from a purely descriptive viewpoint, that the interaction between the market size shock and the threshold remains significant with a very similar coefficient to that in the baseline regression. This in turn suggests that it is indeed patenting per worker which is reacting negatively to the interaction between the shock and the threshold, in other words this effect on patenting is not simply reflecting size changes.

Finally, we report placebo tests in Table C1 of Appendix C. Specifically, we estimate equation (8) and report coefficient δ as well as confident intervals when L^* has been redefined using different employment intervals. Reassuringly, we find that the only significantly negative effect is our baseline specification, that is when $L^* = 1$ when $L \in [45, 49]$.

14
Table 2: Main regression results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(5.806)</td>
<td>(5.880)</td>
<td>(5.874)</td>
<td>(6.379)</td>
<td>(4.413)</td>
<td>(5.897)</td>
<td>(5.897)</td>
<td>(5.897)</td>
<td>(5.897)</td>
</tr>
<tr>
<td>L_{t-2}^*</td>
<td>0.045</td>
<td>0.066</td>
<td>0.066</td>
<td>0.118</td>
<td>0.086</td>
<td>0.124</td>
<td>0.124</td>
<td>0.124</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>(0.138)</td>
<td>(0.147)</td>
<td>(0.146)</td>
<td>(0.229)</td>
<td>(0.086)</td>
<td>(0.150)</td>
<td>(0.150)</td>
<td>(0.150)</td>
<td>(0.150)</td>
</tr>
<tr>
<td>$\log(L)_{t-2}$</td>
<td>-0.036</td>
<td>0.012</td>
<td>-0.040</td>
<td>0.008</td>
<td>-0.199**</td>
<td>-0.028</td>
<td>-0.065**</td>
<td>-0.065**</td>
<td>-0.065**</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.104)</td>
<td>(0.031)</td>
<td>(0.102)</td>
<td>(0.083)</td>
<td>(0.017)</td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>$\text{Shock}{t-2} \times \log(L){t-2}$</td>
<td>3.270**</td>
<td>-10.853</td>
<td>3.898***</td>
<td>-9.281</td>
<td>3.857**</td>
<td>2.552***</td>
<td>4.099***</td>
<td>4.099***</td>
<td>4.099***</td>
</tr>
<tr>
<td></td>
<td>(1.374)</td>
<td>(7.524)</td>
<td>(1.392)</td>
<td>(7.490)</td>
<td>(1.552)</td>
<td>(0.913)</td>
<td>(1.431)</td>
<td>(1.431)</td>
<td>(1.431)</td>
</tr>
<tr>
<td>$\log(L)_{t-2}^2$</td>
<td>-0.008</td>
<td>0.156</td>
<td>-0.008</td>
<td>0.156</td>
<td>-0.008</td>
<td>0.156</td>
<td>-0.008</td>
<td>0.156</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.151)</td>
<td>(0.019)</td>
<td>(0.151)</td>
<td>(0.019)</td>
<td>(0.151)</td>
<td>(0.019)</td>
<td>(0.151)</td>
<td>(0.151)</td>
</tr>
<tr>
<td>$\Delta \log(L)_{t-2}$</td>
<td>2.182*</td>
<td>2.031</td>
<td>2.182*</td>
<td>2.031</td>
<td>2.182*</td>
<td>2.031</td>
<td>2.182*</td>
<td>2.031</td>
<td>2.182*</td>
</tr>
<tr>
<td></td>
<td>(1.291)</td>
<td>(1.287)</td>
<td>(1.291)</td>
<td>(1.287)</td>
<td>(1.291)</td>
<td>(1.287)</td>
<td>(1.291)</td>
<td>(1.287)</td>
<td>(1.287)</td>
</tr>
</tbody>
</table>

Fixed Effects

<table>
<thead>
<tr>
<th></th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Year</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Firm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes: This contains OLS estimates of equation (8) on the manufacturing firms in Panel A of Table 1 who have exported at some point 1994-2007. Dependent variable is the Davis and Haltiwanger (1992) growth rate in the number of priority patent applications between $t-1$ and t. Column 1 only considers the direct effect of the shock, taken at $t-2$, column 2 uses a linear interaction with $\log(L)$ taken at $t-2$ and column 3 considers a quadratic interaction. Columns 4, 5 and 6 do the same as columns 1, 2 and 3 respectively but also includes an interaction with L^*, a dummy variable for having an employment size between 45 and 49 employees at $t-2$. Column 7 replicates column 5 but adds firm fixed effects. Column 8 includes non-manufacturing firms and column 9 also controls for the growth in $\log(\text{employment})$ at $t-2$. All models include a 3-digit NACE sector dummies and year dummies. Estimation period is 2007-1997. Standard errors are clustered at the 3-digit NACE sector level. ***, ** and * indicate p-value below 0.01, 0.05 and 0.1 respectively.

3.3.4 Is the negative effect of regulation solely on low quality innovations?

We repeat our preferred specification of column (5) of Table 2 but now distinguish patents of different value using their future citations. Table 3 does this for patents in the top 10%, 15% and 25% of the citation distribution in the first three columns and their complements in the last three columns (the bottom 75%, 85% and 90% of the citation distribution). It is clear that the negative effect of regulation on innovation is only significant for low quality patents in columns (4), (5) and (6). There is no significant effect for patents in the top decile or quartile of the patent quality distribution (the coefficient on the interaction is even positive in column (2)).

To visualize these results, we plot the marginal effect of the demand shock on innovation by the level of firm employment in Figure 2. The dotted grey line is the marginal effect on patents in the bottom 90% of the quality distribution based on column (6) of

17 We show the diminishing effect of the shock around the threshold for many other quantiles of the patent value distribution in five percentile intervals in Figure C3. This shows a clearly declining pattern.
Table 3: Regression results at different quality

<table>
<thead>
<tr>
<th>Quality</th>
<th>Top 10% (1)</th>
<th>Top 15% (2)</th>
<th>Top 25% (3)</th>
<th>Bottom 75% (4)</th>
<th>Bottom 85% (5)</th>
<th>Bottom 90% (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Shock_{t-2} \times L_{t-2}^*$</td>
<td>-0.825</td>
<td>0.953</td>
<td>-1.661</td>
<td>-15.475**</td>
<td>-12.982*</td>
<td>-16.117**</td>
</tr>
<tr>
<td>L_{t-2}</td>
<td>0.051</td>
<td>0.026</td>
<td>0.001</td>
<td>0.109</td>
<td>0.147</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.074)</td>
<td>(0.088)</td>
<td>(0.135)</td>
<td>(0.138)</td>
<td>(0.144)</td>
</tr>
<tr>
<td>$Shock_{t-2}$</td>
<td>-1.857</td>
<td>-3.710</td>
<td>-12.263***</td>
<td>-1.920</td>
<td>-7.715</td>
<td>-8.314*</td>
</tr>
<tr>
<td></td>
<td>(2.059)</td>
<td>(3.222)</td>
<td>(4.614)</td>
<td>(5.156)</td>
<td>(4.929)</td>
<td>(4.588)</td>
</tr>
<tr>
<td>$log(L)_{t-2}$</td>
<td>0.015</td>
<td>-0.004</td>
<td>-0.045*</td>
<td>-0.037*</td>
<td>0.002</td>
<td>-0.056**</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.025)</td>
<td>(0.026)</td>
<td>(0.020)</td>
<td>(0.016)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>$Shock_{t-2} \times log(L)_{t-2}$</td>
<td>0.624</td>
<td>1.198</td>
<td>3.825**</td>
<td>3.156*</td>
<td>1.553</td>
<td>3.414**</td>
</tr>
<tr>
<td></td>
<td>(0.681)</td>
<td>(1.111)</td>
<td>(1.474)</td>
<td>(1.658)</td>
<td>(1.708)</td>
<td>(1.515)</td>
</tr>
</tbody>
</table>

Fixed Effects

| Sector | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Year | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Number Obs: 186,337 186,337 186,337 186,337 186,337 186,337

Notes: estimation results of the same model as in column 5 of Table 2. The dependent variable is the Davis and Haltiwanger (1992) growth rate in the number of priority patent applications between $t-1$ and t, restricting to the top 10% most cited in the year (column 1), the top 15% most cited in the year (column 2), the top 25% most cited in the year (column 3), the bottom 85% most cited in the year (column 4), the bottom 75% most cited in the year (column 5) and the bottom 90% most cited in the year (column 6). All models include a 3-digit NACE sector and a year fixed effects. Estimation period: 1997-2007. Standard errors are clustered at the 3-digit NACE sector level. ***, ** and * indicate p-value below 0.01, 0.05 and 0.1 respectively.

Table 3. This is the same as the overall regressions in Table 2. Overall, the impact of the shock is positive and larger for bigger firms. However, when we approach the regulatory threshold at 50, this relationship breaks down and the marginal effect of the shock falls precipitously (and actually becomes negative). The black solid line plots the marginal effect of the demand shock on high quality patents in the top decile of the citation distribution from column (1) of Table 3. This line is also positive for almost all firms and rises with firm size. By contrast, with low value patents, however, there is no evidence of any sharp downturn just below the regulatory threshold, however.

In short, there seems to be evidence that the chilling effect of regulation on innovation is not an issue for high value patents and confined to lower value patents, consistent with the model we developed in the previous section.

3.4 Robustness and Extensions

We have subjected our results to a large number of robustness tests, some of which are detailed in Appendix C. First, it is possible that the changing relationship between innovation and the market size shock around the threshold is driven by some kind of complex nonlinearities in the innovation-employment relationship, and our quadratic controls are insufficient. To investigate this issue, we allow interactions between the demand shock
and different size bins of firms in a general way in Table C1. Of all the 14 different size bins, only the interaction of the shock with the size bin just below the threshold (45-49 employees) is significantly different from zero and large in absolute magnitude. Second, our results are robust regardless of the exact way we define the upper and lower size cutoffs for our sample. Online Appendix Table C1 reproduces the baseline specification in column (1). Column (2) uses employment at t-2 instead of the initial year to define the sample, column (3) relaxes the upper threshold to include firms of up to 500 employees (instead of 100 employees in the baseline) and column (4) includes all firms below 100 employees (instead of dropping the firms with between zero and 9 workers). Column (5) restricts the sample to firms exporting in 1994 (instead of the restriction that a firm has to export in at least one year 1994-2007). Column (6) includes all the non-exporting firms. The last three columns use three different definitions of the dependent variable instead of our basic Davis-Haltiwanger measure: the log-difference in column (7), the difference in the Inverse Hyperbolic Sign in column (8) and a the change in patents normalized on pre-sample patents in column (9). Our results are robust to all these tests.
4 Conclusion

In this paper we have analyzed the impact on innovation of a labor regulation which impacts firms beyond a predetermined size threshold. More precisely, we have looked at the innovation effect of the French labor market regulations which affects firms beyond 50 employees. We showed both theoretically and empirically that the prospect of these regulatory costs discourages firms just below the threshold from innovating as measured by the volume of patent applications. This relationship comes out both, when looking nonparametrically at patent density around the threshold and in a parametric exercise where we examine the heterogeneous response of firms to exogenous market size shocks (from export markets). On average, firms innovate more when they experience a positive shock, but this relationship significantly weakens when a firm is just below the regulatory threshold. Moreover, using information on citations we also showed evidence that regulation deters radical innovation much less than incremental innovation, as also predicted by the theory.

The analysis in this paper can be extended in several interesting directions. A first extension would be to look at the aggregate growth and (dynamic) welfare effects of the labor regulation, and to compare the dynamic welfare effects to the static welfare effects analyzed by Garicano et al. (2016). A second extension would be look at the effects of the labor regulation on firm dynamics (entry, growth and exit), using a combination between the step-by-step innovation model of this paper and a model of firm dynamics and growth a la Klette and Kortum (2004). These and other extensions of the analysis in this paper are left for future research.
References

A More Details of some Size-Related Regulations in France

The size-related regulations are defined in four groups of laws. The Code du Travail (labor laws), Code du Commerce (commercial law), Code de la Sécurité Sociale (social security) and in the Code General des Impôts (fiscal law). The main bite of the labor (and some accounting) regulations comes when the firm reaches 50 employees. But there are also some other size-related thresholds at other levels. The main other ones comes at 10-11 employees. For this reason we generally trim the analysis below 10 employees to mitigate any bias induced in estimation from these other thresholds. For more details on French regulation see inter alia Abowd and Kramarz (2003) and Kramarz and Michaud (2010), or, more administratively and exhaustively, Moins (2010).

A.1 Main Labor Regulations

The unified and official way of counting employees has been defined since 2004\footnote{Before that date, the concept of firm size was different across labor regulations.} in the Code du Travail,\footnote{The text is available at the legifrance website} articles L.1111-2 and 3. Exceptions to the 2004 definition are noted in parentheses in our detailed descriptions of all the regulations below. Employment is taken over a reference period which from 2004 was the calendar year (January 1st to December 31st). There are precise rules over how to fractionally count part-year workers, part-time workers, trainees, workers on sick leave, etc. (Moins, 2010). For example, say a firm employs 10 full-time workers every day but in the middle of the year all 10 workers quit and are immediately replaced by a different 10 workers. Although in the year as a whole 20 workers have been employed by the firm the standard regulations would mean the firm was counted as 10 employee firm. In this case this would be identical to the concept used in our main data FICUS.

Recall that the employment measure in the FICUS data is average headcount number of employees taken on the last day of each quarter in the fiscal year (usually but not always ending on December 31st). All of these regulations strictly apply to the firm level,
which is where we have the FICUS data. Some case law has built up, however, which means that a few of them are also applied to the group level.

From 200 employees:

- Obligation to appoint nurses (Code du Travail, article R.4623-51)
- Provision of a place to meet for union representatives (Code du Travail, article R.2142-8)

From 50 employees:

- Monthly reporting of the detail of all labor contracts to the administration (Code du Travail, article D.1221-28)
- Obligation to establish a staff committee (“comité d’entreprise”) with business meeting at least every two months and with minimum budget = 0.3% of total payroll (Code du Travail, article L.2322-1-28, threshold exceeded for 12 months during the last three years)
- Obligation to establish a committee on health, safety and working conditions (CHSC) (Code du Travail, article L.4611-1, threshold exceeded for 12 months during the last three years)
- Appointing a shop steward if demanded by workers (Code du Travail, article L.2143-3, threshold exceeded for 12 consecutive months during the last three years)
- Obligation to establish a profit sharing scheme (Code du Travail, article L.3322-2, threshold exceeded for six months during the accounting year within one year after the year end to reach an agreement)
- Obligation to do a formal “Professional assessment” for each worker older than 45 (Code du Travail, article L.6321-1)
- Higher duties in case of an accident occurring in the workplace (Code de la Sécurité sociale and Code du Travail, article L.1226-10)
- Obligation to use a complex redundancy plan with oversight, approval and monitoring from Ministry of Labor in case of a collective redundancy for 9 or more employees (Code du Travail, articles L.1235-10 to L.1235-12; threshold based on total employment at the date of the redundancy)
From 25 employees:

- Duty to supply a refectory if requested by at least 25 employees (Code du Travail, article L.4228-22)
- Electoral colleges for electing representatives. Increased number of delegates from 25 employees (Code du Travail, article L.2314-9, L.2324-11)

From 20 employees:

- Formal house rules (Code du Travail, articles L.1311-2)
- Contribution to the National Fund for Housing Assistance;
- Increase in the contribution rate for continuing vocational training of 1.05% to 1.60% (Code du Travail, articles L.6331-2 and L.6331-9)
- Compensatory rest of 50% for mandatory overtime beyond 41 hours per week

From 11 employees:

- Obligation to conduct the election of staff representatives (threshold exceeded for 12 consecutive months over the last three years) (Code du Travail, articles L.2312-1)

From 10 employees:

- Monthly payment of social security contributions, instead of a quarterly payment (according to the actual last day of previous quarter);
- Obligation for payment of transport subsidies (Article R.2531-7 and 8 of the General Code local authorities, Code general des collectivités territoriales);
- Increase the contribution rate for continuing vocational training of 0.55% to 1.05% (threshold exceeded on average 12 months).

Note that, in additions to these regulations, some of the payroll taxes are related to the number of employees in the firm.
A.2 Accounting rules

The additional requirements depending on the number of employees of entreprises, but also limits on turnover and total assets are as follows (commercial laws, Code du Commerce, articles L.223-35 and fiscal regulations, Code général des Impôts, article 208-III-3):

From 50 employees:

- Loss of the possibility of a simplified presentation of Schedule 2 to the accounts (also if the balance sheet total exceeds 2 million or if the CA exceeds 4 million);
- Requirement for LLCs, the CNS, limited partnerships and legal persons of private law to designate an auditor (also if the balance sheet total exceeds 1.55 million euros or if the CA is more than 3.1 million euros, applicable rules of the current year).

From 10 employees:

- Loss of the possibility of a simplified balance sheet and income statement (also if the CA exceeds 534 000 euro or if the balance sheet total exceeds 267 000 euro, applicable rule in case of exceeding the threshold for two consecutive years).

B Data Appendix

B.1 Patent data

Our first database is PATSTAT Spring 2016’s version which contains detailed information about patent applications from every patent office in the world. Among the very rich set of information available, one can retrieve the date of application, the technological class, the name of the patent holder (the assignee, often a firm which owns the right of the invention) and the complete list of forward and backward citations.

We use a crosswalk built by Lequien et al. (2017) that associates each patent whose assignee is located in France with the official identifying number (or SIREN), which enables us to use most administrative firm level datasets. This matching use supervised learning based on a training sample of manually matched patents from the French patent office (INPI). It has the advantage over other matchings to be specific to French firms and
to exploit additional information such as the location of innovative establishments (see Lequien et al., 2017 or Aghion et al., 2018 for more details).20

Because we stop our analysis in 2007, we are not affected by the truncation bias toward the end of the sample (Hall et al., 2005) and we consider that our patent information are complete.

In order to be as close to the time of the innovation as possible, we follow the literature and consider the filing year and not the granting year in our study.

Finally, we consider every patent owned by a French firm, regardless of the patent office that granted the patent rights, but we restrict to priority patents which correspond to the earliest patents which relate to the same invention. Therefore, if a firm successively fills the same patent in different patent offices, only the first application of this family will be counted.

\section*{B.2 Firm-level accounting data}

Our second data source provides us with accounting data for French firms from the DGFiP-INSEE, this data source is called FICUS. The corresponding data are drawn from compulsory reporting of firms and income statements to fiscal authorities in France. Since every firm needs to report every year to the tax authorities, the coverage of the data is all French firms from 1994 to 2007 with no limiting threshold in terms of firm size or sales. This dataset provides us with information on the turnover, employment, value-added, the four-digit NACE sector the firm belongs to. This corresponds to around 35 million observations.

The manufacturing sector is defined as category C of the first level of the NAF (\textit{Nomenclature d’Activités Française}), the first two digits of which are common to both NACE (Statistical Classification of Economic Activities in the European Community) and ISIC (International Standard Industrial Classification of All Economic Activities). INSEE provides each firm with a detailed principal activity code (APE) with a top-down approach: it identifies the 1-digit section with the largest value added. Among this section, it identifies the 2-digit division with the largest value-added share, and so on until the most detailed 5-digit APE code (INSEE, 2016). It is therefore possible that another 5-digit code shows

20If the firm shares a patent with another firm, then we only allocate a corresponding share of this patent to the firm.
a larger value-added share than the APE identified, but one can be sure that the manufacturing firms identified produce a larger value-added in the manufacturing section than in any other 1-digit section, which is precisely what we rely on to select the sample of most of our regressions. The 2-digit NAF sector, which we rely intensively on for our fixed effects, then represents the most important activity among the main section of the firm. Employment each year is measured on average within the year and may therefore be a non-integer number.

B.3 Trade data

Customs data for French firms Detailed data on French exports by product and country of destination for each French firm are provided by the French Customs. These are the same data as in Mayer et al. (2014) but extended to the whole 1994-2012 period. Every firm must report its exports by destination country and by very detailed product (at a level finer than HS6). However administrative simplifications for intra-EU trade have been implemented since the Single Market, so that when a firm annually exports inside the EU less than a given threshold, these intra-EU flows are not reported and therefore not in our dataset. The threshold stood at 250 000 francs in 1993, and has been periodically reevaluated (650 000 francs in 2001, 100 000 euros in 2002, 150 000 euros in 2006). Furthermore flows outside the EU both lower than 1 000 euros in value and 1 000 kg in weight are also excluded until 2009, but this exclusion was deleted in 2010.

Country-product bilateral trade flows CEPII’s database BACI, based on the UN database COMTRADE, provides bilateral trade flows in value and quantity for each pair of countries from 1995 to 2015 at the HS6 product level, which covers more than 5,000 products. To convert HS products into ISIC industries we use a United Nations correspondence table (when 1 HS code corresponds to 2 ISIC codes, we split the HS flow in half into each ISIC code).

C Additional Empirical Results
Figure C1: Innovative firms at each employment level - robustness

(a) Alternative A

(b) Alternative B

(c) Alternative C

(d) Alternative E

Notes: These Figures replicate Figure 1 using different Y variable. Alternatives A, B, C and D define an innovative firm as a firm having filed a priority patent application between $t-2$ and $t+2$ (A), at t (B), between $t-4$ and t (C). Alternative E uses the logarithm of 1 plus the number of patent application at t.

Figure C2: Innovative firms at each employment level and quality of innovation- robustness

(a) Alternative A

(b) Alternative B

(c) Alternative C

(d) Alternative D

Notes: see Figure C1, the black line consider bottom 90% most cited patent and the grey line the top 10% most cited.
Figure C3: Response to the Demand shock of patents of different quality

Notes: 95% confidence intervals around the estimated coefficient δ in equation (8). Each line corresponds to a separate estimation, where the dependent variable has been redefined by restricting to patents among the $x\%$ more cited in the year, with x equal to 10, 15 etc... up to 70. Note that the 65th percentile threshold correspond to 0-citation patent and we include all patents for quality percentiles above 65. The estimated model is the same as in column 5 of Table 2.
Table C1: Placebo tests

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
<th>(13)</th>
<th>(14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock_{t-2} × (L^{*}_{t-2})</td>
<td>-0.061</td>
<td>-0.048</td>
<td>-0.286</td>
<td>0.168</td>
<td>-0.064</td>
<td>-0.113</td>
<td>0.097</td>
<td>0.066</td>
<td>0.066</td>
<td>-0.243</td>
<td>-0.094</td>
<td>-0.319</td>
<td>-0.257</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.050)</td>
<td>(0.079)</td>
<td>(0.109)</td>
<td>(0.112)</td>
<td>(0.149)</td>
<td>(0.112)</td>
<td>(0.147)</td>
<td>(0.279)</td>
<td>(0.245)</td>
<td>(0.287)</td>
<td>(0.352)</td>
<td>(0.353)</td>
<td>(0.283)</td>
</tr>
<tr>
<td></td>
<td>(4.030)</td>
<td>(0.027)</td>
<td>(0.029)</td>
<td>(0.026)</td>
<td>(0.027)</td>
<td>(0.027)</td>
<td>(0.027)</td>
<td>(0.031)</td>
<td>(0.025)</td>
<td>(0.030)</td>
<td>(0.026)</td>
<td>(0.033)</td>
<td>(0.026)</td>
<td>(0.029)</td>
</tr>
</tbody>
</table>

Fixed Effects

| Sector | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Year | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Notes: These are based on the specification of column 5 of Table 2. The dependent variable is the Davis and Haltiwanger (1992) growth rate in the number of priority patent applications between \(t-1\) and \(t\). In each column \(L^{*}\) has been redefined as a dummy variable set to one if employment at \(t-2\) is at different levels. These levels are defined as 10-14 (column 1), 15-19 (column 2), 20-24 (column 3) etc... up to 75-79 (the baseline model is therefore in column 8). Innovation is measured by the number of new priority applications. All models include a 3-digit NACE sector and a year fixed effects. Estimation period: 2007-1997. Standard errors are clustered at the 3-digit NACE sector level. ***, ** and * indicate p-value below 0.01, 0.05 and 0.1 respectively.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L(_{t-2}^*)</td>
<td>0.066</td>
<td>0.054</td>
<td>0.049</td>
<td>0.051</td>
<td>0.054</td>
<td>0.066</td>
<td>0.076</td>
<td>0.100</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td>(0.154)</td>
<td>(0.137)</td>
<td>(0.143)</td>
<td>(0.171)</td>
<td>(0.127)</td>
<td>(0.124)</td>
<td>(0.160)</td>
<td>(0.220)</td>
</tr>
<tr>
<td>log(L)(_{t-2})</td>
<td>-0.040</td>
<td>-0.039</td>
<td>-0.020</td>
<td>-0.060*</td>
<td>-0.035</td>
<td>-0.030</td>
<td>-0.024</td>
<td>-0.032</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.038)</td>
<td>(0.018)</td>
<td>(0.032)</td>
<td>(0.036)</td>
<td>(0.024)</td>
<td>(0.026)</td>
<td>(0.034)</td>
<td>(0.063)</td>
</tr>
<tr>
<td></td>
<td>(1.392)</td>
<td>(2.287)</td>
<td>(1.225)</td>
<td>(1.012)</td>
<td>(1.983)</td>
<td>(1.397)</td>
<td>(1.370)</td>
<td>(1.781)</td>
<td>(5.524)</td>
</tr>
</tbody>
</table>

Fixed Effects

<table>
<thead>
<tr>
<th></th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Year</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Number Obs.</td>
<td>186,337</td>
<td>153,270</td>
<td>221,681</td>
<td>249,299</td>
<td>132,016</td>
<td>272,903</td>
<td>186,337</td>
<td>186,337</td>
<td>186,337</td>
</tr>
</tbody>
</table>

Notes: These are based on the specification of column 5 of Table 2. The dependent variable is the Davis and Haltiwanger (1992) growth rate in the number of priority patent applications between \(t - 1\) and \(t\). Each column considers a different sample. Column (1) replicates our baseline specification. Column 2 includes firms that have a workforce between 10 and 100 employees at \(t - 2\) (instead of the first year they appear in the sample). Column 3 (resp. 4) includes firms that have a workforce between 10 and 500 (resp. 0 and 100) employees at \(t_0\). Columns 5 and 6 are based on the same sample as column 1 but column 5 restricts to firm that first exported in 1994 (i.e.: \(t_0 = 1994\), the earliest year in our dataset) and column 6 extends to non-exporting firms. Columns 7-9 also consider the same sample as column 1 but change the type of growth rate of the dependent variable. Column 7 considers the first difference in \(\log(1 + Y)\), column 8 uses a hyperbolic function \(\log(Y + \sqrt{1 + Y^2})\), also in first difference and column 9 uses the first difference of \(Y/S_0\), where \(S_0\) is the yearly average number of priority patents filed by the firm before \(t_0\) (the first year the firm appears in the database). All models include a 3-digit NACE sector and a year fixed effects. Estimation period: 2007-1997. Standard errors are clustered at the 3-digit NACE sector level. ***, ** and * indicate p-value below 0.01, 0.05 and 0.1 respectively.