Accuracy vs. Incentives:
A Tradeoff for Performance Measurement in Public Policy*

Aaron L. Schwartz†
August 12, 2018

Abstract
Health care providers are increasingly subject to measurement of noisy performance signals. I show that shrinkage estimation, commonly used to improve measurement accuracy, blunts performance incentives. Shrinkage estimation entails a welfare tradeoff; consumer sorting is improved by more accurate measurement, but agent effort is reduced by poor responsiveness of measures to agent performance. Via simulation, I quantify the magnitude of the accuracy-incentives tradeoff in estimating hospital heart attack mortality. Shrinkage estimation substantially dilutes incentives, particularly for smaller hospitals, whose measured performance increases by only 30-50% of true performance improvements. Alternatively, increasing the timespan of measurement improves accuracy without reducing incentives.

JEL Classification: D83; H11; H51; H52; I00; I11; I18; I28.

Keywords: Health Care Economics; Quality Disclosure; Performance Payment; Statistical Discrimination.

*I thank Joseph Newhouse, Thomas McGuire, Timothy Layton, Adam Sacarny, Hannah Neprash, Daria Pelech, Alan Zaslavsky, Michael Chernew, J. Michael McWilliams, David Cutler and Amitabh Chandra for helpful comments, as well as numerous seminar participants. Special thanks go to Andrew Ryan for kindly sharing code. Much-appreciated financial support came from the US National Institutes of Health (F30 AG044106-01A1)
†Department of Health Care Policy, Harvard Medical School, Harvard University. Department of Medicine, Brigham and Women’s Hospital; Address: 180 Longwood Avenue, Boston, MA 02115. Main Office: (617) 432-1909. Fax: (617) 432-0173. alchwartz@partners.org
1 Introduction

Perceptions of suboptimal quality in health care have spurred interest in promoting performance accountability for physicians and hospitals. Regulators and institutional purchasers have increasingly employed standardized performance measures for this purpose. Providers are scored on outcomes such as mortality, cost, and patient satisfaction, or on processes such as rates of appropriately prescribing a medication (Institute of Medicine, 2015). Several federal and state policies in the United States have accelerated these trends, mandating public disclosure of certain performance measures and tying substantial financial incentives to others. A similar trend has occurred in education, where there is considerable interest in assessing the performance of teachers and schools with value-added modeling of student test scores (Koedel et al., 2015).

The reliability of performance measures in these settings has been a persistent concern (Hofer et al., 1999; Kane and Staiger, 2002, 2001; Chay et al., 2005; Ryan et al., 2012). High variance of measured outcomes and relatively small sample sizes can result in significant measurement error. Outstanding performers in one period often experience reversion to the mean soon after, suggesting that initial performance was partially due to chance. To address this limitation, it is common to modify performance estimates by shrinking them toward a common prior value, typically the average observed performance of all agents. An extensive literature dating to Stein (1956) illustrates that shrinkage estimation reduces measurement error, and shrinkage estimation is now employed in a variety of specific modeling strategies referred to as mixed, hierarchical, multilevel or random effects modeling, or empirical Bayes estimation. Research on the policy applications of these techniques has focused on their statistical properties like precision or statistical bias (Chetty et al., 2014; Koedel et al., 2015; Normand and Shahian, 2007). It may seem innocuous to judge these performance measures on the basis of such statistical properties. However, because these measures are intended to affect the market behavior of consumers and suppliers, the measures should be ultimately judged on the basis of economic rather than statistical criteria.

This paper explores the economic implications of applying Bayesian shrinkage techniques to performance measurement in public policy. The study is motivated by a simple obser-
vation: shrinkage estimation reduces a measure’s responsiveness to agent behavior. When shrinkage techniques are not employed, and performance is estimated as a mean of some outcome (i.e. the average mortality of a surgeon’s patients), then an increase in an agent’s true performance will coincide with an equal expected increase in measured performance. Employing shrinkage techniques will tend to increase the measured performance of below-average agents, and decrease the measured performance of above-average agents. In both cases, however, the shrunken estimate will be less responsive to the agent’s observed outcomes and to the agent’s true unobserved performance. For incentive schemes in which agents are rewarded according to their measured performance, reducing the responsiveness of a measure will reduce the marginal incentive for performance improvement. Thus, the incentive properties of performance estimation techniques, which are economic properties, are a first-order concern for designing optimal incentive schemes in public policy.

As a motivating example, consider a public program with incentives tied to shrinkage-derived performance estimates. The Affordable Care Act’s Hospital Readmissions Reduction Program has levied $1.9 billion in penalties on hospitals based on shrinkage-derived estimates of patients’ rates of repeat admission, conditional on patient characteristics (Boccuti and Casillas, 2017). The incentives employed in this program are generally considered to be high-powered, and studies have demonstrated some performance improvement (Zuckerman et al., 2016), which is relatively rare for performance pay initiatives (Eijkenaar et al., 2013). However, because shrinkage estimation reduces the marginal payment for improved performance, the true incentive power of this program is unknown and may be substantially lower than intended. In policy settings like these, improved accuracy from shrinkage estimation comes at a cost of reducing the power of performance incentives, which may in turn reduce agent performance. The purpose of this paper is to provide initial theoretical and empirical traction for understanding this tradeoff, its magnitude, and how it might be avoided.

The paper’s first contribution is a demonstration of how shrinkage estimation affects a key incentive property of performance measurement, measure responsiveness. I show that shrinkage estimation reduces a performance measure’s responsiveness to an agent’s behavior by a shrinkage factor that is a function of sample size, variance in true performance across agents, and variance in observed performance within agents (i.e. noise). Reduced measure
responsiveness implies an incentive distortion because each agent’s performance score is determined by other agents’ observed performance. Greater incentive distortions occur when observed performance is an especially noisy signal of true performance. Thus, agents with few available performance observations (i.e. hospitals with few patients) face weaker performance incentives. I also demonstrate how measure responsiveness relates to alternate definitions of measurement biasedness.

The second contribution is a formal illustration of the welfare tradeoff entailed by shrinkage estimation. I embed two key measurement properties, accuracy and measure responsiveness, in a stylized model in which two agents with market power compete using quality signals. The accuracy and responsiveness of performance signals both contribute to welfare. Greater accuracy improves consumers’ sorting to agents, thereby reducing welfare losses resulting from misinformed consumer choices. More responsive performance estimation drives a demand response to quality, and if present, a government performance payment incentive, reducing welfare loss arising from suboptimal quality investment by agents. Thus, the accuracy and incentives properties of a performance measure are substitutes in promoting welfare. The relative welfare contribution of each measurement property is shown to depend on the policy setting.

Third, I demonstrate that the magnitude of the accuracy-incentives tradeoff is substantial in the context of hospital performance measurement. Using Monte Carlo simulation, I examine measure accuracy and responsiveness in the context of measuring heart attack mortality, which is publicly reported in the United States via a national disclosure program. I calculate that the current Medicare preferred method for shrinking one-year performance estimates reduces measure responsiveness by 35 percent on average, and by 65 percent for smaller hospitals. These smaller hospitals must decrease mortality by 2.4 times more than a large hospital in order to experience an equal measured mortality improvement.

Finally, I compare the accuracy and responsiveness of several alternate approaches to estimating hospital performance. Although shrinkage estimators tend to reduce measurement error substantially, similar reductions in error can be achieved without shrinkage by increasing the number of years used to estimate performance. Scoring each estimation technique based on accuracy and responsiveness, I identify a frontier of techniques that
dominate others. I also demonstrate that shrinkage estimation need not reduce incentives when performance measurement is rank-based (i.e. ordinal rather than cardinal).

This study is related most closely to the economics literature on performance measurement in health care. Health economics is largely devoted to understanding extensive information imperfections (Arrow, 1963) which may motivate quality reporting or pay-for-performance schemes (Kolstad, 2013; Dranove and Satterthwaite, 1992; Richardson, 2013). These and other studies fall within a broader economic literature on quality disclosure and certification (Dranove and Jin, 2010). There is also an expansive statistical, medical, and policy literature on various statistical properties of health care quality measurement, including measure reliability (e.g. Adams et al., 2010; Dimick et al., 2004; Nyweide et al., 2009). Obstacles introduced by imprecise performance measurement have also been studied in the setting of education policy (Kane and Staiger, 2002; Staiger and Rockoff, 2010), with a focus on measurement properties like bias and stability. A review of value-added modeling in education (Koedel, Mihaly, and Rockoff, 2015) describes many such studies.

A broader economics literature concerns the general consequences of imprecise quality signals in markets. In organizational economics, this topic has been a particular area of focus, especially with regard to the optimal power of incentive contracts (Gibbons and Roberts, 2013). Precision of performance signals also plays a role in the economics of discrimination. For example, the canonical Phelps (1972) study of statistical discrimination concludes by illustrating how high-performing minorities may face discrimination in the labor market if they produce a high variance performance signal. Just as this penalty for high-variance performance may reduce human capital investment (Farmer and Terrell, 1996), I argue that shrinkage estimation in health policy may discourage quality investment.

The key distinction between my research and the broader literature on quality signals is my focus on regulated health care markets. This setting permits particular assumptions that allow performance measurement techniques to affect welfare. For example, I assume that consumers lack the information and/or sophistication required to construct accurate beliefs about agent performance. This ensures that consumer decision-making can be affected by a government’s methods for measuring and disclosing hospital performance. I also assume that a government paying for health care services can provide compensation that departs from a
posterior belief about an agent’s productivity\(^1\). This ensures that whether to use shrinkage estimation for performance-based pay is a government’s choice rather than a necessity.

The remainder of the paper proceeds as follows. Section 2 describes shrinkage estimation and its opposing effects on measure accuracy and measure responsiveness. Section 3 presents a stylized model demonstrating the welfare contributions of measure accuracy and measure responsiveness. Section 4 details the simulation that estimates the magnitude of the incentive-accuracy tradeoff in measuring hospital heart attack mortality and compares alternate measurement approaches. Section 5 concludes with a discussion of policy implications of the analyses.

2 Shrinkage Estimation and the Accuracy-Incentives Tradeoff

Shrinkage estimation describes a broad class of estimation techniques that adjust raw observed estimates toward a common prior value. These estimates are said to “borrow strength” or “borrow information” across units of observation, because the parameter of one unit is estimated using data from an independent unit. In the context of performance estimation, this means that estimates of an agent’s performance will depend on other agents’ performance. Early motivation for such approaches was provided by Stein (1956), who proved the paradoxical result that, when estimating the means of several independent normal random variables, simple averages were inferior to alternative estimation approaches with respect to mean squared error. The massive breadth of the ensuing literature precludes a comprehensive review here. In this section, I briefly review general properties of shrinkage estimators and demonstrate how choosing between estimators with and without shrinkage entails an accuracy-incentive tradeoff.

Consider estimating the performance of many health care providers. Assume a data-generating process for the health outcomes of patient \(i\) who receives services from provider \(j\):

\[
y_{ij} = \beta x_{ij} + u_j + \epsilon_{ij}, \quad i = 1, \ldots, n_j
\]

\(^1\)For example, Medicare has historically paid the same service prices to all physicians within a geographic area despite obvious variation in physician productivity.
where x is a vector of individual covariates, u_j is the provider performance and ϵ_{ij} is error. Provider performance is assumed to be normally distributed with mean μ_u. A standard shrinkage estimator for u_j, \tilde{u}_j, can be expressed as follows: (Gelman and Hill, 2007; Koedel, Mihaly, and Rockoff, 2015, Skrondal and Rabe-Hesketh, 2009):

$$\tilde{u}_j = s_j \bar{r}_j + (1 - s_j) \hat{\mu}_u$$

(2)

where \bar{r}_j is the provider’s average residuals $\bar{y}_j - \hat{\beta}x_j$, and $s_j \in [0, 1]$ is the shrinkage factor, which equals $\frac{\hat{\sigma}_u^2}{\hat{\sigma}_u^2 + \hat{\sigma}_\epsilon^2}$, where $\hat{\sigma}_u^2$ and $\hat{\sigma}_\epsilon^2$ are variances of u_j and ϵ_{ij} (i.e. the across-provider and within-provider variance). If the model is correctly specified, then the shrinkage estimator minimizes the estimates’ prediction error. The mean squared error of the shrinkage estimate is $\frac{s_j \hat{\sigma}_\epsilon^2}{n_j}$, smaller than the mean squared error of a fixed effect estimate $\frac{\hat{\sigma}_\epsilon^2}{n_j}$. This approach is particularly useful in correcting for attenuation bias when performance estimates are used as regressors (e.g. Chetty, Friedman, and Rockoff, 2014).

Several variants of such shrinkage estimation can be employed. Because larger hospitals often exhibit performance superior to smaller hospitals due to scale economies or learning-by-doing (Gaynor, Seider, and Vogt, 2005), one alternative method of hospital performance measurement shrinks observed hospital outcomes toward a volume-standardized performance mean rather than an overall mean (Dimick et al., 2009; Silber et al., 2010). Future methods for measuring health care provider performance could also incorporate advances in shrinkage techniques employed in teacher evaluation, which account for additional sources of residual within-teacher variation such as annual classroom effects (i.e. exogenous classroom shocks) and drift in quality over time (Chetty, Friedman, and Rockoff, 2014). Despite these differences, the methods all attempt to reduce mean squared error of performance estimates by shrinking an average residual toward a common value, with the magnitude of

Note that the estimate \tilde{u}_j cannot be operationalized as written since the equation requires estimates of the variance components and mean. This is a general property of shrinkage estimators, and there are many ways of incorporating estimates of these parameters into the calculation of \tilde{u}_j. Fully Bayesian approaches employ a posterior distribution of these additional parameters (estimated based on prior distributions) while empirical Bayes approaches plug in point estimates. For details and examples, see Gelman and Hill (2009), Gelman et al. (2014), Morris (1983), Guarino et al. (2015), Chetty, Friedman, and Rockoff (2014), Dimick, Staiger, and Birkmeyer (2010).

See McCulloch and Neuhaus (2011) for a derivation of this result. These prediction error estimates reflect an assumption that there is zero measurement error in the estimation of $\hat{\beta}$, a reasonable simplification when sample sizes are large.
shrinkage depending on a decomposition of variance.

To illustrate basic properties of shrinkage estimation graphically, I briefly compare observed and shrunken performance estimates (τ_j and \tilde{u}_j) calculated from synthetic physician and patient data. The synthetic data describe performance on an arbitrary physician performance metric and are calibrated to produce a shrinkage factor of 0.4. This is a realistic magnitude for a quality measure for primary care physicians that applies to a subset of their patients (Holmboe et al. 2010). True physician performance u_j is independently distributed $N(0, 0.15)$, and the patient outcome is independently distributed $N(u_j, 0.95)$. Each physician serves 27 patients for whom this performance metric applies and the mean patient outcome for each physician constitutes the physician’s observed performance, τ_j. Shrunken posterior performance estimates, \tilde{u}_j, are obtained via a random effects model. Panel A of Figure 1 shows the distribution of observed and shrunken performance estimates for 100,000 physicians. Because of idiosyncratic variation in patient outcomes, observed performance is over-dispersed relative to true physician ability. Shrunken performance estimates exhibit less variance than both observed and true physician performance. As noted by Chandra et al. (2016), the latter property follows because true performance is the sum of the shrunken performance prediction and an orthogonal prediction error.

Shrinkage estimators may be considered unbiased or biased depending on the criterion for bias. Consistent with this observation are Panels B and C of Figure 1, which present binned scatterplots of true performance vs measured performance and vice versa. First, consider for some performance measure \hat{u}_j, the property $E[u_j|\hat{u}_j] = \hat{u}_j$, which I refer to as prediction unbiasedness, following Chetty, Friedman, and Rockoff (2014). If a measure is prediction unbiased, then an agent’s measured performance will equal his or her expected true performance. As shown in Panel B, these shrunken performance measures very closely approximate the conditional mean of true physician performance in the synthetic data. For this reason, linear shrinkage estimators are sometimes referred to as best linear unbiased predictors (BLUPs) (Skrondal and Rabe-Hesketh, 2009).

4There has been recent interest in questioning whether assumptions required for unbiasedness hold when consumers’ choice of agents is not exogenous. See, for example Kalbfleisch and Wolfe (2013) and Guarino et al. (201).
cians with relatively greater observed performance and underestimating the performance of physicians with inferior performance. Second, consider measurement unbiasedness, defined here as \(E[\hat{u}_j|u_j] = u_j \). If a measure exhibits measurement unbiasedness, then an agent’s expected measured performance will equal their true performance. As shown in Panel C, shrinkage estimators do poorly according to this criterion, underestimating the performance of high performers and overestimating the performance of low performers. Alternatively, true performance very closely approximates the conditional average of observed (unshrunkened) physicians performance.

Measurement bias relates to a key incentive property of shrinkage estimators: responsiveness to agent behavior. I define measure responsiveness as \(\frac{dE[\hat{u}_j]}{du_j} \), the change in expected measured performance for a change in actual performance. If an individual provider’s performance contributes negligibly to the average performance of all providers, then \(\frac{dE[\hat{u}_j]}{du_j} = \frac{dE[\tilde{u}_j]}{du_j} \approx s_j \). Thus, the size of the shrinkage factor faced by an agent equals the measure’s responsiveness to that agent’s behavior. (Note that in Panel C of Figure 1, the scatterplot slope for shrunken estimates indeed equals the shrinkage factor 0.4.) The loss of measure responsiveness entailed by shrinkage estimation equals one minus the shrinkage factor. As the shrinkage factor approaches one, the measure becomes fully responsive to agent behavior, with \(\frac{dE[\tilde{u}_j]}{du_j} = 1 \). In this case, the performance of other agents no longer affects an agent’s performance estimate. Because measure responsiveness is increasing in \(n_j \) and \(\hat{\sigma}^2_u \) and decreasing in \(\hat{\sigma}_r^2 \), shrinkage estimates of performance will be less responsive for agents serving a smaller number of consumers (e.g. smaller hospitals), for measured outcomes with a large amount of residual error, and for settings in which agent performance is very similar. This property is demonstrated in Figure 2, which illustrates how responsiveness of shrinkage estimation would be affected if each physician’s sample size varied in the previously described synthetic data.
3 Measurement Accuracy, Measurement Responsiveness, and Welfare

Model Description and Equilibrium

Shrinkage estimation improves the accuracy of performance measurement but reduces a measure’s responsiveness to agent effort. I now formally demonstrate that these two measurement properties each contribute to welfare, and that shrinkage estimation entails a welfare tradeoff. To do so, I present a stylized Hotelling model in which agents with market power choose levels of quality and quality signals guide consumers’ choice of agents. This model could describe patients choosing among hospitals based on public information on hospital quality.

Consumers are arrayed uniformly on a line between two agents (agent A and agent B), with $z \in (0, 1)$ denoting a consumer’s distance from agent A. Both the distance between agents and the number of consumers are normalized to one. The model proceeds in three stages. First, each agent j simultaneously chooses a level of quality $u_j \in [0, \infty)$ and bears the costs of that quality investment, $e(u_j)$. Second, consumers perceive a quality signal, \hat{u}_j, about each agent. Third, consumers sort between agents, who receive a regulated fee, r, for each consumer they serve. Below I consider extensions to the model in which the government influences the quality signal and sets a quality-based bonus payment.

Consumer utility depends on quality of the consumer’s chosen agent, u_A or u_B, and transport costs $c > 0$ per unit of travel. Specifically,

$$U(z) = \begin{cases} \alpha + u_j - cz & \text{if } j = A \\ \alpha + u_j - c(1 - z) & \text{if } j = B \end{cases} \quad (3)$$

I assume $\alpha > c/2$, which ensures that the minimal utility achieved from being served by an agent exceeds the maximum transport costs entailed by choosing the closest agent. Thus, each consumer will choose one of the agents. The signal of quality that consumers receive, \hat{u}_j, contains some error ε_j. By definition:

$$\hat{u}_j = u_j + \varepsilon_j \quad (4)$$
Quality signals are received identically by all consumers, and no particular distribution of the error is assumed. Errors are assumed i.i.d. for both agents, with error in one agent’s quality signal unaffected by the other agent’s true quality, such that $E [\varepsilon_j | u_{-j}, \varepsilon_{-j}] = E [\varepsilon_j]$, where $-j$ indicates the agent who is not agent j.

Note that consumers’ perception of an agent’s quality equals the agent’s quality signal. This is reasonable in the public policy settings I discuss, where information imperfections are pervasive and consumers may lack alternate sources of performance information.\(^5\) The difference in the quality signals from each agent yields a relative quality signal, represented by the notation $\hat{u}_j^\Delta = u_j - u_{-j} + \varepsilon_j - \varepsilon_{-j} = u_j^\Delta + \varepsilon_j^\Delta$. These quality signals yield a demand for each agent, $Z_j (\hat{u}_j^\Delta)$.

Agents are self-interested, and their utility is the difference between revenue and effort costs. Given the regulated price per consumer r and effort costs of quality investment $e (u_j)$, agent utility is

$$V_j = Z_j r - e (u_j)$$

(5)

For simplicity, I assume effort costs are quadratic, with $e (u_j) = \frac{1}{2} u_j^2$, which conveniently ensures an interior solution for agent choice of quality. Revenue and costs are identical for both agents, implying symmetric behavior in equilibrium. Note also that agents are risk-neutral, a standard assumption when modeling the behavior of firms.\(^6\)

Consumers maximize utility on the basis of the perceived quality of both agents, choosing agent A if and only if $\hat{u}_A^\Delta > cz - c (1 - z)$, yielding the following demand:

$$Z_j = \frac{1}{2} + \frac{\hat{u}_j^\Delta}{2c}$$

(6)

\(^5\)Sophisticated Bayesian processing of agent quality signals would require knowledge of the distribution of agent performance and the error distribution, which consumers are assumed not to have. Moreover, even with such information, evidence suggests consumers tend to trust signals excessively in statistical reasoning rather than processing those signals in a fully Bayesian manner (Tversky and Kahneman, 1971; Rabin, 2002).

\(^6\)At this point, it bears emphasizing the stylized nature of this model. In order to consider issues of performance signal accuracy and responsiveness in isolation, the model does not incorporate additional concerns regarding agent altruism (Kolstad, 2013; McGuire, 2000), multitasking (Holmstrom and Milgrom 1990), the insurance value of performance contracts to agents (Gibbons and Roberts 2013), or agent participation decisions (Rothstein, 2015).
To ensure an interior sorting solution, I assume that \(\max (\lvert \hat{u}_j \rvert) < c \), which corresponds to the assumption that \(\max (\lvert \epsilon_j \rvert) < c \) in a symmetric equilibrium with equal agent quality.

Agents maximize their utility, with the first order condition \(u_j = \frac{dE[Z_j]}{du_j} r \) describing their choice of quality. Substituting for the derivative of demand and noting that \(\frac{dE[\hat{u}_j]}{du_j} = \frac{dE[u_j]}{du_j} \) (which follows from the prior assumption that \(E[\epsilon_j | u_j, \epsilon_{-j}] = E[\epsilon_j] \)), yields equilibrium quality supply:

\[
\hat{u}_j^* = \frac{dE[\hat{u}_j]}{du_j} \frac{r}{2c} \tag{7}
\]

— Given that the right hand side terms of this expression are equal for both agents, agent quality choices are indeed identical, and therefore equilibrium demand is

\[
Z_j^* = \frac{1}{2} + \frac{\epsilon_j}{2c} \tag{8}
\]

Welfare

Before characterizing welfare in equilibrium, it is instructive to consider a general expression describing welfare across various potential sorting and quality decisions. If consumers choose agents such that all consumers located at \(z < Z_A \) choose agent A and all located at \(z > Z_A \) choose agent B, then realized total welfare following sorting, \(W \), can be expressed as the sum of consumer and agent utilities:

\[
W = \int_0^{Z_A} U(z \mid j = A) \, dz + \int_{Z_A}^1 U(z \mid j = B) \, dz + \sum_j V_j \tag{9}
\]

When agent quality is symmetric, substituting for consumer and agent utility, evaluating, and rearranging yields

\[
W = \gamma - \left(u - \frac{1}{2} \right)^2 - c \left(Z_A - \frac{1}{2} \right)^2 \tag{10}
\]

where \(\gamma = r + \alpha + \frac{1}{4} (1 - c) \), a collection of constants reflecting the maximum possible total utility for agents and consumers. As the expression demonstrates, this first-best welfare can only be achieved when agent quality and the consumer sorting threshold each equal particular optimal values (in this case, both \(\frac{1}{2} \)). There is a quadratic welfare penalty for deviations from these values. For intuition behind these results, note that optimal quality
entails equalizing the marginal cost of quality for both agents, 2u, with the marginal benefit for consumers, one. Because agents choose equal quality in equilibrium, it follows that optimal sorting occurs at the midpoint between agents, which minimizes travel distance.

The expected total welfare across a range of possible error draws is simply the expectation of this expression. Evaluating the expectation and substituting demand and quality in equilibrium yields the following expression for expected welfare loss in equilibrium relative to the first-best scenario:

\[
\left(\frac{dE[\hat{u}_j]}{du_j} \frac{r}{2c} - \frac{1}{2} \right)^2 + \frac{1}{4c} E \left[\left(\hat{u}_j^\Delta - u_j^\Delta \right)^2 \right]
\]

This key expression demonstrates the two components of welfare loss in equilibrium. The left term is the square of the difference between equilibrium quality and optimal quality. Quality will be suboptimal whenever the demand response to a quality signal is low \((c > r)\), even if signals of agent quality are fully responsive to agent quality investments \(\left(\frac{dE[\hat{u}_j]}{du_j} = 1 \right)\). When quality signals are less than fully responsive \(\left(\frac{dE[\hat{u}_j]}{du_j} < 1 \right)\), welfare losses from suboptimal quality will be exacerbated. The right term represents the welfare loss attributable to excess consumer travel costs due to error in the relative quality signal. Note that \(E \left[\left(\hat{u}_j^\Delta - u_j^\Delta \right)^2 \right]\) is the mean squared error of \(\hat{u}_j^\Delta\), the relative quality signal, as an estimate of \(u_j^\Delta\), the true difference in agent quality.

Thus, in equilibrium, welfare is a function of the accuracy of performance signals and the responsiveness of the signal to agents’ quality choices. The intuition for this result follows from the two ways in which quality information contributes to welfare. First, accurate quality signals promote efficient sorting for marginal consumers, who may choose an agent poorly based on an erroneous quality signal. Second, quality signals that are responsive to agent behavior elicit a demand response, increasing agents’ incentives for investing in quality and thereby raising quality above suboptimal levels. I define an accuracy-incentives tradeoff as occurring when one component of this welfare expression increases while the other component decrease.
Policy Responses: Disclosure, Bonuses, and Shrinkage Estimation

These equilibrium conditions suggest how two government policies based on quality measurement, quality disclosure and performance payment, may be welfare improving. If a regulator measures and publicly discloses a relative quality signal that has lower mean squared error than consumers would otherwise perceive, it can promote optimal consumer sorting and reduce welfare loss arising from the right term in equation 11. If a regulator introduces a bonus payment for agents based on a performance measurement, the regulator can promote optimal agent effort, thereby reducing welfare loss arising from low demand response to quality in the left term in equation 11. Specifically, introducing a bonus payment b such that agents now receive payments of $Z_j r + b \hat{u}_j$ would result in the following equilibrium quality levels:

$$u^*_j = \frac{dE[\hat{u}_j]}{du_j} \frac{r}{2c} + \frac{dE[\hat{u}_j]}{du_j} b$$

(12)

Optimal quality can achieved by choosing b such that the right hand side equals the optimal quality choice.\(^7\)

Employing shrinkage estimation for these measurement-based policies entails an accuracy-incentives tradeoff. Recall from Section 2 that shrinkage estimation both reduces the mean square error of a performance prediction and reduces measure responsiveness $\frac{dE[\hat{u}_j]}{du_j}$. Reducing mean square error improves welfare via improved consumer sorting. Reducing measure responsiveness exacerbates welfare losses from suboptimal quality. Agent performance is decreased via two mechanisms: a reduced consumer demand response to quality and a reduced effective marginal quality bonus for improved performance.

The net effect on welfare is ambiguous and depends on the policy setting. Two special cases illustrate this ambiguity. In both cases, a traditional quality measurement technique with full responsiveness ($\frac{dE[\hat{u}_j]}{du_j} = 1$) is replaced by a shrinkage estimator with reduced mean square error and reduced measure responsiveness. In one case, shrinkage estimation increases welfare; in the other, it reduces welfare. First, consider a setting in which agent quality u_i is fixed and depends only on innate talent rather than effort. Welfare loss relative

\(^7\)The regulator could alternatively achieve optimal quality without a bonus payment by setting regulated fees such that $r = c \left(\frac{dE[\hat{u}_j]}{du_j}\right)^{-1}$. However, this approach would entail extremely high fees in the event of low demand elasticity (i.e. high transport costs).
to the first best is \(\frac{1}{2\epsilon} \mathbb{E} \left[(\hat{u}_j^2 - u_j^2)^2 \right] \) and arises only from inefficient consumer sorting due to signal error. In this setting, reducing signal error by employing shrinkage estimation improves welfare. The reduction in measure responsiveness \(\frac{d\mathbb{E}[\hat{u}_j]}{du_j} \) has no counteracting detrimental effect on welfare because quality is exogenous. Second, consider a setting in which demand has zero elasticity with respect to quality. This assumption can be modeled as transport costs \(c \) approaching infinity. Because consumers sort equally between agents regardless of quality signals, demand is fixed. In the absence of demand elasticity, quality levels equal \(\frac{d\mathbb{E}[\hat{u}_j]}{du_j} b \) per equation 12. Welfare loss relative to the first best is \(\left(\frac{d\mathbb{E}[\hat{u}_j]}{du_j} b - \frac{1}{2} \right)^2 \) and arises only from inefficient levels of agent effort. Employing shrinkage estimation will exacerbate any suboptimal quality levels. In this setting, reducing measure responsiveness by employing shrinkage estimation reduces welfare. The improvement in measure accuracy has no counteracting beneficial effect on welfare because consumer sorting is unchanged.

4 **Quantifying the Accuracy-Incentives Tradeoff: Hospital Quality Measurement**

I use Monte Carlo simulation to assess the magnitude of the accuracy-incentives tradeoff in the case of hospital performance measurement. Currently, CMS employs shrinkage estimation to evaluate hospital mortality rates and rates of hospital readmissions for patients with select diagnoses. These measures, constructed from Medicare claims data, are part of broader efforts to tie Medicare payments to measures of health care value (Burwell, 2015) and to report hospital quality ratings (Werner and Bradlow, 2006). 30-day mortality ratings have been publicly reported since 2007 and began contributing to hospital payment adjustments as part of the Medicare Hospital Value-Based Purchasing Program in the 2014 fiscal year. 30-day readmission rates have been publicly reported since 2009 and began contributing to hospital payment penalties through the Hospital Readmissions Reduction Program in fiscal year 2013.\(^8\) CMS methods for calculating mortality and readmissions measures are

\(^8\)Hospital Readmissions Reduction Program penalties take the form of reductions in Medicare payments for all hospital admissions. The reduction is based on risk-adjusted readmissions rates for patients admitted with a select set of diagnoses, with a maximum penalty of 3% since fiscal year 2015 (Centers for Medicare and Medicaid Services, 2017a). Payments for the Hospital Value-Based Purchasing Program payments are more complex. In fiscal year 2017, 2% of base hospital payments were withheld from participating hospitals, and these funds were devoted to hospital incentive payments. Payments were calculated on the basis of 21 performance measures, which were combined into composite scores for achievement as well as improvement.
broadly similar, involving hierarchical logistic models that include patient characteristics as covariates (Ash et al., 2012; Krumholz et al., 2006).

I examine measurement of hospital 30-day mortality for patients with acute myocardial infarction (AMI), commonly known as heart attack. AMI was one of the first diagnoses used for CMS mortality measures, and is a serious complication of cardiovascular disease, the leading cause of death in the United States. The simulation compares the performance of alternative measurement techniques according to two properties: root mean squared error (accuracy) and measure responsiveness (incentives). The simulation allows me to construct true hospital performance, which is typically unobserved, and to calculate an error equal to the difference between this value and measured performance. In addition, by taking repeated draws of data, simulation results incorporate findings from a broad set of possible hospital outcomes. Simulation is an especially valuable empirical tool to evaluate the effects of measurement choices because plausibly exogenous variation in measurement techniques is rare.9

Many studies have recently used simulation to examine the properties of performance measures in health and education (Normand et al., 2007; Thomas and Hofer, 1999; several papers reviewed in Koedel, Mihaly, and Rockoff, 2015, including Rothstein, 2015). My analysis closely follows that of Ryan et al. (2012), which compares the accuracy of several alternate AMI mortality measures. I replicate and extend those simulation methods by assessing measure responsiveness in addition to measurement error. The simulation methods, briefly described here, are detailed more fully in Ryan et al. (2012).

Simulation Methods

The data generating process has been calibrated to approximate the distribution of risk-adjusted mortality in Medicare inpatient claims data. In addition, the simulation includes a rejection sampling condition that discards any simulation iteration in which the simulated

(Centers for Medicare and Medicaid Services, 2017b).

9Empirically evaluating the effect of shrinkage estimation on agent performance is challenging because of this limitation. Exploiting variation in incentives across agents with different sample sizes within an incentive scheme would also be problematic. Even in the presence of quasi-random variation in hospital size, it would be difficult to isolate the effect of the incentive distortions due to shrinkage estimation from the effect of hospital size.
data differ substantially from Medicare inpatient data in more than one of several moment conditions. These conditions, and their values in Medicare inpatient data are: mean mortality (0.209), within-hospital standard deviation in mortality (0.091), between-hospital standard deviation in mortality (0.078), mean annual change in mortality (-0.007), within-hospital standard deviation of annual mortality change (0.137), between-hospital standard deviation of annual mortality changes (0.031), and mean hospital AMI volume (104.8).

The simulation proceeds in the following steps. For each of 3000 hospitals, an initial volume of AMI patients and an annual growth rate in volume are drawn from a truncated gamma distribution and a normal distribution, respectively (see Ryan et al. [2012] for all parameter values). Each hospital is assigned an initial raw mortality rate and an annual growth rate in mortality improvement, drawn from normal distributions. Annual raw mortality rates are then adjusted to reflect improved mortality in higher volume hospitals. Specifically, raw mortality rates are adjusted based on annual hospital volume and the empirical relationship between volume and risk-adjusted mortality in Medicare inpatient claims, which was modeled using a generalized linear model (Bernoulli family, logit link) and a fifth degree polynomial function of hospital volume. The resulting annual mortality rate serves as a hospital’s true mortality score and corresponds to each patient’s probability of dying within 30 days of admission. Deaths are assigned according to a random draw for each patient. Note that the probability of mortality is not a function of patient characteristics. This corresponds to an assumption that risk-adjustment eliminates residual confounding in all mortality measurement techniques I consider.

For each measurement technique that I consider, I calculate hospital mortality scores based on one, two, or three years of observed mortality. In each simulation iteration, the accuracy of each measure is assessed by comparing measured mortality scores \hat{u}_j to true mortality in the following year u_j. The temporal lag reflects the role of public reporting policies in providing past hospital performance data to inform current patient decisions. Measure accuracy is scored as root mean square error (RMSE), $\sqrt{(\hat{u}_j - u_j)^2}$. Each measure’s responsiveness, $\frac{dE[\hat{u}_j]}{du_j}$ is scored as the average shrinkage factor s_j employed in the performance

\footnote{Specifically, the iteration was discarded if more than one of the simulated data parameters fell outside of a bootstrapped 95% confidence interval of the Medicare data parameter.}
estimation. Accuracy and responsiveness are assessed across all hospitals and by category of hospital size. Hospitals are categorized as small, medium, and large, where small hospitals have patient volume in the bottom quartile (approximately 30 AMI admissions per year or fewer) and large hospitals have patient volume in the top quartile (approximately 143 AMI admissions per year or higher).

I consider five alternate measures of hospital mortality, four of which are included in Ryan et al. (2012). The first measure is observed over expected mortality (OE). OE, which is not a shrinkage estimator, has been used to estimate cardiac surgery performance (Kolstad, 2013). It is calculated as follows:

\[
\hat{OE}_j = \frac{\sum_{i=1}^{n_j} y_{ij}}{\sum_{i=1}^{n_j} \hat{\beta}_0 + \hat{\beta}_1 X_{ij}} \cdot \bar{y}
\]

where \(y_{ij}\) is an indicator for death, \(\bar{y}\) is the overall average mortality rate, and \(X\) is a vector of patient characteristics. The denominator is the expected number of patient deaths based on prediction via linear regression. In the absence of patient covariates, this expression simplifies to the observed mortality rate \(\frac{\sum_{i=1}^{n_j} y_{ij}}{n_j}\). I also implement a moving average (MA) of this estimator, a simple average of OE estimates over two or three years. Since OE and MA do not incorporate shrinkage, the responsiveness of these measures equals one.\(^{11}\)

The second measure is risk-standardized mortality rate (RSMR), the current CMS measure for 30-day mortality and 30-day readmissions. CMS initially used one year of claims data for its RSMR calculations, though it now uses three. The formula for RSMR is:

\[
\hat{u}_j^{RSMR} = \frac{\sum_{i=1}^{n_j} f(\hat{\beta}_0 + \hat{\theta}_j + \hat{\beta}_1 X_{ij})}{\sum_{i=1}^{n_j} f(\hat{\beta}_0 + \hat{\beta}_1 X_{ij})} \cdot \bar{y}
\]

where \(f()\) is the inverse of the logistic link function. For this simulation, \(\hat{\beta}_0, \hat{\theta}_j, \) and \(\hat{\beta}_1\) are estimated via a multilevel logistic model with a hospital random effect. The third measure I test is a novel variant of RSMR that I call the average best linear unbiased estimator (ABLUP). ABLUP, also a shrinkage estimate, is calculated using the same logistic model

\(^{11}\)A moving average of \(t\) years of data dilutes the contribution of any single year’s performance to a single performance score by a factor of \(\frac{1}{t}\). However, because each performance year will contribute to \(t\) moving average estimates, measure responsiveness remains equal to one.
estimates as RSMR:

\[\hat{u}_{j}^{ABLUP} = \frac{\sum_{i=1}^{N} f(\hat{\beta}_0 + \hat{\theta}_j + \hat{\beta}_1 X_i)}{N} \]

where \(N \) is the total number of patients across all hospitals. Thus, ABLUP can be interpreted as the hospital’s average of predicted mortality across all possible patients in the sample. Although ABLUP and RSMR are derived from the same logistic model, they do not produce identical estimates, which is apparent when assuming all patients are uniform in their characteristics. In this case, \(\hat{u}_{j}^{RSMR} = \hat{u}_{j}^{ABLUP} \frac{\bar{y}}{f(\hat{\beta}_0)} \).

The fourth and fifth measures are the Dimick-Staiger measure (DS) (Dimick et al., 2009) and the hierarchical Poisson measure (HP) (Ryan et al., 2012). Unlike the previously described shrinkage estimators, the DS and HP estimators do not shrink all hospitals’ observed mortality rates toward a common mortality average. Instead, mortality rates are shrunk toward values that are specific to a hospital’s patient volume. Both estimators are calculated according to the following formula:

\[\hat{u}_{j}^{DS, HP} = \pi_j s_j^{DS, HP} + \hat{w}_j^{DS, HP} \left(1 - s_j^{DS, HP} \right) \]

where \(\pi_j \) is a hospital’s observed mortality, \(s_j^{DS, HP} \) is the DS or HP shrinkage factor and \(\hat{w}_j^{DS, HP} \) is the hospital’s predicted mortality based on its volume. There are several differences between the DS and HP measures regarding how shrinkage factors and volume-predicted mortality are calculated. Unlike for DS, HP estimates of volume-specific mortality are derived from a nonlinear model (a negative binomial model for number of deaths), HP is calculated from hospital-level data rather than patient-level data, and HP uses a maximum likelihood approach to estimate shrinkage factors.\(^{12}\) Shrinkage factors, which serve as estimates of measure responsiveness, are explicitly calculated in DS and HP estimation. For RSMR and ABLUP, each shrinkage factor is calculated as the weight by which estimated mortality \(\hat{u}_j \) is the weighted average of a hospital’s observed mortality and the mean estimated mortality across hospitals.

\(^{12}\)For the details of how volume-predicted mortality and shrinkage factors are calculated for DS and HP, see Dimick et al. (2009) and Ryan et al. (2012). For details on adjusting the DS estimator for patient covariates, see Staiger et al. (2009).
Results and Sensitivity Analyses

Figure 3 illustrates each 30-day mortality measure’s overall performance in terms of accuracy and responsiveness. Note that the horizontal axis is reverse-coded, with greater accuracy measures displayed farther to the right. To gauge the magnitude of measurement error in relation to average hospital performance, recall that the average hospital 30-day mortality rate is 20.9%. First, consider the one-year mortality measures, which tend to perform least accurately and with the least responsiveness. OE, the one-year measure without shrinkage, has a substantial amount of error, with a RMSE of roughly 0.1. Shrinkage measures perform much more accurately, with RMSE less than 0.06. However, the loss of measure responsiveness entailed by shrinkage estimation is also substantial. The average shrinkage factor facing hospitals ranges from 0.62 to 0.70 for one-year shrinkage measures. This level of measure responsiveness can be viewed as a tax of approximately 30-40 percent on measure improvement. Note that a hospital facing a 0.62 shrinkage factor must reduce mortality by 1.6 percentage points to decrease measured mortality by one percentage point.

Each measure’s accuracy and responsiveness by hospital size are presented in Table 1. Columns (1) and (5) confirm that the shrinkage estimators have greater accuracy and lower measure responsiveness than the estimators without shrinkage, OE and MA. Columns (2) and (5) present RMSE and measure responsiveness for hospitals in the bottom quartile of AMI volume. These smaller hospitals experience the greatest improvements in RMSE and greatest reductions in responsiveness when shrinkage estimators are employed. For example, with one year of mortality data, RMSE for the non-shrinkage measure is 0.17, and the shrinkage measure RMSR reduces this error to 0.09. However, RMSR also decreases measure responsiveness from one to 0.35. These differences in the accuracy and responsiveness between shrinkage and non-shrinkage estimates tend to narrow as more years of data are included in measures. However, even with multiple years of data, responsiveness of shrinkage estimates to the performance of small hospitals remains very low, at 0.50 for the three-year RMSR. As shown in columns (4) and (8) of Table 1, shrinkage does not appear to reduce error in estimating large hospitals’ performance. For larger hospitals, error is slightly greater for measures without shrinkage, and the responsiveness of shrinkage measures ranges from
Figure 3 aids in demonstrating the substantial variation in the responsiveness of shrinkage measures by hospital size. The figure presents, from a representative simulation iteration, the responsiveness of one-year shrinkage measures for each decile of hospital AMI volume. Responsiveness increases at a decreasing rate with respect to hospital volume, with considerable variation across hospital sizes. The responsiveness of shrinkage estimators, approximately 0.2 for hospitals in the bottom decile of AMI volume, rises to approximately 0.9 in the top decile. Since measures only approach full responsiveness asymptotically as sample size increases, measures are not fully responsive to hospital performance for even the largest hospitals in the sample. There is also heterogeneity across shrinkage estimators in terms of their responsiveness.

Several estimators dominate others on the basis of both accuracy and responsiveness. For example, the DS estimator is both more accurate and more responsive than the HP estimator. Similarly, the novel measure ABLUP tends to dominate the current CMS approach, RSMR. The performance frontier of all measures is comprised of the two-year DS, three-year ABLUP, and three-year MA. Notably, volume-adjusted shrinkage estimators DS and HP, which shrink observed mortality toward a target that is specific to hospital volume, do not dominate ABLUP and RSMR, which are not volume adjusted. To understand this result, recall that shrinkage measures entail greater shrinkage when there is lesser cross-hospital variation in performance. Volume-adjusted shrinkage estimators attribute some hospital performance variation to hospital volume, thereby reducing residual cross-hospital variation, increasing shrinkage, and reducing measure responsiveness.

Incorporation of additional years of data tends to improve both measure accuracy and responsiveness. The non-shrinkage measure experiences an especially pronounced gain in accuracy when the measurement timeframe expands. As column (1) of Table 1 shows, RMSE for this measure falls from 0.097 to 0.061 when three years of data are used instead of one year. The corresponding change in error for the RSMR shrinkage measure was considerably smaller, from 0.060 to 0.052. Increasing the number of observations also improves the responsiveness of shrinkage estimates. However, even with three-years of data, shrinkage estimates are still approximately 20-25% less responsive than the non-shrinkage estimates,
which are fully responsive regardless of the number of observations.

Although additional years of data increased measure accuracy in the simulation, this finding may not generalize to settings in which there is substantial drift in agent behavior over time. If there is extensive drift, early outcomes are less informative of current performance. To demonstrate the sensitivity of measure accuracy to the magnitude of performance drift, I conduct two secondary simulations. In the first, a no-drift case, each hospital’s true mortality rate is fixed over time. In the second, strong-drift case, each hospital has an annual growth rate in mortality improvement (percent change per year) that is drawn from a normal distribution with mean zero and standard deviation of 20%. All other data-generation parameters are the same as in the previously described simulation. In each case, I calculate the RMSE of three measures of hospital mortality: one-year observed mortality, three-year mortality average (unweighted), and a three-year weighted average of mortality. Rather than selecting arbitrary weights for the weighted average, I calculate weights for years \(t-1 \), \(t-2 \), and \(t-3 \) using constrained linear regression. In each simulation iteration, I regress hospital observed mortality in year \(t-1 \) on observed mortality in years \(t-2 \), \(t-3 \), and \(t-4 \), with the constraint that the sum of these coefficients equals one. The resulting coefficients serve as the weights for mortality in years \(t-1 \), \(t-2 \) and \(t-3 \), respectively.

Table 2 presents the results from these simulations. As shown in column (1), when there is no drift in hospital performance, a moving average has lower RMSE than a one-year estimate. As expected, the constrained regression produces equal weights for all measurement years in this case. As shown in column (2), in the case of substantial performance drift, a three year unweighted average is less accurate than a one-year estimate (0.116 vs. 0.109 RMSE). The weighted average, with average weights of 0.67, 0.31 and 0.02 for mortality data from years \(t-1 \), \(t-2 \), and \(t-3 \), outperforms both alternate measures. Thus, even in the case of changing hospital performance, incorporating early data into measures can increase accuracy if those data are weighted appropriately.

Because ordinal performance measures are an alternative to the cardinal measures typically used for quality disclosure or incentive pay (Barlevy and Neal, 2012; Dimick et al., 2010), in a final secondary analysis, I assess the accuracy and responsiveness of each measure using rank-based criteria. With \(v_j \) and \(\hat{v}_j \) as a hospital’s true and measured mortality
ranking among J hospitals, rank accuracy is estimated as the average of $\frac{|{v_j - \hat{v}_j}|}{J}$, which is the approximate percentile difference between true and measured performance rankings. Rank responsiveness is estimated as the average change in a hospital’s measured rank for a one percentage point reduction in that hospital’s observed 30-day mortality rate. To facilitate comparison among measures, each rank responsiveness estimate is normalized by dividing by the OE rank responsiveness estimate.

Table 3 illustrates each 30-day mortality measure’s performance in terms of rank accuracy and rank responsiveness. Though shrinkage estimation uniformly reduces rank error, its effect on rank responsiveness varies according to estimator and hospital size. DS and HP estimators reduce rank responsiveness across all hospital size categories. RSMR and ABLUP tend to reduce rank responsiveness for small hospitals, but increase it for medium and large hospitals. For intuition as to why shrinkage estimation need not always reduce rank-based incentives, consider the case of all hospitals being equally sized. Shrinkage estimation would have no effect on the magnitude of performance improvement necessary for a hospital to surpass a higher ranked hospital, because decreased measure responsiveness would be exactly offset by a narrowed distribution of measured performance. By moving outlier hospitals toward the grand mean, RSMR and ABLUP tend to increase the number of hospitals that a large hospital can overtake in rank when it improves performance.

5 Policy Implications and Conclusion

These theoretic and empirical findings highlight a substantial tradeoff involved in the choice of performance estimation technique. Although accuracy and responsiveness to agent behavior are both economically desirable features of performance measures, one feature generally comes at the cost of the other. Indeed, shrinkage estimates are least responsive to agent behavior in policy settings like health care, where performance outcomes are noisy. In the case of hospital performance measurement, the magnitude of this loss in responsiveness is economically significant and substantially dilutes performance incentives. In addition, the magnitude of distortion varies substantially across hospitals, affecting small hospitals to a much greater degree.
These results can inform the design of public policies involving performance measurement. Given the tradeoff between accuracy and incentives, the appropriate choice of estimation technique should depend on a policy’s goals. Shrinkage estimation appears most appropriate for policies that aim to select superior agents rather than to improve agent performance. For example, a policy that identifies inferior hospitals for closure may be welfare improving even if the policy does not produce a behavioral response with respect to agent effort. However, for performance payment schemes in which payment is a function of an agent’s absolute performance, shrinkage estimation will tend to dilute incentives unless bonus payments are increased to compensate for reduced measure responsiveness. Thus, shrinkage measurement seems generally inappropriate for performance payment policies like Medicare’s hospital readmissions penalties. The case of public disclosure of quality information is more ambiguous. Even in the absence of a performance-based payment system, shrinkage estimation will dilute performance incentives in settings where consumer demand response to quality signals is an important performance incentive. While publicly disclosing a more accurate signal could improve patients’ choice of hospital, a less responsive performance measure may reduce demand elasticity to provider quality. Whether or not to shrink these performance estimates depends on comparing the welfare gains from more efficient patient sorting to the welfare gains from increased provider quality spurred by demand elasticity to quality.

The simulation results highlight that some measurement techniques may outperform others with respect to both accuracy and incentives. Policymakers should select measures from this frontier, though the relative performance of each technique may vary according to the policy setting. The results also demonstrate that incorporating more observations into performance measures by lengthening the timespan of performance measurement is a substitute to shrinkage estimation in improving measure accuracy. For measures without shrinkage, the gains in accuracy from including more data were considerable. Additional accuracy gains from applying shrinkage may not be worth the loss in measure responsiveness. Even if agent performance varies over time, inclusion of early performance data in a weighted average of performance can improve measure accuracy. Furthermore, choice of estimator can depend on whether policies use cardinal or ordinal performance data. If incentives are based
on performance rank, shrinkage estimation need not always entail reduced incentives.

The analysis in this paper assumes risk-neutrality of agents, which may not hold in all policy settings. A classic finding in the principal-agent literature is that, in determining optimal compensation, agent risk aversion introduces a tradeoff between incentive power and insurance for agents (Gibbons and Roberts, 2013). Although high-powered incentives can still produce efficient agent performance, they expose agents to risk. High-powered incentives may be inappropriate when agents are risk averse, especially if high-powered incentives do not produce large welfare gains for consumers (i.e. reduced patient mortality). Although estimating agent performance with shrinkage does provide some insurance to agents, it is a blunt tool for this purpose. The shrinkage factors used in performance measurement are not calculated to optimally balance agent insurance against performance incentives.\(^{13}\) Thus, even if the optimal incentive power of health care policies is low (i.e. due to agent risk aversion or multitasking concerns), shrinkage estimation would not produce the optimally powered incentives.

Finally, choice of measurement technique may be affected by fairness concerns. An agent may view noisier performance measures as less fair because ratings can vary widely over time even as agent behavior is constant. Similarly, a policymaker may be hesitant to employ a less accurate measurement technique that increases the probability of type I or type II errors in rewarding or penalizing agents. However, despite their improved accuracy, shrinkage measures may also be viewed as performing poorly with respect to fairness. For a given agent, errors from measures without shrinkage have an expectation of zero, and will tend to even out over time, while errors from shrinkage estimates are persistent. Shrinkage estimates will persistently underestimate the performance of high-performing agents, and overestimate the performance of low-performing agents. These errors are magnified for agents with fewer observations. Thus, agents may view shrinkage estimation as an unfair form of statistical discrimination, because their performance is consistently underestimated or because improved performance is not rewarded fully in measured performance.

\(^{13}\)For example, shrinkage factors are a function of variation in true performance across agents, while risk for an agent depends only on outcome variation for that agent.
References

Thomas, J.W. and T.P. Hofer, “Accuracy of Risk-Adjusted Mortality Rate as a Measure of Hospital Quality of Care,” Medical Care 37 (1999), 83–92.

Figure 1: Properties of Observed and Shrunken Performance

(a) Distribution of True and Measured Performance

(b) Prediction Bias of Observed and Shrunken Performance

(c) Measurement Bias of Observed and Shrunken Performance

Notes: This figure compares true performance (unobservable) to observed performance and to shrunken estimates of observed performance for 100,000 simulated physicians. Observed performance is the average of a measured outcome for an physician’s patients. Shrunken performance is predicted via random effects estimation. Panel A is a kernel density plot of true performance, observed performance, and shrunken performance estimates. Panels B and C present binned scatterplots, constructed by dividing physicians into deciles based on their horizontal axis values and plotting means within each decile. The shrinkage factor is 0.4.
Figure 2: Shrinkage Measure Responsiveness by Sample Size

Notes: This figure displays the measure responsiveness of a shrinkage estimator as a function of sample size. Responsiveness falls with reductions in an agent’s sample size. In this case, the agent is a physician and sample size is the number of the physician’s patients qualifying for the performance measure.
Figure 3: 30-Day Mortality Measure Accuracy and Responsiveness

Notes: This figure plots average responsiveness and root mean square error (RMSE) of each hospital 30-day AMI mortality measure, estimated via Monte Carlo simulation with 1000 iterations. Measures incorporate one, two, or three years of prior hospital data (e.g., two years for MA 2). Error is the difference between a measure value and true (unobserved) hospital performance in the following year. A one percentage point difference between a measured and true mortality rate corresponds to an error of 0.01. Responsiveness is defined as the measure shrinkage factor, which approximates the change in expected measure performance for a change in true performance. Observed over expected (OE) and moving average (MA) are mortality measures without shrinkage. Shrinkage estimators are risk standardized mortality rate (RSMR), average best linear unbiased estimate (ABLUP), Dimick-Staiger (DS) and hierarchical Poisson (HP).
Table 1: 30-Day Mortality Measure Accuracy and Responsiveness, by Hospital Size

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Root Mean Square Error</th>
<th></th>
<th></th>
<th></th>
<th>Responsiveness</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All (1)</td>
<td>Small (2)</td>
<td>Medium (3)</td>
<td>Large (4)</td>
<td>All (5)</td>
<td>Small (6)</td>
<td>Medium (7)</td>
</tr>
<tr>
<td>One Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE*</td>
<td>.0967</td>
<td>.1748</td>
<td>.0513</td>
<td>.0260</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RSMR</td>
<td>.0599</td>
<td>.0942</td>
<td>.0473</td>
<td>.0277†</td>
<td>.649</td>
<td>.351</td>
<td>.708</td>
<td>.840</td>
</tr>
<tr>
<td>ABLUP*</td>
<td>.0558</td>
<td>.0863</td>
<td>.0450</td>
<td>.0279</td>
<td>.698</td>
<td>.378</td>
<td>.761</td>
<td>.903</td>
</tr>
<tr>
<td>DS*</td>
<td>.0496</td>
<td>.0708</td>
<td>.0445</td>
<td>.0274</td>
<td>.642</td>
<td>.303</td>
<td>.697</td>
<td>.884</td>
</tr>
<tr>
<td>HP</td>
<td>.0575</td>
<td>.0905</td>
<td>.0448</td>
<td>.0288</td>
<td>.623</td>
<td>.339</td>
<td>.663</td>
<td>.834</td>
</tr>
<tr>
<td>Two Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA*</td>
<td>.0705</td>
<td>.1248</td>
<td>.0401</td>
<td>.0250</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RSMR</td>
<td>.0538</td>
<td>.0844</td>
<td>.0420</td>
<td>.0278†</td>
<td>.717</td>
<td>.454</td>
<td>.766</td>
<td>.852</td>
</tr>
<tr>
<td>ABLUP*</td>
<td>.0483</td>
<td>.0740</td>
<td>.0386</td>
<td>.0272</td>
<td>.782</td>
<td>.502</td>
<td>.847</td>
<td>.942</td>
</tr>
<tr>
<td>DS**</td>
<td>.0460</td>
<td>.0674</td>
<td>.0394</td>
<td>.0268</td>
<td>.728†</td>
<td>.412</td>
<td>.793</td>
<td>.927</td>
</tr>
<tr>
<td>HP</td>
<td>.0526</td>
<td>.0832</td>
<td>.0398</td>
<td>.0280</td>
<td>.715</td>
<td>.448</td>
<td>.764</td>
<td>.893</td>
</tr>
<tr>
<td>Three Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA**</td>
<td>.0611</td>
<td>.1041</td>
<td>.0385</td>
<td>.0289</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RSMR</td>
<td>.0520</td>
<td>.0791</td>
<td>.0415</td>
<td>.0308†</td>
<td>.728†</td>
<td>.501</td>
<td>.784</td>
<td>.852</td>
</tr>
<tr>
<td>ABLUP**</td>
<td>.0463†</td>
<td>.0677</td>
<td>.0384</td>
<td>.0308†</td>
<td>.816</td>
<td>.562</td>
<td>.878</td>
<td>.955</td>
</tr>
<tr>
<td>DS</td>
<td>.0464†</td>
<td>.0666</td>
<td>.0397</td>
<td>.0305</td>
<td>.762</td>
<td>.463</td>
<td>.828</td>
<td>.941</td>
</tr>
<tr>
<td>HP</td>
<td>.0521</td>
<td>.0805</td>
<td>.0401</td>
<td>.0315</td>
<td>.749</td>
<td>.495</td>
<td>.800</td>
<td>.911</td>
</tr>
</tbody>
</table>

Notes: Cells contain either the root mean squared error (RMSE) or average responsiveness of each hospital 30-day AMI mortality measure, estimated via Monte Carlo simulation with 1000 iterations. Measures incorporate one, two, or three years of prior hospital data. Error is the difference between a measure value and true (unobserved) hospital performance in the following year. Responsiveness is defined as the measure shrinkage factor, which approximates the change in expected measure performance for a change in true performance. A one percentage point difference between a measured and true mortality rate corresponds to an error of 0.01. Observed over expected (OE) and moving average (MA) are mortality measures without shrinkage. Shrinkage estimators are risk standardized mortality rate (RSMR), average best linear unbiased estimate (ABLUP), Dimick-Staiger (DS) and hierarchical Poisson (HP). Small and large hospitals have annual AMI volume in bottom or top quartile, respectively. Medium hospitals have AMI volume in the middle quartiles. Estimators marked by * are non-dominated on the basis of overall RMSE and responsiveness by other estimators with the same number of years of data. Estimators marked by ** are non-dominated among all estimators regardless of the number of years of data. Within each column, paired t-tests indicate statistically significant (p<0.05) differences between all pairwise cell comparisons except for those indicated by †.
Figure 4: 30-Day Mortality Measure Responsiveness, by Hospital Size

Notes: This figure presents average measure responsiveness within deciles of hospital size. Responsiveness is defined as the measure shrinkage factor. Shrinkage estimators are risk standardized mortality rate (RSMR), average best linear unbiased estimate (ABLUP), Dimick-Staiger (DS) and hierarchical Poisson (HP). Each measure included in this figure uses a single year of mortality data. Data for this figure are drawn from a single representative simulation iteration.
<table>
<thead>
<tr>
<th>Estimator</th>
<th>No Temporal Trend in Performance</th>
<th>Temporal Trend in Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>One-Year Observed Mortality</td>
<td>.101</td>
<td>.109</td>
</tr>
<tr>
<td>Three-Year Unweighted Average</td>
<td>.059</td>
<td>.116</td>
</tr>
<tr>
<td>Three-Year Weighted Average</td>
<td>.059</td>
<td>.100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year Before Index Year</th>
<th>No Temporal Trend in Performance</th>
<th>Temporal Trend in Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>t-1</td>
<td>0.33†</td>
<td>.67</td>
</tr>
<tr>
<td>t-2</td>
<td>0.33†</td>
<td>.31</td>
</tr>
<tr>
<td>t-3</td>
<td>0.33†</td>
<td>.02</td>
</tr>
</tbody>
</table>

Notes: This table compares the accuracy of moving averages for performance measurement in two scenarios of hospital performance trajectories. In the column 1 simulation, hospital performance is constant over time. In the column 2 simulation, each hospital improves at an annual percent drawn from a normal distribution with mean zero and standard deviation of twenty. The Monte Carlo simulations are iterated 1000 times. Error is the difference between a measure value and true (unobserved) hospital performance in the following year, year t. The weights for each year of data in 3-year moving averages are determined by constrained linear regression of observed mortality in year t-1 on observed mortality in years t-2, t-3 and t-4, with the sum of coefficients constrained to equal one. According to paired t-tests, within each simulation, all values of RMSE and all weights exhibit statistically significant pairwise differences except for those indicated by †.
Table 3: 30-Day Mortality Measure Rank Accuracy and Rank Responsiveness, by Hospital Size

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Rank Error</th>
<th>Rank Responsiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>OE</td>
<td>15.0</td>
<td>25.4</td>
</tr>
<tr>
<td>RSMR;ABLUP</td>
<td>13.8</td>
<td>20.5</td>
</tr>
<tr>
<td>DS*</td>
<td>11.7</td>
<td>15.6</td>
</tr>
<tr>
<td>HP</td>
<td>11.8</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>12.0</td>
<td>20.5</td>
</tr>
<tr>
<td>RSMR;ABLUP</td>
<td>11.4</td>
<td>17.8</td>
</tr>
<tr>
<td>DS*</td>
<td>10.3</td>
<td>14.4</td>
</tr>
<tr>
<td>HP</td>
<td>10.4</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>11.1</td>
<td>18.2</td>
</tr>
<tr>
<td>RSMR;ABLUP**</td>
<td>10.7</td>
<td>16.5</td>
</tr>
<tr>
<td>DS**</td>
<td>10.0</td>
<td>13.9</td>
</tr>
<tr>
<td>HP</td>
<td>10.2</td>
<td>14.3</td>
</tr>
</tbody>
</table>

Notes: Cells contain the normalized rank error or normalized rank responsiveness of each hospital 30-day AMI mortality measure, estimated via Monte Carlo simulation. Measures incorporate one, two, or three years of prior hospital data. Rank error is the absolute value of the difference between a hospital’s measured performance rank and its rank according to true (unobserved) performance in the following year, divided by the total number of hospitals. Rank responsiveness is the change in a hospital’s measured rank for a one percentage point improvement in mortality, divided by the average of the same quantity using the one-year OE measure. Observed over expected (OE) and moving average (MA) are mortality measures without shrinkage. Shrinkage estimators are risk standardized mortality rate (RSMR), average best linear unbiased estimate (ABLUP), Dimick-Staiger (DS) and hierarchical Poisson (HP). Small and large hospitals have annual AMI volume in bottom or top quartile, respectively. Medium hospitals have AMI volume in the middle quartiles. Estimators marked by * indicate that they are non-dominated on the basis of overall rank error and rank responsiveness by other estimators with the same number of years of data. Estimators marked by ** are non-dominated among all estimators regardless of the number of years of data. Within each column, paired t-tests indicate statistically significant (p<0.05).