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1 Introduction to Python

I’ve been a student of three college classes that taught Python from scratch, but I’ve never seen a way of

teaching Python that I thought was appropriate for economists already familiar with scripting languages

such as Stata. I also believe economists are seeking something different from programming languages like

Python from what computer scientists look to do. It it not my intention to delve into scary computational

estimation methods, rather, I believe the programming flexibility that Python affords opens doors to

research projects that can’t be reached with Stata or SAS alone. Whenever possible, I present material

throughout the introduction in ways I believe are most useful when using Python to aid economic research.

The two applications of Python I have found most useful to this end are for text processing and web

scraping, as discussed in the second part of this tutorial. I hope you enjoy using Python as much as I do.

1.1 Getting Set-Up

Python is quite easy to download from its website, python.org. It runs on all operating systems, and comes

with IDLE by default. You probably want to download the latest version of Python 2; Python 3 works a

bit differently.

This tutorial was written for Python 2. Even if you’re interested Python 3 it’s sensible to do the tutorial in

Python 2 then have a look at the differences. By far the most salient difference that beginner should know

is that in Python 2, print is a statement whereas it is a function in Python 3. That means print ‘‘Hello

World’’ in Python 2 becomes print(‘‘Hello World’’) in Python 3.

1.2 Syntax and Basic Data Structures

Pythonese is surprisingly similar to English. In some ways, it’s even simpler than Stata – it may feel good

to ditch Stata’s “&” and “|” for “and” and “or.” You still need to use “==” to test for equality, so that

Python knows you’re not trying to make an assignment to a variable.

Unlike in Stata, indentation matters in Python. You need to indent code blocks, as you will see in
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1.2 Syntax and Basic Data Structures 1 INTRODUCTION TO PYTHON

examples. Capitalization also matters. Anything on a line following a “#” is treated as a comment (the

equivalent of “//” in Stata).

You can use any text editor to write a Python script. My favorite is IDLE, Python’s Integrated

DeveLopment Environment. IDLE will usually help you with syntax problems such as forgetting to indent.

Unlike other text editors, IDLE also has the advantage of allowing you to run a script interactively with

just a keystroke as you’re writing it. The example code shown throughout the notes shows interactive uses

of Python with IDLE.

Just as you can run Stata interactively or as do-files, you can run Python interactively or as scripts. Just

as you can run Stata graphically or in the command line, you can run Python graphically (through IDLE)

or in the command line (the executable is “python”).

1.2.1 Variables: What Stata Calls Macros

In most programming languages, including Python, the term “variable” refers to what Stata calls a

“macro.” Just like Stata has local and global macros, Python has global and local variables. In practice,

global variables are rarely used, so we will not discuss them here.

As with Stata macros, you can assign both numbers and strings to Python variables.

>>> myNumber = 10

>>> pr in t myNumber

10

>>> myString = ” Hel lo , World ! ”

>>> pr in t myString

’ Hel lo , World ! ’

>>> myString = 10 ## Python changes the type o f the v a r i a b l e f o r you on the f l y

>>> pr in t myString

10

You can use either double or single quotation marks for strings, but the same string must be enclosed by

one or the other.

Task 1: Assign two variables to be numbers, and use the plus symbol to produce the sum of those

numbers. Now try subtraction and multiplication. What about division? What is 5/4? What about 5./4.?

How about float(5)/float(4), or int(5.0)/int(4.0)? If you enter data without a decimal point, Python

4



1.2 Syntax and Basic Data Structures 1 INTRODUCTION TO PYTHON

generally treats that as an integer, and truncates when dividing.

Task 2: Assign “Hello” to one variable and “World!” to another. Concatenate (combine) the two string

variables with the plus sign, just as you would add numbers. Doesn’t look right to you? Add in some white

space: var1 + “ ” + var2.

Task 3: What about multiplying a string? What is ‘-’*50?

1.2.2 Lists

Lists are another common data type in Python. To define a list, simply separate its entries by commas and

enclose the entry list in square brackets. In the example below, we see a few ways to add items to a list.

>>> myList = [ 1 , 2 , 3 ] # d e f i n e s new l i s t with items 1 , 2 , and 3

>>> myList . append (4 )

>>> myList = myList + [ 5 ]

>>> myList += [ 6 ] # t h i s i s a shor t cut

>>> myList # here i s the new l i s t ; i tems appear in the order they were added

[ 1 , 2 , 3 , 4 , 5 , 6 ]

In the example above, we saw the syntax myList.append(..). In Python, we use objects, such as lists,

strings, or numbers. These objects have predefined methods that operate on them. The list object’s

append(..) method takes one parameter, the item to append.

Task 4: Define a list in which the items are the digits of your birthday.

Indexing into a list is simple if you remember that Python starts counting at 0.

>>> myList

[ 1 , 2 , 3 , 4 , 5 , 6 ]

>>> myList [ 0 ] # f i r s t item in myList

1

>>> l en ( myList ) # length o f myList

6

>>> myList [ 6 ] ## t h i s w i l l c r e a t e an er ro r , shown below , with comments added

’ Traceback ( most r e c en t c a l l l a s t ) : ’ # Python t e l l s me about what was happening

’ F i l e ‘ ‘< p y s h e l l 29> ’ ’ , l i n e 1 , in <module> ’ # The probe lmat ic l i n e ( in t h i s case , l i n e 29

5



1.2 Syntax and Basic Data Structures 1 INTRODUCTION TO PYTHON

# in the Python i n t e r p r e t e r I had open )

’ myList [ 6 ] ’ # The prob lemat ic command

’ IndexError : l i s t index out o f range ’ # a d e s c r i p t i o n o f the problem

>>> myList [ 5 ] # oh −− that was what I meant !

6

Task 5: From the list you defined in the previous task, retrieve the first item. Use the len(..) function to

find out how long the list is. Now, retrieve the last item.

Task 6: Lists can store any data structure as their items. Make a list in which the first item is the name of

the month of your birthday (a string, so enclosed in quotation marks), the second item is the day of the

month of your birthday (a number), and the last item is the year of your birthday (also a number).

Task 7: Lists can even contain lists! Ask your neighbor what his or her birthday is. Make a list in which

the first item is the list you declared in the previous task, and the second item is the list for your

neighbor’s birthday.

1.2.3 Functions

Functions are the equivalent of programs in Stata. A function definition starts with def, then the function

name followed by parentheses. Any parameters the function takes in should be named in the parentheses.

A colon follows the parentheses, and the rest of the function declaration is indented an extra level.

>>> de f printWord ( word ) : # d e f i n e a func t i on c a l l e d printWord that takes in parameter ‘ word ’

p r i n t ”The word you gave me was ”+word

>>> printWord ( ”amazing” ) # what w i l l t h i s do?

’The word you gave me was amazing ’

Task 8: Define and test a function “helloWorld()” that takes in no parameters, and just prints the string

“Hello, World!” Note that IDLE will auto-indent the first line after the colon for you when you hit the

enter key after typing the colon.

The word return has special meaning within a function.

>>> de f addNums(num1 , num2) :

r e turn num1+num2
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1.2 Syntax and Basic Data Structures 1 INTRODUCTION TO PYTHON

>>> r e s u l t = addNums(1 ,10 ) # now , what i s the value o f the v a r i a b l e r e s u l t ?

>>> pr in t r e s u l t

11

Task 9: Define a function multNums that returns the product of two numbers. Test it by assigning

result=multNums(2,3), then print result. What is multNums(2, result)?

Throughout the rest of the exercises, you can choose whether you’d like to define functions for specific

tasks. Sometimes functions are nice if you think you’d like to do something repetitively.

1.2.4 Statements

Python and Stata both support if/else statements, for loops, and while loops. Table 1 presents a

comparison.

Table 1: Syntax for Common Loops / Statements
Common Name Stata Python
for (each) foreach item in ‘myList’ {

di ‘item’
}
//or
foreach var of varlist * {

sum ‘var’
}

for item in myList:
print item

for (values) forvalues num=1/100 {
di ‘num’

}

for num in range(0,101):
print num

while local i = 1
while ‘i’ <=5 {

count if v1 == ‘i’
local i = ‘i’ + 1

}

while len(myList)<10:
myList+=[myOldList.pop()]
i+=1

if / else / else-if if ‘n’==1 {
local word “one”

}
else if ‘n’==2 {

local word “two”
}
else if ‘n’==3 {

local word“three”
}
else {

local word “big”
}

if n==1:
w=“one”

elif n==2:
w=“two”

elif n==3:
w=“three”

else:
w=“big”

try/catch cap drop price
if rc != 0 {

di “Return code was: ” rc
di “Variable may not exist”

}

myListofVars = [ [1,2,3], [2,4,6], [1,3,5] ]
try:

myList = myList[:1]
except IndexError:

print “Got an Index Error!”

As we are getting into some more advanced programming, IDLE has a few tricks that may be of use. So

far, we have been using IDLE interactively. In the interactive Python interpreter, to recall a block of code

you already submitted, simply click once on it then press return. The code will appear at your command

prompt. You can also highlight just a portion of code you’ve entered then hit return.
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1.2 Syntax and Basic Data Structures 1 INTRODUCTION TO PYTHON

When writing loops and statements, indentation is critical. Because the interactive Python interpreter puts

>>> at the beginning of each command prompt, keeping track of your indentation can be tricky. As you

might write a do-file in Stata, you can write a similar script in Python by clicking IDLE’s File menu, then

New Window. If you save your script file as a .py, IDLE will even highlight the syntax as you type in it.

Task 10: Use a for loop to print each item of the list [“apples”, “bananas”, “oranges”].

Task 11: Use a for loop to print each number from 50 to 100, inclusive on both ends.

Task 12: Define a function evaluate(name) that takes in a string, and returns “cool” if name==“Python”

or name==“Stata”. Confirm that evaluate(“Python”) and evaluate(“Stata”) return “cool”. But what is

evaluate(“Java”)? Modify your function to return “lame” in any other condition, using an else statement.

Task 13: Assign myList = [-2,-1,0,1,2]. For each item of myList, print item. If item is less than zero,

print “negative”. Or else, if it is greater than zero, print “positive”. Or else, print “zero”. So within a for

loop, there should be an if statement, followed by an elif , followed by an else.

If you are in search of a more nuanced discussion of compound statements in Python, consult Python’s

compound statements documentation.

1.2.5 Truth Value Testing

In if statements and while or for loops, we need to evaluate whether a condition is true. The intricacies

of Python’s truth value testing are discussed in brief below and in documentation.

Python uses familiar comparison operators, shown in Table 2. The “is” and “is not” operators may be new

to you; these will be discussed shortly in a task.

And you can construct more complex boolean statements easily: statement x or statement y, statement x

and statement y, statement x and not statement y.

That handles comparisons. So 3 > 1 is True, while 3 < 1 is False. What is the truth value of 1 or 2?

Those are always True – a loop that starts with “while 1:” can run forever! (Try it if you want – control-c

8

http://docs.python.org/reference/compound_stmts.html
http://docs.python.org/library/stdtypes.html#truth-value-testing


1.2 Syntax and Basic Data Structures 1 INTRODUCTION TO PYTHON

Table 2: Comparison Operators

Operation Meaning
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
! = not equal
is object identity

is not negated object identity

will kill it.) What about of a list? In general, the truth value of objects is True. The following objects will

evaluate to False in an if statement or a loop:

• None – a special object in Python, similar in some respects to Stata’s missing observations (.) or,

more closely, other languages’ “null”.

• False

• 0

• An empty sequence of any sort: e.g.“”, [ ]

Task 14: Type into the Python interpreter “print 3==1”. What does the expression evaluate to? What

about 3>1? 3==1+2? How about “three”==“three”?

Task 15: The word “in” is a special word that tests to see if an item is in a list (or other more advanced

data structures we’ll soon discuss). What is the truth value of “0 in [1,2,3]”? “1 in [1,2,3]”?

Task 16: Confirm that [1]==[1] is True; that is to say, a list composed of the number one is equal to

another list composed of the number one. What is the truth value of [1] is [1]? In fact, though these two

lists are equal, they do not point to the same location in memory; they are not the same objects. Now,

assign myList = [1]. What is myList==myList? What is the value of the expression myList is myList?
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1.3 Advanced Data Structures 1 INTRODUCTION TO PYTHON

1.3 Advanced Data Structures

So far, the main data structure we have been working with is a list. Lists are mutable, meaning that you

can add and delete items from them. You can even change an item:

>>> myList = [ ’ a ’ , ’ b ’ , ’ c ’ ]

>>> myList [ 0 ] = ’ z ’ # change the f i r s t item

>>> myList

[ ’ z ’ , ’ b ’ , ’ c ’ ]

For a more in-depth discussion of built-in methods to mutate lists, consult Python’s documentation of

mutable sequence types.

What about strings? Strings are mutable also, in similar ways. We will give more attention to strings soon,

but first let us examine two immutable data structures, tuples and sets, followed by a powerful mutable

data structure called a dictionary.

1.3.1 Tuples

Like a list, a tuple is an ordered set of values. Unlike a list, tuples are immutable, meaning a tuple cannot

be changed once you define it, in the way that you would append to a list, for instance. If you were reading

in a dataset, you might read in each row as a list, or as a tuple. It is also important to know about tuples

because some methods return tuples, not lists. While lists are declared with brackets, tuples are declared

with parentheses.

>>> row1 = ( ”name” , ” animal ” )

>>> row2 = ( ”Miss Piggy” , ” p ig ” )

>>> row3 = ( ”Kermit” , ” f r o g ” )

>>> row2 [ 0 ]

’ Miss Piggy ’

>>> row2 . append ( ” oink ” ) # t ry ing to append to a tup l e w i l l not make Python happy !

’ Traceback ( most r e c en t c a l l l a s t ) :

F i l e ”<p y s h e l l #11>”, l i n e 1 , in <module>

row2 . append (” oink ”)

Att r ibuteError : tup l e ob j e c t has no a t t r i b u t e append ’

10
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1.3.2 Sets

A set is an unordered collection of distinct items. In older versions of Python declaring a set is a bit

cumbersome: i.e., set([1,2,3]) would declare a set with elements 1, 2, and 3. In newer versions of Python,

you can also declare that set with curly braces: {1,2,3}.

Task 17: define A = set([1,2,3,4]) and B=set([2,4,6,8]). What is A.union(B)? What is A.intersection(B)?

What does A==A evaluate to? A==B? What about A==set([1,1,1,2,3,4])?

For more on sets, visit sets documentation.

1.3.3 Dictionaries (also known as hash maps)

In the real world, when you want to know the meaning of a word, you look the word up in a dictionary. A

dictionary maps words to meanings.

In Python, dictionaries map keys to values. Given a key, you can quickly know its value: like a real

dictionary, Python will keep your keys in order so it can quickly retrieve a key’s value.1 The example below

shows how to define a dictionary. Like sets in the newer versions of Python, dictionaries are enclosed in

curly braces. A colon should separate each key and value, and key-value pairs are separated by commas.

Values can be retrieved from a dictionary similarly to how one would index into a list.

>>> myDict = {”Miss Piggy” : ” p ig ” , ”Kermit” : ” f r o g ”}

>>> myDict [ ”Kermit” ]

’ f r o g ’

Sometimes you may find it useful to have all of a dictionary’s keys in one list. Then, you can iterate over

that list with a for loop. Take your time looking over the following example and map it out in your head.

Dictionaries can be difficult to grasp at first.

>>> myDict . keys ( ) # the keys

[ ’ Miss Piggy ’ , ’ Kermit ’ ]

1Unlike a real dictionary, Python rarely keeps its dictionaries in alphabetical order. It applies a hash function to each key you
give it. For example, a simple hash function would be to match each letter to its position in the alphabet: A maps to memory
location 1, B maps to location 2, and so forth. If Python needed to look up the value of “C”, it would find that at location
3, just like you would find the meaning of “cat” under the dictionary entry for “cat”. However, a more complex function is
needed to hash numbers and more obscure characters. Regardless, when you go to look up that key, Python re-applies the same
hash function it used to store the key’s value, and knows exactly where in memory to find that value again. For this reason,
some people refer to Python dictionaries as hash maps. When searching through large datasets, they will give you significant
performance gains because they can quickly find values from keys.
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>>> myDict . va lue s ( ) # the va lue s

[ ’ p ig ’ , ’ f r o g ’ ]

>>> myDict . i tems ( ) # a l i s t o f keys AND values , in t u p l e s o f the form ( key , va lue )

[ ( ’ Miss Piggy ’ , ’ p ig ’ ) , ( ’ Kermit ’ , ’ f r o g ’ ) ]

>>> f o r key in myDict . keys ( ) :

p r i n t ”our r e co rd s show ”+key+” i s a ”+myDict [ key ]

## myDict [ key ] w i l l l ook up key ’ s va lue in myDict

’ our r e co rd s show Miss Piggy i s a pig

our r e co rd s show Kermit i s a f r o g ’

Task 18: Define mydict = {1:“A”, 2:“B”, 3:“C”}. What is mydict[1]? Use a for loop to print each key

separately. Now print each value separately. Can you put an if statement within a for loop that prints each

key if its value is “C”?

For more on dictionaries, visit dictionaries documentation.

1.3.4 Casting and a Recap of Data Types

Before moving on to regular expressions, Table 3 recaps the data types we have covered so far.

It is also appropriate to note at this point that we sometimes need to convert an object of one data type to

that of another data type. For example, if we wanted to make a tuple into a list, it’s possible to ask

Python to reinterpret a tuple as a list. In programming languages, we often refer to this as “casting.”

Task 19: Define myNumber as your favorite number. For instance, you might enter myNumber = 7. Ask

Python to print the following: “My favorite number is: ”+myNumber. This should throw a TypeError,

and Python will inform you that it cannot join together a string and an integer. Try casting myNumber as

a string by having Python print: “My favorite number is: ”+str(myNumber).

All of the data types we have discussed so far have casting functions that take in objects of another type,

and these functions are also listed in Table 3. It takes some playing around to decipher what objects each

function can take: for example, Python can handle changing any integer to a string, but it can’t always

handle changing any string to an integer (the string “1” can be casted as an integer, but not “one”, and

certainly not a word like “apple”).

12
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Table 3: Data Types

Data Type Example Mutable? Preserves Ordering? Casting Function
Integer 1 Yes N/A int(..)
String “word” or ‘word’ Yes Yes str(..)
List [1, 2, 3] Yes Yes list(..)

Tuple (1, 2, 3) No Yes tuple(..)
Set set([1,2,3]) or {1,2,3} No No set(..)

Dictionary {‘A’:‘apple’,‘C’:‘cat’, ‘B’:‘book’} Yes No dict(..)

1.4 String Operators and Regular Expressions

One of the hardest parts of working with strings in Python is to remember that Python starts indexing at

0. “Slicing” into a string is similar to indexing into a list. The slicing functionality shown in the next

example holds for both strings and lists.

>>> alphabet = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

>>> alphabet [ 0 ] # f i r s t ( i e , p o s i t i o n 0)

’A ’

>>> alphabet [ 1 : ] # from p o s i t i o n 1 on

’BCDEFGHIJKLMNOPQRSTUVWXYZ’

>>> alphabet [ 1 : 2 5 ] # from p o s i t i o n 1 to be f o r e p o s i t i o n 25

’BCDEFGHIJKLMNOPQRSTUVWXY’

>>> alphabet [ : 2 5 ] # everyth ing be f o r e p o s i t i o n 25

’ABCDEFGHIJKLMNOPQRSTUVWXY’

>>> alphabet [ : −1 ] # negat ive i n d i c e s s t a r t count ing from the r i g h t

’ABCDEFGHIJKLMNOPQRSTUVWXY’

Task 20: Python’s len(..) function takes in a string or a list, and returns its length. Using the len(..)

function, for each letter in the string “Mississippi”, print “Letter i of Mississippi is: ” and the letter, where

i is that letter’s index in the string. When concatenating a string and an integer, don’t forget to cast the

integer as a string, as shown in Table 3.

Task 21: Now, print the index i and the first i letters of Mississippi.

When reading in or writing out data, which we’ll get to soon, you’ll often need to use line breaks and tabs.

These are the two most frequently used special characters, also called escape sequences, and you use them

similarly to how you would use any other character you might type from your keyboard. Signal a line
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break with “\n” and a tab with “\t”. It’s also occasionally useful to enter text verbatim with three

double-quotation marks, shown below.

>>> l i n e s = ”””

a 1

b 2

c 3

”””

>>> l i n e s

’ \na\ t1 \nb\ t2 \nc\ t3 \n ’ # do you see the l i n e breaks and tabs ?

>>> #below , verbatim a l l ows us to have ” with in the s t r i n g

>>> quoted = ”””” He l lo world , ” he sa id . ”””

>>> quoted

’ ” He l l o world , ” he sa id . ’

>>> #or

>>> quoted = ’ ” He l lo world , ” he sa id . ’

>>> quoted

’ ” He l l o world , ” he sa id . ’

Task 22: Write two words separated by a line break. Write two words separated by a tab.

For more built-in methods you can use on strings, visit the string documentation.

1.4.1 Regular Expression Syntax

Regular expressions are an entirely separate language. They fill a certain niche. Consider, for example,

asking a computer to find all email addresses in a document. How would you go about this problem?

Perhaps you would break an email address into its elements: some characters that aren’t spaces, followed

by @, followed by some other characters that aren’t spaces. You might also check to make sure there is a

period sometime after the @. Still, how would you tell a computer to look for even something so simple

as“one or more characters that aren’t spaces?” It is for these types of problems that the regular expression

language began to be developed in the 1950s, primarily for Unix text editors.2

To work with regular expressions, you’ll need to import the Python module re. In Python, “import” is a

special word: it means load all the functions and variables of another file, and let me use those. Think

about it sort of like an add-on, but it’s included when you install Python. To refer to a function of a

2The command for searching one of the early text editors for a regular expression re was g/re/p. For this reason, Unix/Linux
users are very familiar with the Unix grep shell command.
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module, just type module.function. A method of the re module, re.search(..) tells you whether your

regular expression has been found in a string.

>>> import re

>>> i f r e . s earch ( ” fun ” , ”Python i s fun ! ” ) :

p r i n t ”we w i l l keep going ”

’we w i l l keep going ’ # glad i t pr in ted the r i g h t s t r i n g here

In the example above “fun” is a very simple regular expression. What if we had a more complex problem?

The regular expression language has several special metacharacters. For example, the * metacharacter

matches 0 or more occurrences of the preceding character.

>>> re . f i n d a l l ( ” fun ” , ” fuuun” )

[ ]

>>> re . f i n d a l l ( ” fu ∗n” , ” fuuun” )

[ ’ fuuun ’ ]

>>> re . f i n d a l l ( ” fu ∗n” , ” fn ” )

[ ’ fn ’ ]

>>> re . f i n d a l l ( ” fu ∗n” , ” fn fun fuuun fuuunnn” )

[ ’ fn ’ , ’ fun ’ , ’ fuuun ’ , ’ fuuun ’ ]

Table 4 presents some of the more useful regular expression special characters. A complete list of special

characters can be found in the documentation for Python’s re module.

Regular expressions, along with all special characters, should be enclosed in double or single quotation

marks as if they were ordinary strings.

Task 23: For the tasks below, import the re module and use the re.findall(reg, string) function to find all

occurrences of regular expression reg in string.

A In the word Mississippi, find:

i Groups of one or more ‘s’. This should return [‘ss’, ‘ss’].

ii Groups of ‘i’ followed by 0 or more ‘s’. This should return [‘iss’, ‘iss’, ‘i’, ‘i’].

iii Groups of ‘i’ followed by 0 or one ‘s’. This should return [‘is’, ‘is’, ‘i’, ‘i’].

iv An s followed by one or more non-linebreak characters followed by a p. This should return

[‘ssissipp’].

v Groups of one or more characters in the set [is]. This should return [‘ississi’, ‘i’].
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Table 4: Special Characters in Regular Expressions

. Matches any character except a new line. (e.g. “f.n” would match an f, followed by
any character except a new line, followed by an n.)

* Matches 0 or more repetitions of the preceding character, as many as possible. (e.g
“f.*n” would match f, followed by 0 or more non-linebreak characters, then an n.)

+ Matches 1 or more repetitions of the preceding character, as many as possible
? Matches 0 or 1 of the preceding character
{m} Matches m occurrences of the preceding character
{m,n} Matches m to n occurrences of the preceding character, as many as possible
{m,n}? Matches m to n occurrences of the preceding character, as few as possible
\ Escape character (eg. \. would match all periods in a string)

A|B Matches expression A or B. Can separate as many terms as you’d like with |, but
the leftmost ones will be tried first, and matching stops when a match is made.

[ ] Used to indicate a set. In a set:

• You can list characters individually: [amk] will match a, m, or k

• You can specify ranges of characters specified by a dash: [a-z] will match
lowercase letters, [A-Z] uppercase, [0-9] the digits.

• Special characters lose their special meanings in sets.

• Set negation can be quite useful. The caret (ˆ) takes on special meaning
when it is the first character in a set: for example, “[ˆ\n]” would match any
character other than a new-line character; “[ˆ\n]*” matches 0 or more (as
many as possible) characters before the next line – this tends to be a useful
expression.

B In the string 03Jan1991, find:

i Exactly three uppercase or lowercase letters. You should use sets for this: [A-Za-z] will be read

by Python as uppercase or lowercase letters, and use curly braces as shown in Table 4 to match

exactly three.

ii Two digits followed by a letter.

iii A letter followed by four digits.

iv All occurrences of the string “Dec” or “Jan” or “Feb” (use the syntax “A|B|C”).

1.4.2 Regular Expression Methods

In the above examples, you saw regular expression methods re.search(..) and re.findall(..). Below are some

of the most common methods of python’s re module; once again, a complete list can be found in the

16



1.4 String Operators and Regular Expressions 1 INTRODUCTION TO PYTHON

documentation.

Table 5: Regular Expression Methods

Function Return Type Description

re.findall(pattern, string) List of Strings Return all non-overlapping matches of pattern in
string, in the order in which they were found.

re.split(pattern, string) List of Strings Return string, but with each element of pattern
breaking apart pieces of string. Splitting on \n,
for example, would return a list where each item
is a line of the original string.

string.join(list) String This method isn’t actually in the re module, but
is very useful. Concatenate items of a list (or any
iterable – such as a tuple or set), with string be-
tween each item. In other words, the opposite of
re.join(..)

re.sub(pattern, repl, string) String Return string, with all instances of pattern re-
placed by repl. Similar to Stata’s subinstr(..) and
regexr(..).

re.search(pattern, string) MatchObject
instance (or None if
no match)

Scan through string looking for a location where
the regular expression pattern produces a match.
Similar to Stata’s regexm(..).

re.match(pattern, string) MatchObject
instance (or None if
no match)

Same as re.search(..), but only test for a match
starting at the beginning of string (ie, position
0).

The last two methods return MatchObject instances if they found a match. Don’t worry too much about

this now – we will see very soon how to make these very useful with grouping.

Task 24: Split “This is a sentence” into a list of words. Now, join that list into one string, with spaces

separating the words.

Task 25: You now have the ability to load comma-separated values into a dictionary. In the next task, we

will create a dictionary mapping each column of comma-separated data to a list. Since this is a longer task,

feel free to use Python’s print statement liberally to help you check that what you’re doing is correct, and

it may be a good idea to jot down some notes on what your loops will look like before you touch the

keyboard.

Define myData = “ “ “ v1, v2, v3

1, 2, 3

2, 4, 6

4, 8, 12 ” ” ”
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Use re.split(..) to define myRows as the rows of myData. Recall that a linebreak appears as \n. Define

myDict as a dictionary in which the numbers 0, 1, and 2 each map to an empty list, written as [].

Now, for each row in myRows, define r as a list, whose items are the three values of the row separated by

commas (use re.split(..) again). You must append each item r[i] of r to myDict[i]; you will iterate over

values from 0 to len(r).

Remember, you’ve defined myDict[i] to be a list, so you can use all the list functions you learned in section

1.1.2. You may also want to consult Table 1 to recall how to iterate over a range of values.

1.4.3 Grouping RE’s

Sometimes we want to search for a regular expression, but are only interested in a piece of it. In the

example below, we want to search for a client’s name. Having examined our data, we know that the client’s

name appears as all letters between the string “\nCLIENT:” and the end of the line, “\n”. We could

search for the expression “\nCLIENT:[ˆ\n]+”, but it would be nice not to have that identifying text at the

beginning of every client record we find.

What can we do? One solution is to slice the string that matches our regular expression: we know it starts

with “\nCLIENT:”, so we can remove the first 8 characters (\n counts as one character). An easier

solution is to denote groups in the regular expression with parentheses. Two more special regular

expression characters are ( and ) – they enclose groups, and in the example below, we show how to extract

matches from each group.

>>> document = ”””

CLIENT: MIKE SHORES

HAIR COLOR: BROWN

”””

>>> document

’ \nCLIENT: MIKE SHORES\nHAIR COLOR: BROWN\n ’

>>> import re

>>> r e s u l t = re . s earch ( ” (\nCLIENT: ) ( [ ˆ\ n]+) ” , document )

# group 1 : ”\nCLIENT: ”

# group 2 : one or more non−l i n e b r e a k c h a r a c t e r s f o l l o w i n g that

>>> r e s u l t ## i t ’ s an in s t ance o f some scary l ook ing Match ob j e c t . . .

< s r e . SRE Match ob j e c t at 0x0147B608>
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>>> r e s u l t . groups ( ) ## re tu rn s a tup l e o f s t r i n g s

( ’ \nCLIENT: ’ , ’MIKE SHORES ’ )

>>> r e s u l t . group (1) ## the garbage we can f o r g e t about

’ \nCLIENT: ’

>>> r e s u l t . group (2) ## what we were t ry ing to e x t r a c t !

’MIKE SHORES ’

Task 26: In the string 03Jan1991, find:

1. Two digits followed by a letter. Use groups to return only the two digits.

2. A letter followed by four digits. Use groups to return only the four digits.

Instead of referring to groups by their numbers, it’s sometimes convenient to name groups. You can name a

group name by putting ?P< name > at the beginning of the group, as shown below.

>>> r e s u l t = re . s earch ( ” (?P<garbage>\nCLIENT: ) (?P<name>[ˆ\n]+) ” , document )

>>> r e s u l t . group ( ’ garbage ’ )

’ \nCLIENT: ’

>>> r e s u l t . group ( ’name ’ )

’MIKE SHORES ’

1.4.4 Assertions: Non-Capturing Groups

In the previous section, we talked about dividing a regular expression into groups when we need the whole

regular expression to identify a string, but we only want to retrieve part of it. Another option is to use

non-capturing groups.

For example, perhaps I want to find a match for a regular expression only if that regular expression is not

followed by another regular expression. We can use what is called a negative lookbehind assertion to

accomplish this. Negative lookbehind assertions are written similarly to groups: (? <!str)re will match

anytime re matches, and the string str does not come before it. Similarly, (? <= str)re will match anytime

re matches, and the string str does come before it.

>>> re . f i n d a l l ( ” [0−9] ” , ” I l i k e 1 , 2 , not 3 , 4 , 5 , not 6 , maybe 7 a l i t t l e . ” )

[ ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ ]

>>> re . f i n d a l l ( ” (?<! not ) [0−9] ” , ” I l i k e 1 , 2 , not 3 , 4 , 5 , not 6 , maybe 7 a l i t t l e . ” )

[ ’ 1 ’ , ’ 2 ’ , ’ 4 ’ , ’ 5 ’ , ’ 7 ’ ]

19



1.4 String Operators and Regular Expressions 1 INTRODUCTION TO PYTHON

>>> re . f i n d a l l ( ”(?<=not ) [0−9] ” , ” I l i k e 1 , 2 , not 3 , 4 , 5 , not 6 , maybe 7 a l i t t l e . ” )

[ ’ 3 ’ , ’ 6 ’ ]

There are four types of assertions:

Table 6: Non-Capturing Groups (aka Assertions)

re(? = str) A positive lookahead assertion matches if str matches next.
re(?!str) A negative lookahead assertion matches if str does not match next.

(? <= str)re A positive lookbehind assertion matches if str matches before.
(? <!str)re A negative lookbehind assertion matches if str does not match before.

Below is an example of positive and negative lookahead assertions.

>>> re . f i n d a l l ( ” [0−9]+(?=g ) ” , ”The f a t content o f f r i e d ch icken has decreased 11 percent

from 9g to 8g per b i t e . ” )

[ ’ 9 ’ , ’ 8 ’ ]

>>> re . f i n d a l l ( ” [0−9]+(?! g ) ” , ”The f a t content o f f r i e d ch icken has decreased 11 percent

from 9g to 8g per b i t e . ” )

[ ’ 11 ’ ]

1.4.5 Portability of REs (REs in Stata)

Python’s regular expression syntax is based largely on the regular expression syntax of an older scripting

language, called Perl. Programs like SAS and Stata support some regular expression functionality as well.

Both Stata and Perl claim to be based off of the same library, called regex, written by Canadian computer

scientist Henry Spencer in the late 1980s.

Most of what we have learned so far about regular expressions will carry over to most other programs: .

virtually always matches any single character, * means 0 or more, [ ] denotes sets, etc. However, groups

beginning with (? ... ) were added in Perl 5 in the 1990s, and though it has been implemented in Python,

that syntax may not carry everywhere.3 Syntax of the form (?P...) is specific to Python.

Table 7 and the example below it demonstrate how to apply regular expression syntax in Stata.

In the example below, we show Stata code to find a match for a regular expression, then retrieve the whole

match (group 0), followed by each of the matched groups.

3According to documentation, the (? ... ) syntax was chosen for the new extensions because coming at the beginning of a
group, ? had nothing to repeat and was therefore a syntax error before the extensions were implemented.
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Table 7: RE Methods in Stata

regexr(s1, re, s2 ) Replace the first substring of s1 that matches re with s2. Returns the altered string,
or else the original s1 if re did not match.

regexm(s, re) Returns 1 if re matches s, and 0 otherwise. More importantly, the stored match
can be retrieved with regexs(..)

regexs(n) Returns group n of the most recent match. Like in Python, group 0 is the entire
match. See example below.

. di regexm("Client: Mike Shores", "(Client: )(.*)")

1

. di regexs(0) // the whole match

Client: Mike Shores

. di regexs(1) // the first group

Client:

. di regexs(2) // the second group

Mike Shores

The regexm(..) and regexs(..) functions are commonly used in tandem to generate new variables, as shown

in this example from the Stata help files that changes some formatting of a string variable containing a

phone number. Note that ˆat the beginning of a regular expression means to match the beginning of the

string (in Python, this is more commonly accomplished by using re.match(..) instead of re.search(ˆ..) ).

. list number

+----------------+

| number |

|----------------|

1. | (123) 456-7890 |

2. | (800) STATAPC |

+----------------+

. gen str newnum = regexs(1) + "-" + regexs(2) if regexm(number, "^\(([0-9]+)\) (.*)")

. list number newnum

+-------------------------------+

| number newnum |

|-------------------------------|
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1. | (123) 456-7890 123-456-7890 |

2. | (800) STATAPC 800-STATAPC |

+-------------------------------+

1.5 Working with the Operating System

The two most useful modules for working with the operating system are os and sys.

os is useful for manipulating your working directory. After importing the os module, os.getcwd() returns

the current directory, and os.chdir(dir) changes your directory to dir, where dir is a string. os.listdir(dir)

returns a list in which each item is a file or sub-directory in the directory dir.

When moving around Windows directories, keep in mind that backslash is a special escape character in

strings, so you may need to escape that special property of backslash. How? By using the escape character

itself! As shown in the example below, you can insert a backslash before each backslash that you want to

be treated as a normal backslash character. If you’re on Unix or Mac, you will not have this backslash

problem because those operating systems separate directories with forward slashes, which do not have

special meaning in Python.

>>> import os

>>> os . getcwd ( )

’H:\\ ’

>>> home = ”C:\\Documents and S e t t i n g s \\ a b e l l 1 \\My Documents”

>>> os . chd i r (home)

>>> os . getcwd ( )

’C:\\Documents and S e t t i n g s \\ a b e l l 1 \\My Documents ’

>>> i f l en ( os . l i s t d i r (home) ) > 10 : p r i n t ” time to c l ean out my home d i r e c t o r y : ( ”

’ time to c l ean out my home d i r e c t o r y : ( ’

Task 27: In Python, import the os module. What is your current directory? What is in it? Change

directory to your “My Documents” folder. You may want to open Windows Explorer to see the full path to

this folder.

Task 28: Explore your computer a bit until you find a directory with several files with different

extensions. Use os.listdir(..) to retrieve the contents of that directory, and then print out all file names

that have a particular extension (e.g., .doc, .exe, .do, etc.)
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os.system(command) can also be useful: it simply executes command in the shell, where command is a

string. Use it in combination with os.listdir(..) to move or rename several files of a certain type, for

instance. Soon, we will see how to remove a file on Windows. In Unix, you can rename or move files with

the “mv” command and remove them with the “rm” command. Any commands you can execute in the

terminal, you can also execute with os.sytem(..). Below we show how we can use some simple Python to

move all .dta files to a new directory, on Unix, called “data”.

import os , re

os . chd i r ( ”˜/ messy fo lde r ” ) # change d i r e c t o r y to a f o l d e r in my Unix home d i r e c t o r y ( aka ˜)

f o r f i l ename in os . l i s d i r ( os . getcwd ( ) ) : # l i s t the contents o f my cur rent d i r e c t o r y

i f re . s earch ( ” \ . dta” , f i l ename ) :

os . system ( ”mv ”+f i l ename+” data /”+f i l ename )

So far, you have been running Python interactively. Sometimes, it’s useful to save a script and call it from

the shell. You can even call a script from Stata by using Stata’s built-in shell command: something like

“shell python file.py arg1 arg2,” where arg1 and arg2 are arguments you’d like to pass to your program

from a Stata do-file. Just import sys in your Python file, and when the file is called from the commandline

sys.argv will be a list of parameters passed to Python. In this example, sys.argv would return [‘test.py’,

‘arg1’, ‘arg2’].

1.6 Working with Files

Open a file object with the method open(filename, mode). filename, a string, should either be the full

path to the file, or else the relative path to the file within the current working directory (which you now

know how to manipulate). The three most common modes are:

• ‘r’: read-only mode; the default if no mode is specified

• ‘w’: write-only mode (an existing file with the same name will be overwritten)

• ‘a’: append mode; any data written to the file is automatically added to the end (if the file does not

yet exist, Python will create it)

open(..) returns a file object, which is essentially a pointer to a file on disk. Interacting with the file object

is intuitive. file.read() returns the data stored in the file, and file.write(data) writes string data to the

file. When you’re done with file, call file.close(). This both frees up system resources and ensures the

data you’ve been telling Python to write to the file is actually flushed from the memory cache to the disk.
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2 APPLICATIONS

There may come a day when you want to process a file that is too large to fit into memory, and you want

Python to read it from the disk line by line rather than all at once. For this reason, Python can interpret a

file as a list of lines, and, if file is an open file object you created with the open(..) constructor, you can

use the syntax “for line in file:” to access each line of the file as a string; one line will be read from the

disk each time you cycle through the for loop.

Task 29: Use the os module to navigate to your My Documents directory. Open a file called “file.txt”, in

write mode, and write to it the words “Hello, World!”. Now, write “\n 1 \n 2” then close it. Can you see

the file in Windows Explorer? Can you open it with a text editor like Notepad or Wordpad? Try opening

the file in append mode, and append the line “\n appended”, then close it again. Open the file in read

mode, and call the read() method. Close it once more, and use the os.system() command to delete file.txt

using the Windows shell command “del file.txt”. Confirm that the file is no longer in your My Documents

folder.

For more on files, see Python’s documentation for working with files.

2 Applications

http://xkcd.com/409
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2.1 Text Processing

In this section, we discuss ways to pick up where programs such as Stata leave off with regard to handling

strings. It’s important that you are confident moving data between Stata and Python.

Task 30: In the “materials” folder, inventors.dta is a sampling of names and locations of first named

inventors on US patent applications. The field appl id is the application’s ID number. There is a field

called “inventor”, but you’d like to split it into name, city, state, and country. This may be possible to do

in Stata, but there are some formatting challenges that make using Stata’s split command difficult. You

may also encounter situations when the length of string variables exceeds Stata’s 244 character limit,

making text processing in Stata impossible.

Open inventors.dta with Stata (on the training computers, \\apps\local\STATA12MP\StataMP.exe).

Outsheet it; the default tab-delimited is good since you know your data doesn’t have tabs, but it does have

commas. Specify noquote and nonames options: do not put string variables in quotation marks, and do not

put names of variables on the first line. Name it locations raw.txt.

In the “materials” folder is a Python script location cleaner.py. It will open your outsheeted data and do a

bit of textual processing on it. The sort of processing it does is nothing you couldn’t do with a few hours to

play with the raw data.

Run the script and open the result, locations output.txt, with a text editor to see how it looks. Insheet it

with Stata.

Now, use Stata’s shell command to call Python from the commandline. Notice the two try/except blocks at

the top of the Python file. It will look for two optional arguments, the name of the input file and the name

of the output file. You can pass that information right from a do file. You already know a good deal of

Python, and hopefully this exercise has shown you how you can use that knowledge as a very natural

extension of the work you already do in programs such as Stata.

2.1.1 Extraction from Word Documents

You can open just about any file with Python’s open(..) and read() functionality, but you won’t always get

something pretty out.
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Task 31: A company under investigation has given you records of every transaction they’ve made in the

last year. Unfortunately, each transaction was logged in its own Microsoft Word file! Can you extract

clients’ names, dates, and zip codes? Open each .doc file in read mode for binary files, “rb”. Confirm that

each series is uniquely identified in each .doc file by the second group of each of the following regular

expressions:

1. “(CLIENT NAME: )([ˆ\r]+)”

2. “(DATE: )([ˆ\r]+)”

3. “(ZIP: )([ˆ\r]+)”

Save the extracted data to a file you open in write mode at the start of the script. Each line of the output

file should represent a Word document, and you should separate your series with tabs –

result.write(”\t”.join([name,date,zip])+”\n”) for each Word document. Don’t forget to close the output

file at the end of your script.

2.1.2 Word Frequency Dictionaries

Word frequency dictionaries have many uses. For instance, you might be matching names between two lists

of companies. Say one contains the company “Pfizer”, and the other contains a “Pfizer, Inc.”. It may help

you to know something about the relative frequency of the term “Pfizer” in your dataset, as compared to

the term “Inc.” in your dataset.

Similarly, if you’re looking for likely matches between datasets by each word, it would take a very long time

to examine all potential matches of “Pfizer, Inc.” that just contain the word “Inc.”, so you might want to

omit some of the most frequent words from your matching strategy.

Task 32: The “materials” folder contains a folder called “constitutions”. In that folder are the full text of

the US Constitution, the Articles of Confederation, and the Magna Carta. The file stopwords.txt is for

something we will discuss shortly.

People often say the Constitution discusses the federal government more, whereas the Articles of
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Confederation discusses mostly states’ rights. To test this claim, read in the text files. Use the built-in

function str.lower(), which can be called on any string, to make all letters lowercase. To get a list of words,

split each document on the regular expression ‘[ .!?]+’ – one or more spaces, periods, exclamation points, or

question marks. Define an empty dictionary myDict={}.

For each word in the list of words you’ve created, try: myDict[word]+=1. Since accessing a dictionary on

a key that doesn’t (yet) exist will raise a KeyError, we must follow with a clause starting with except

KeyError:, and in that case, set myDict[word]=1, because this is the first time we’ve seen that word. The

syntax of try/except is shown in Table 1.

What are the most frequent words in the documents? Assign “freqList = sorted(myDict.items(),

key=lambda(k,v):(v,k)),” and freqList[-10:] will be your ten most frequent words. You’ve probably picked

up some words that appear commonly, but don’t mean much – words like “the” or “and.” Modify your

code to only use words not in stopwords.txt, then check again.

2.1.3 Soundex: Surname Matching by Sounds

The Soundex algorithm is used to match subjects’ last names. In the early 1900s, American inventor

Robert C. Russell filed two US patents “to simplify and improve an index wherein names are to be entered

and grouped phonetically rather than in accordance with the alphabetical construction of the names.” The

details of his coding system are described in the patent – he breaks letters’ sounds up into classes such as

the “labials and labio-dentals”, not to be confused with the “labio-nasal represented by the m” or the

“dental-mutes represented by t and d.” After applying a set of rules, the algorithm spits out the first letter

of the surname followed by three digits, which are supposed to be distinct to the sound of the name.

Russell’s Soundex algorithm has been important in the field of surname matching, notably for census work.

The National Archives maintains its own, updated copy of the algorithm for census researchers.

A version of Soundex is implemented in Stata: In Stata, display soundex(“Robert”) returns R163, as does

display soundex(“Rupert”).

A (slightly different)4 version of the Soundex algorithm is also available for your convenience and research

dabblings in the “materials” folder. To use it, either open it with IDLE or navigate to the “materials”

4Mine is based off of the version on Wikipedia
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directory and type “import soundex” then “soundex.getSoundex(name).”

2.1.4 Levenshtein’s “Edit Distance”

In Stata and Python, testing the equality of strings is simple. For example, “Fahrenheit”==“Fahrenheit”

is True (both strings are spelled the same, correctly), but “Fahrenheit”==“Farenheit” (a common

mispelling) is False, so these strings do not match. But for many applications, we would want these strings

to match.

The Levenshtein algorithm tells you the “edit distance” between two words: the minimum number of

insertions, deletions, or substitutions required to transform one word into the second. Suppose someone

entering data meant to type “Jason” but his finger slipped when hitting the “s” and he hit an extra “a” by

accident – the data now says“Jaaon”.

Table 8: Levenshtein Processing of “Jaaon” vs. “Jason”

J a a o n
0 1 2 3 4 5

J 1 0 1 2 3 4
a 2 1 0 1 2 3
s 3 2 1 1 2 3
o 4 3 2 2 1 2
n 5 4 3 3 2 1

The most intuitive way to follow the process of the Levenshtein algorithm is along the diagonal, in bold.

What is the distance between an empty string and an empty string? 0 – the first item of the diagonal.

Between ‘J’ and ‘J’? Also 0 – move one to the right and one downward. Same for the distance between ‘Ja’

and ‘Ja’ – it is the next 0. But what about ‘Jaa’ and ‘Jas’? That is 1, so there is a 1 in that position

(italicized).

Where would you look to find the distance between ‘Jason’ and an empty string? ‘Jason’ and ‘J’? What

about the distance between ‘Jason’ and ‘Jaaon’? In your mind, verify that the numbers you’re finding

there are correct.

What is the distance between “Farenheit” and “Fahrenheit”? In all cases, the total Levenshtein distance

between two strings is the number in the bottommost and rightmost position.

A Python implementation of the Levenshtein algorithm is included in the “materials” folder. It is called
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Table 9: Levenshtein Processing of “Farenheit” vs. “Fahrenheit”

F a r e n h e i t
0 1 2 3 4 5 6 7 8 9

F 1 0 1 2 3 4 5 6 7 8
a 2 1 0 1 2 3 4 5 6 7
h 3 2 1 1 2 3 3 4 5 6
r 4 3 2 1 2 3 4 4 5 6
e 5 4 3 2 1 2 3 4 5 6
n 6 5 4 3 2 1 2 3 4 5
h 7 6 5 4 3 2 1 2 3 4
e 8 7 6 5 4 3 2 1 2 3
i 9 8 7 6 5 4 3 2 1 2
t 10 9 8 7 6 5 4 3 2 1

lev.py. To represent the matrices shown above, it uses a list in which each item is a list, as we did for a

task in Section 1.1.2.

2.2 Web Scraping

I use the term Web Scraping to refer to the process of taking data from the internet, and putting it into

usable form for a research project. In general, web scraping involves breaking a URL down into static and

variable pieces.

A common example of web scraping is stock data. If you’re looking for historical information on a

company, say stock ticker GOOG (Google, Inc.), you can get its current price at

http://finance.yahoo.com/q/pr?s=GOOG. When you access that link with your browser, Yahoo Finance

sends a bunch of HTML and other formatting that your browser makes sense of – it translates that into

different colors, alignments, etc. But Python can read that source code, too, and from that source code,

you can write a regular expression to pick out the current price. If you wanted to get every company’s

current price, it would only be a matter of getting a list of all ticker symbols, and putting that in a for

loop. Many sites make historical data available also; to get historical comma-separated data, you’d just

modify your loop to pass through pages of the form http://ichart.finance.yahoo.com/table.csv?s=GOOG

&d=11&e=3&f=2012&g=d&a=0&b=2&c=2010&ignore=.csv.

Some sites, such as Yahoo Finance, make data readily accessible to web scrapers. Google Insights for

Search is another easily scrapable site worth looking into. They allow you to see relative frequencies of

search terms, by date and by country (in the US, broken down to states and metropolitan areas). At the
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top right, you have an option to download the results as comma-separated data. There may be some

interesting patterns out there.

2.2.1 Using urllib2

With Python’s urllib2 module, opening websites is about as easy as opening files.

>>> import u r l l i b 2 , re

>>> page = u r l l i b 2 . ur lopen ( ” http ://www. nytimes . com” )

>>> t ex t = page . read ( )

>>> re . s earch ( ’ (< t i t l e >) ( .+) (</ t i t l e >) ’ , t ex t ) . group (2 ) ## What i s the t i t l e o f the page ?

’The New York Times − Breaking News , World News &amp ; Multimedia ’

>>> ## l e t ’ s look over some s t o r i e s from the f r o n t page

>>> b i g l e a d s = re . f i n d a l l ( ’ (<p c l a s s=”summary”>\n∗) ( .+) (</p>) ’ , t ex t )

>>> b i g l e a d s [ 0 ] [ 1 ]

’ Pre s ident Obama r e fu s e d to a p o l o g i z e f o r h i s remarks to Mitt Romney on Saturday ,

barnstorming through V i r g i n i a as h i s a i d e s cont inued t h e i r a t tacks . ’

>>> b i g l e a d s [ 2 ] [ 1 ]

’The gadget in your purse or j eans that you think i s a c e l l phone i s a c t u a l l y a t ra ck ing

dev i ce that happens to make c a l l s . ’

You don’t have to know HTML to be able to extract useful information from web sites. Oftentimes, it’s a

matter of looking at the website through your web browser, finding an example of a field you’d like to

extract (e.g., “President Obama refused to apologize. . . ”), then searching for that in the HTML source

code that Python sees.

Task 33: In this task, you will make queries to and extract data from a website.

Suppose you have a list of phone numbers, and you’d like to know where they are located. In a web

browser, navigate to usreversephonedirectory.com. Give it your phone number. Hopefully, it found the

number and told you the correct location. Next, examine the URL it took you to. If your phone number

were 012-345-6789, this particular website should take you to the address:

http://usreversephonedirectory.com/results.php?areacode=012&phone1=345&phone2=6789&type=

phone&Search=Search&redir page=results%2Fphone%2F&imageField.x=0&imageField.y=0

Armed with this intuition, the file phone numbers.txt in the “materials” folder contains 50 real phone

numbers generated by a random number generator. Open the file in Python, split the phone numbers on
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“-”, and make the appropriate URL request. In order to find out how to extract the location information,

open a page in Python and in a web browser. From your browser, see what the location is, then from

Python, identify what text comes before and after that specific location. Search the page with a regular

expression with two groups: the first should be the text that comes before, and the second should be one or

more characters that are not the character you’ve identified that signals the end of the field.

For more uses of Python’s urllib2 module, visit Python’s urllib2 howto.

2.2.2 Logging-in with Cookies

A common problem with web scraping is that many of the sites you want to download information from

require a log-in process. Sometimes, it’s possible to carefully examine the HTML of the site (e.g., using

your browser’s “View Source” feature) and determine which fields to post your login credentials using an

HTTP request form Python. However, it has also become common for sites to use Javascript functions and

special features that make automated log-in more difficult. In those cases, a huge time-saver can be to log

in to the site via a web browser, save your cookies, and include those cookies in all of your automated

Python requests. The package pycookiecheat allows you to load your cookies from Chrome into Python.

Note that the module pycookiecheat is designed to work with the module requests rather than urllib2.

Here is some example code to log in to OKCupid using your computer’s Chrome cookies:5

import reques t s , pycook iecheat

u r l = ’ https : // okcupid . com/ ’

s = r e q u e s t s . S e s s i on ( )

c oo k i e s = pycook iecheat . chrome cookies ( u r l )

r e sponse = s . get ( ’ https : //www. okcupid . com/match ’ , c o ok i e s = c oo k i e s )

Task 34: Make an OKCupid profile and log-in from Chrome. Install pycookiecheat and use that

package to log in to your OKCupid account and download the page that lists links to profiles near you.

2.2.3 Making your Scripts Robust

Sometimes, the internet just hiccups. This could be a fault on your computer’s end or the fault of the

downloading server.

5I have found some of these packages to be more stable in Python 3.
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For some purposes, you won’t care if your script crashes, because you’ll be monitoring it anyway. Other

times, if you’d like a job to run overnight or generally without your attention, it will help you keep your

sanity to put some safeguards in place to stop the job from failing.

The goal is to have your script continue to run, at some level ignoring the error, but also to log the error so

that you know what has been happening, in case there’s something you can do about it. Because you may

have a lot of output on the screen, for a large job you may wish to have a file that just logs time and

description of errors.

Here is a function that essentially wraps around urllib2’s urlopen(..) method, making it a bit more useful

for a big job.

de f grab ( ur l , num) :

t ry : # try to download u r l and return the page

page = u r l l i b 2 . ur lopen ( u r l )

r e turn page # only get to t h i s l i n e i f no e r r o r on ur lopen ( . . )

except u r l l i b 2 . HTTPError as e : # there was an e r r o r

e r r = open ( ” e r r . txt ” , ”a” ) # open e r r o r log , and wr i t e to i t the e r r o r d e s c r i p t i o n ,

time , and how many times we ’ ve t r i e d to grab t h i s u r l

e r r . wr i t e ( s t r ( e )+” on ”+u r l+” at ”+time . s t r f t i m e ( ”%d/%m %H:%M%S” )+” ; attempt ”+s t r (

num+1)+”\n\n” )

e r r . c l o s e ( )

i f num > 100 : # i f we ’ ve a l r eady t r i e d to grab t h i s u r l 100 times , l e t ’ s g ive up

pr in t ”maybe i t ’ s time to g ive up on t h i s address ”

re turn None

e l s e : # i f not , l e t ’ s put Python to s l e e p f o r a minute , and then try again .

hope fu l ly , the problem w i l l r e s o l v e i t s e l f soon .

time . s l e e p (60)

re turn grab ( ur l , num+1)

2.2.4 Saving Binary Files on Windows

We said there are three main modes for dealing with files: “w”, “r”, and “a”. On Windows, when you

aren’t dealing with text, you may need to use “wb” and “rb” for dealing with files that aren’t text. This

includes JPEG and ZIP files you may be downloading. The “b” stands for binary mode. Only Windows

makes the distinction between binary and text files, but you can still keep the “b” on other platforms.
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2.2.5 Chunking Large Downloads

Most desktops at work have just a few gigabytes of RAM, or Random Access Memory. When you

download a file from Internet Explorer, it usually downloads files straight to the hard disk, which is large in

comparison to RAM. When you download a file in Python, you download it only into RAM until you

open(..) a new file and write the contents of the page to the file. If you’re downloading a large file, you

may not be able to fit the whole file into RAM at once. Not only can this grind your computer to a halt,

but it can also cause Python to throw an error, terminating your script’s execution.

To get around this problem, the read() method allows you to pass in an optional parameter of how much

data to read from the web page, in bytes. Each time the read(bytes) method is called on a page, it starts

from where it left off. So all we need to do is read a few bytes of data, save it to the disk, and repeat.

page = u r l l i b 2 . ur lopen ( ” http ://www. bigpage . com” )

f i l e O u t = open ( ” bigpage . html” , ”w” )

CHUNK = 1024 ∗ 100 # 100 k i l o b y t e chunks −− s e t i t what you ’d l i k e

whi l e True :

chunk = page . read (CHUNK)

i f l en ( chunk )==0: break # t h i s w i l l happen once we ’ ve read the whole page

f i l e O u t . wr i t e ( chunk )

f i l e O u t . c l o s e ( )

2.2.6 Unzipping

If you’re downloading lots of zipfiles, it’s easy to unzip them. Suppose you’ve just downloaded a zip file

file. We will unzip it to newDirectory, which will be automatically created.

import z i p f i l e

z = z i p f i l e . Z ipF i l e ( f i l e )

z . e x t r a c t a l l ( newDirectory )

2.2.7 Email Notifications

If you have a long process running, it could be useful to notify yourself by email whenever it completes, or

if it is running into problems and needs your attention.
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The Python module smtplib contains useful documentation for sending emails through Python. There is

also a Python module called email. A sample script for sending email from a Gmail account is below:

import smtplib , p lat form

fromaddr = ’ ??? @gmail . com ’ # f i l l in

toaddr = ’ ! ! ! @gmail . com ’ # f i l l in

me = plat form . node ( ) # the name the computer c a l l s i t s e l f

msg = ’New n o t i f i c a t i o n from ’+me+’ . ’ # you could make t h i s more s p e c i f i c to your needs

# Creden t i a l s ( i f needed )

username = ’ fakeUserName ’ # f i l l in

password = ’ fakePassword ’ # f i l l in

# The ac tua l mail send

s e r v e r = smtpl ib .SMTP( ’ smtp . gmail . com:587 ’ )

s e r v e r . s t a r t t l s ( )

s e r v e r . l o g i n ( username , password )

s e r v e r . sendmai l ( fromaddr , toaddr , msg)

s e r v e r . qu i t ( )

2.2.8 Crawling

So far, we have discussed web scraping primarily in terms of breaking a URL down into static and variable

pieces. With the textual analysis skills we’ve covered, it’s also possible to arrive at one website and pick

out the links we want to follow, and continue on until we’ve found what we’re looking for, in some sense

“crawling” the web.

Task 35: The full text of all patents granted by the US Patent and Trademark Office from 1976 to today

is hosted in weekly zip files at http://www.google.com/googlebooks/uspto-patents-grants-text.html. From

that page, can you extract a list of all zip files? You probably shouldn’t actually download all the data –

it’s almost 100GB, and is sure to get you some calls from IT!

2.2.9 A Note on Privacy

Be conscious of what information you’re giving to sites when you web scrape, and what computers you use.

For example, if you query a site for several thousand phone numbers, and the site sees that traffic for those
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specific phone numbers coming from your IP address, you may be giving the site more information than

you intended.

3 Extensions

3.1 Scripting ArcGIS

Users of the ArcGIS suite may be interested to know that those programs are deeply integrated with

Python. Next time you go to generate a new variable in ArcMap, consider using a built-in Python

function, or defining your own in the codeblock. For more advanced automation, there is a Python module

called arcpy that allows you to interface with Arc’s geoprocessor, and script your workflow. Some

documentation of the acrpy module is given on ESRI’s website, though I have yet to find an easy-to-follow

tutorial (maybe somebody reading this will figure out arcpy and write one).
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