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PART I  
A FRAMEWORK FOR OPERATIONAL GROWTH MODELS
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If names are not correct, then language is not in accord with the truth of things.

If language is not in accord with the truth of things,

then affairs cannot be carried out successfully.

— Confucius

1 - Growth and Growth Models

Growth refers to an increase, expansion, or change over time. A common metaphor is that 

of a child growing in height or weight, where growth is tracked easily as the change in 

inches and ounces over time. Asked to pantomime “growth,” one might shrink into a crouch, 

mimicking a small child, and then jump up and out with arms and legs spread, emphasizing 

a two-stage, transformative process. Asked to draw growth, one might draw a graph with 

an arrow starting in the lower left and pointing to the upper right. Implicit in this graph is a 

vertical axis indicating a quantity of interest and a horizontal axis representing time. Figure 1.1 

shows two of these intuitive representations of growth.

Figure 1

Intuitive Depictions of Growth

If growth models for educational policy followed this commonsense intuition about growth, 

there would be little need for this guide. Instead, statistical models and accountability systems 

have become increasingly varied and complex, resulting in growth models with interpretations 

that do not always align with intuition. This guide does not promote one type of interpretation 

over another. Rather, it describes growth models in terms of the interpretations they best 

support and, in turn, the questions they are best designed to answer. The goal of this guide 

is thus to increase alignment between user interpretations and model function in order for 

models to best serve their desired purposes: increasing student achievement, decreasing 

achievement gaps, and improving the effectiveness of educators and schools. 
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A Practitioner’s Guide to Growth Models begins by overviewing the growth model 

landscape, establishing naming conventions for models and grouping them by similarities 

and contrasts. It continues by listing a series of critical questions or analytical lenses that 

should be applied to any growth model in current or proposed use. The remainder of the 

guide delves systematically into each growth model, viewing it through these lenses. 

This guide is structured like a guidebook to a foreign country. Like a guidebook, it begins 

with an overview of central features and a presentation of the landscape before proceeding 

to specifi c regions and destinations. Although it can be read from beginning to end, 

a typical user may fl ip to a model that he or she is using or considering for future use. 

Although the guide is structured to support this use, readers are encouraged to peruse the 

beginning sections so that, following the analogy, they can appreciate the full expanse of 

this landscape.

2 - Growth: Beyond Status

In the practice of modeling growth, the operational defi nition of growth does not always 

align with the intuitive defi nition of growth. If this were a guide only for the growth models 

that aligned with intuition, it would be a short guide that excluded a number of models in 

active use across states. Although these models may be less intuitive, they often answer 

useful questions about longitudinal data that “intuitive” growth models do not answer. To 

be useful, a broader working defi nition of growth is necessary.

When defi ning a term, it is often easier to begin with what it is not. Among all the 

discussions of student and group growth using educational assessment data, there is one 

underlying common thread — “growth is not status.” Accordingly, to develop a defi nition 

of growth we must fi rst defi ne status. Fortunately, defi ning status is a much easier task than 

defi ning growth. 

Status describes the academic performance of a student or 

group (a collection of students) at a single point in time.

This simple defi nition of status provides a contrast that allows us to defi ne growth. Student 

status is determined by data from a single time point and provides a single snapshot of 

student achievement, whereas any conception of academic growth is determined from 

data over two or more time points, taking into account multiple snapshots of student 

achievement. With this distinction from status, a simple working defi nition of growth arises.
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Growth describes the academic performance of a student or 

group (a collection of students) over two or more time points.

Growth models, in turn, use some systematic method, usually mathematical or statistical, to 

describe the academic performance of a student or group over two or more time points. This 

growth defi nition is deliberately broader than the more intuitive defi nition of growth as the 

change in academic achievement over time. The essential components of the defi nition are 1) 

multiple time points and 2) a temporal distinction between at least two of these time points. 

For example, the average of two student test scores from a fall and spring test administration is 

not a growth metric, because the average is blind to which score came earlier and which score 

came later in time. The following sections review additional conceptions of growth and, in turn, 

growth models. 

3 - Different Ways to Slice the Data: Status, Improvement, and Growth

This guide’s general defi nition of growth is an entry point into the tangled web of descriptions for 

growth models. Table 1.1 below and the following Tables 1.2 to 1.4 all show the same hypothetical 

aggregated data for a particular school but highlight different cells to emphasize additional 

distinctions between status and growth. In each of these tables, the rows designate grades, and 

the columns designate years. The cells contain hypothetical average Mathematics test scores 

for all students in a particular school. In Table 1.1 in particular, the shaded cell reports 320 as 

the average Mathematics score of 3rd graders in 2007: a single grade at a single point in time, or 

simply, a school’s status score for a particular grade-level. Useful contrasts and interpretations 

arise when this cell is grouped with other cells in the table. Different groupings or “slices” of the 

table support different interpretations about student performance, as we review below. 

Table 1.1 

Example of a School Status Score

Year

Grade 2007 2008 2009 2010 2011 2012

3 320 380 350 400 390 420

4 400 450 420 450 480 500

5 510 550 600 650 620 620

6 610 620 630 620 650 660

7 710 780 750 750 800 800

8 810 810 820 820 810 840
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3.1 The Vertical Slice: Across-Grade Status

A vertical slice through the data table as shown in Table 1.2 provides a representation of 

school status across grades. Instead of a single shaded cell that summarizes achievement at 

a single grade, this full shaded column summarizes 2007 school achievement across grades. 

Descriptions of status are useful, but they represent a single point in time and do not allow for 

growth interpretations. Although it may seem that differences across grades — from 320 to 400 

to 510 and so on — imply growth, these are not the same students across grades, and all scores 

occurred at the same point in time. The differences in these average scores are best interpreted 

as differences in achievement across grades at a particular point in time.1

Table 1.2 

Example of School Status Scores across Grade Levels 

Year

Grade 2007 2008 2009 2010 2011 2012

3 320 380 350 400 390 420

4 400 450 420 450 480 500

5 510 550 600 650 620 620

6 610 620 630 620 650 660

7 710 780 750 750 800 800

8 810 810 820 820 810 840

3.2 The Horizontal Slice: Improvement over Time

Table 1.3 highlights a horizontal slice through the data table to provide a representation of 

within-grade improvement over time. The shaded row in Table 1.3 describes 3rd grade scores 

from 2007 to 2012. Such horizontal slices are sometimes described as an improvement model 

or a cohort-to-cohort perspective. Each cell in the row represents a different cohort of students. 

Comparison of the cells, from 320 to 380 to 350 and so on, reveals change in achievement 

at a particular grade level over time. These comparisons are commonplace in large-scale 

assessment, from the National Assessment of Educational Progress (NAEP) that reports on 

the achievement of 4th, 8th, and 12th graders over time to state assessment programs that track 

achievement within grades over time.

1 Instead of average scores, the cells could contain the more common summary statistic of the 
percentage of students who are profi cient, that is, the number of profi cient students divided by the total 
number of students in each grade times 100. An upcoming section reviews scales for reporting scores in 
greater detail, but interpreting differences in profi ciency percentages across grades is rarely defensible, 
let alone interpreting these differences as growth. Not only are the students different in each grade-level, 
but there are likely to be arbitrary differences in profi ciency cut scores across grades.
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Table 1.3 

Example of Within-Grade Improvement over Time

Year

Grade 2007 2008 2009 2010 2011 2012

3 320 380 350 400 390 420

4 400 450 420 450 480 500

5 510 550 600 650 620 620

6 610 620 630 620 650 660

7 710 780 750 750 800 800

8 810 810 820 820 810 840

A limitation of these within-grade comparisons, or the “improvement model,” is that the 

students comprising the group do not stay the same from one year to the next. Thus, any 

observed changes in performance may be due to the changing composition of the group. 

This slice does describe a grade’s performance over time and represents growth in a general 

sense. However, for the purposes of this guide, growth describes a particular student or 

group whose identity remains constant. In short, for growth, time varies, but the student or 

group does not. Because within-grade comparisons do not describe the same individuals or 

a group comprised of the same individuals, this guide does not refer to them as indicating or 

measuring growth. 

3.3 The Diagonal Slice: Growth over Time

A diagonal slice through the data table as shown in Table 1.4 provides a representation 

of growth over time. The shaded cells represent the progression of a particular group of 

students over time and correspond with an intuitive defi nition of growth. The highlighted 

diagonal in the table below represents average scores from a single group of students from 

3rd grade in 2007 to 8th grade in 2012. 

In the case of Table 1.4, the diagonal represents averages from an unchanging cohort of 

students; it uses matched student data for students who have scores at all time points. 

Alternatively, these averages could include data from “mobile” students, who enter the 

cohort for some, but not all, years, and students whose data may be missing at one or more 

time points. This contrast is sometimes described as the longitudinal perspective (use data 

for only students with all matched scores over time) versus the cross-sectional perspective 

(use data for all students even those with missing values) on growth. 
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Table 1.4 

Example of Growth

Year

Grade 2007 2008 2009 2010 2011 2012

3 320 380 350 400 390 420

4 400 450 420 450 480 500

5 510 550 600 650 620 620

6 610 620 630 620 650 660

7 710 780 750 750 800 800

8 810 810 820 820 810 840

Growth models often use complete data and either ignore incomplete data or make 

implicit or explicit assumptions about the missing data. An extensive review of missing 

data approaches is beyond the scope of this guide, but we include brief descriptions of the 

handling of missing data when models have particularly straightforward approaches. The 

remainder of this guide introduces different approaches to interpreting student data within 

two or more cells of diagonal slices that represent individual or aggregate growth over time.

4 - What is a Growth Model? 

If growth describes the academic performance of a student or group over two or more 

time points, then what is a growth model? A growth model, like a region of a country in a 

guidebook, is best thought of as an entity with many components and features. A growth 

model can use a statistical model, but a growth model is not solely a statistical model. 

Moreover, some growth models are so statistically straightforward that they are best 

described as a collection of calculations and decision rules, rather than as a formal statistical 

model. This guide uses the following defi nition of a growth model. 

A growth model is a collection of defi nitions, calculations, or rules that 

summarizes student performance over two or more time points and supports 

interpretations about students, their classrooms, their educators, or their schools.

This defi nition is broad and likely to be counterintuitive to at least two audiences. First, to 

those with statistical training, modeling growth usually involves the estimation of a function 

that describes and predicts individual growth trajectories. Unfortunately, such a restrictive 

defi nition excludes many of the growth models in current practice and, more importantly, 

dramatically understates the scope of their complexity and ambition in educational 
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accountability contexts. Second, to practitioners with limited exposure to these models, 

a growth model may seem like a concise, perhaps even single-step procedure capable 

of achieving many desired goals and outcomes. Such a defi nition overlooks the multiple 

components of operational growth models and the complexity and judgment that are 

required as they increasingly attempt to serve multiple purposes.

Through the systematic characterization of growth models that follows, this guide provides 

an expansive perspective on the growth model landscape. However, this perspective is not 

intended as an exhaustive or “correct” way to classify and assess growth models. Growth 

models are quickly changing to meet the needs of local, state, and federal goals, reforms, 

and policies, and this guidebook, like real guidebooks, may require frequent revisions. 

However, the need for conscientious consideration of purpose, terminology, and defensible 

interpretations is relevant regardless of the growth model or the driving educational policy 

of the moment. 

5 - Growth Models of Interest 

The main chapters of this guide review seven individual growth models in turn. The 

ordering of the chapters is primarily pedagogical, beginning with more simple models 

and proceeding to more complex models. We attempted to select the most widely used 

growth models and label them by their most common names. However, some models (i.e., 

the residual gain model) are less commonly used but serve as a conceptual “missing link” 

between contrasting statistical foundations. A list of equivalent or closely related models 

is provided in each chapter. There is also an appendix relating these models to those 

associated with Council of Chief State School Offi cers (CCSSO) publications about growth 

models. The seven growth models of interest in this report follow: 

• Gain Score 

• Trajectory 

• Categorical 

• Residual Gain

• Projection 

• Student Growth Percentile

• Multivariate 
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6 - Critical Questions for Describing Growth Models 

In a guidebook to a foreign country, each region is described systematically through a series 

of questions or perspectives: Where are the best places to eat? What hotels offer the best 

value? Where are the best places to visit? This guide takes a similar approach by explaining 

each model through a series of critical questions: 

1.  What Primary Interpretation does the Growth Model Best Support?

2.  What is the Statistical Foundation Underlying the Growth Model?

3. What are the Required Data Features for this Growth Model?

4. What Kinds of Group-Level Interpretations can this Growth Model Support?

5. How Does the Growth Model Set Standards for Expected or Adequate Growth?

6.  What are the Common Misinterpretations of this Growth Model and Possible 

Unintended Consequences of its Use in Accountability Systems?

Before describing the growth models themselves, Sections 6.1 through 6.6 of Part I discuss 

these critical questions. Part II of the guide, Chapters 1 to 7, presents the seven growth 

models by answering these six critical questions for each of them.

6.1 Question 1: What Primary Interpretation does the Growth Model 
Best Support?

One of the central tenets of modern validity theory is that the target of validation is not a 

model but a use or interpretation of model results. A model suited for one interpretation may 

not be well suited to support an alternative interpretation. Thus, a natural starting point for 

growth model classifi cation is the identifi cation of the interpretations that particular growth 

models best support.

Growth models summarize — typically by quantifying — student performance over two or 

more time points. They result in metrics that describe individuals and/or groups. This guide 

identifi es three fundamental interpretations that growth metrics can support:
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1.  Growth Description: How much growth? A growth metric may support inferences 
about the absolute or relative magnitude of growth for an individual or group.

2.  Growth Prediction: Growth to where? A growth metric may support inferences about 
the future status of a student or group given current and past achievement. 

3.  Value-added: What caused growth? A growth metric may support inferences about 
the causes of growth by associating growth with particular educators (e.g., teachers or 
principals) and schools. 

This guide classifi es each growth model by the primary interpretation that the growth 

model supports best. Two caveats are essential here. First, a growth model may support 

a secondary or tertiary interpretation as well, and these are identifi ed in the respective 

growth model chapters. Following the defi nition of a growth model as a collection of 

defi nitions, calculations, and rules, it is not surprising that some growth models have been 

extended to support multiple interpretations. Nonetheless, it is possible to identify a 

primary interpretation that the growth model supports most naturally.

Second, although a growth model may support a particular primary interpretation, it may 

not do so infallibly. A growth model whose primary interpretation is growth description 

may not describe growth in a manner that all users might fi nd most useful. A growth model 

that primarily supports value-added interpretations may not in fact isolate the average 

value that a particular teacher or school adds to students. This is discussed further under 

Question 6 that concerns common misinterpretations of models and threats to their use in 

accountability systems. 

An alternative approach to classifying models is by the more general purposes that 

the model might serve. Such general purposes include using growth models to inform 

classroom instruction, student learning, school accountability decisions, evaluations of 

educators, and evaluations of particular programs and interventions. These purposes are 

important but are farther removed from growth model output and therefore result in a 

less straightforward classifi cation scheme. Clearer distinctions between models arise by 

focusing on the interpretations that growth model metrics support directly.

Table 1.5 provides examples of growth models classifi ed column-wise by their primary 

interpretations. The models are also classifi ed row-wise by their statistical foundations, 

which are presented in the next section. A brief description of each model is also included. 

When different facets of a model support different interpretations, the models are classifi ed 

in more than one column.
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Table 1.5 

Classifi cation Scheme for Growth Models

Primary Interpretation 
Statistical Foundation Growth Description Growth Prediction Value-Added
Gain-Based Model

Chapters 1-3:
Based on score gains and 
trajectories on a vertical 
scale over time

•   Gain-Score 
Chapter 1: Gains, 
average gains, slopes

•   Categorical 
Chapter 3: Changes 
and transitions between 
categories

•   Trajectory 
Chapter 2: Extrapolation 
of gains into the future

•   Categorical (a.k.a. 
Transition, Value Table)
Chapter 3: Implicit 
momentum toward 
higher categories in the 
future

•   Gains/Slopes as 
Outcomes 
Chapter 1.4:  
Establishes 
links between 
average gains and 
classroom/school 
membership

Conditional Status 
Model 

Chapters 4-6:
Expresses scores in terms 
of expectations based on 
past scores

•   Residual Gain 
Chapter 4: Simple 
difference between 
status and expected 
status given past scores

•   Student Growth 
Percentile (a.k.a the 
Colorado Model)
Chapter 6: Percentile 
rank of status given past 
scores

•   Projection (a.k.a. 
Prediction, Regression)
Chapter 5: Empirically 
predicted future score 
given past scores

•   Student Growth 
Percentile (a.k.a. the 
Colorado Model)
Chapter 6: Continuation 
of current percentile 
rank into the future

•   Covariate-
Adjustment 
Chapter 4.4: 
Establishes links 
between average 
conditional 
status and 
classroom/school 
membership 

Multivariate Model

Chapter 7:
Uses entire student score 
histories as an outcome 
to associate higher-than-
expected scores with 
particular educators

•  Generally not used for 
this purpose

•  Generally not used 
for this purpose

•   Multivariate 
(a.k.a. EVAAS, 
Cross-Classifi ed, 
Persistence 
Models) 
Chapter 7

6.2 Question 2: What is the Statistical Foundation Underlying the Growth Model?

This guide also classifi es growth models by their underlying statistical foundation. Although 

statistical methods can be intimidating and model descriptions can be opaque, we fi nd 

that models can be classifi ed into one of three categories: gain-based models, conditional 

status models, and multivariate models. These three categories make up the rows of Table 

1.5, which cross-classifi es growth models by Questions 1 and 2. This table represents a 

central conceptual framework for this guide. The following subsections briefl y describe each 

statistical foundation in more detail and reference some of their corresponding models. 
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6.2.1 Gain-based models

The fi rst type of statistical foundation underlies models that are based on gains, average 

gains, or score trajectories over time. We call these gain-based models. A gain or gain score 

is the simple difference between two scores at different points in time. The gain score can 

be extrapolated over future time points to support predictions. When there are more than 

two data points for an individual, the gain can be generalized over multiple time points by 

averaging and expressing progress as an average change per unit of time.

A common feature to all gain-based models is an implicit or explicit recognition of a vertical scale, 

a common scale that allows scores to be compared across different grade-level tests. Vertical 

scales support interpretable score differences over the time and grade range of interest. A gain-

based statistical foundation is consistent with an intuitive defi nition of growth: the difference 

between where one was and where one is. However, vertical scales are diffi cult to design and 

maintain, and many useful questions about performance over time do not require vertical scales. 

This motivates a contrasting statistical foundation underlying a second class of growth models.

6.2.2 Conditional status models

The second type of statistical foundation supports interpretations about conditional status. The 

word “conditional” implies an “if” statement, a kind of dependence, and, indeed, conditional 

status recasts or reframes status with respect to additional information. Models that use this 

statistical foundation address the question: How well does a student perform with respect to 

expectations? These expectations are set empirically using the past scores of the student of 

interest and other students. 

Using this past information, conditional status models use a two-step process. First, given a 

student’s past scores, they establish expectations about his or her current score. Second, the 

student’s actual status is compared to these “conditional” expectations given past scores. The 

use and differentiation of past and current scores allows this method to meet our defi nition 

of a growth model. The phrase, “conditional status,” is a technical term arising from the 

models’ referencing of student status in terms that are conditional upon past scores or, more 

simply, in terms that consider past scores or take past scores into account. This foundation 

is fundamentally distinct from models that have a gain-based foundation, where status is 

evaluated over time instead of compared to expectations based on past scores. 

Notably, conditional status models can reference current status to other variables in addition 

to or in place of past scores, such as economic status, race and ethnicity, or participation 

in specifi c educational programs. It is entirely possible to use a conditional status model to 

describe status in terms of expectations set by less relevant variables like a student’s height 
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or shoe size. This observation does not invalidate conditional status models as growth 

models but serves to emphasize how this statistical foundation supports a fundamentally 

different conception of growth: status with respect to expectations based on past scores and, 

potentially, other information. 

A natural corollary of this defi nition of growth is that conditional status will change as 

expectations change. Setting expectations based upon two past scores will result in a 

different conditional status than setting expectations based on three past scores, and setting 

expectations based upon student demographic variables will change a student’s conditional 

status score even further. In comparison, gain-based scores will also change under inclusion 

of additional time points. However, increasing previous time-points for gain-based models 

allows for better estimation of average gains, whereas using more past scores in conditional 

status models changes the substantive interpretation of the conditional status score. In sum, the 

output of conditional status models is interpreted most accurately with full appreciation of the 

variables that have been used to set expectations.

Conditional status scores can be reported on many metrics, from the test score scale to percentile 

ranks. As an example, consider a student whose high current status places her at the 80th 

percentile (among all students). In spite of this relatively high score, this student’s past scores have 

been at even higher percentiles. Thus, her current percentile rank of 80 is somewhat below the 

empirically derived expectations given these past scores. One expression of conditional status is 

the simple difference between her actual current score and the score that is expected given her 

past scores. This describes the residual gain model in Chapter 4. Another approach expresses this 

low expectation in terms of a percentile rank. This latter approach is known as a Student Growth 

Percentile and is described in detail in Chapter 6. Table 1.5 displays conditional status models in 

its second row, cross-classifi ed by the primary interpretations that these models support.

Chapters 4-6 review conditional status models and delve more deeply into the contrasts 

between gain-based and conditional status models. Understanding these contrasts is essential 

for accurate selection and use of growth models.

6.2.3 Multivariate models

The third type of statistical foundation is used primarily to estimate the “value-added” 

associated with classrooms and schools. Table 1.5 displays multivariate models in its third row 

and includes no models in the fi rst two columns, as this statistical foundation is not well suited 

for growth description or growth prediction.

Multivariate models are distinguished by their complexity and their ability to use a large amount 

of data and variables in a unifi ed approach. They require specialized and sometimes proprietary 

software and training in the interpretation of model output. The models are designed to 
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produce classroom- and school-level “effects” that may be associated with teachers and 

principals respectively. Formally, gain-based and conditional status models can be seen as 

special cases of a fl exible multivariate model (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 

2004). However, in practice, it is useful to locate multivariate models as a separate statistical 

foundation. As Chapter 7 describes, the multivariate model has as its target of inference, not a 

student’s gain or her conditional status, but her entire score history. This is clumsy for growth 

description and growth prediction, but is particularly well-suited to leverage maximal test score 

information for the estimation of classroom and school effects.

6.3 Question 3: What are the Required Data Features for this Growth Model?

The selection of a growth model can be motivated by both the advantages it offers and 

the constraints it satisfi es. The selection of a desired model may necessitate alternative or 

additional data structures. In some cases, the cost of meeting data requirements may outweigh 

the benefi ts of the desired model. 

In general, all growth models rely on the usual expectations for test reliability and validation. 

These are not trivial requirements, but this section focuses on requirements for growth, above 

and beyond the requirements for test score interpretations at a single time point. If low reliability 

threatens interpretations of test scores at a single time point, the problems will only compound 

as these scores are reconfi gured to support growth inferences. Similarly, all the growth models in 

this guide require student data that is linked longitudinally over at least two time points.

This section reviews particular data requirements for the growth models considered in this 

paper, including vertical scales, profi ciency cut scores articulated across grades, multiple cut 

scores articulated across grades, large student datasets, multiple prior years of data, and 

meaningful controls and covariates. Some requirements are more salient for some models 

than others. It is useful to note, however, that in many cases, the integrity of the interpretations 

from a growth model depends on the integrity of these data requirements. This is especially 

important to consider when the growth model requires cut scores or vertical scales as standard 

setting and even scaling, albeit to a lesser degree, involve judgmental decisions. The statistical 

model or calculations of a growth model do not compensate for poorly defi ned vertical scales 

or performance level categories. The principal data requirements for each model are reviewed 

in the model’s respective chapter. 

6.3.1 Vertical scales

Some assessments are scaled across grades with what is known as a “vertical scale.” A vertical 

scale links the reporting test score scale across several grade levels so that a test score from 

one grade can be meaningfully compared to a test score in a subsequent or previous grade 

level. This type of scale contrasts with “horizontal” test score scales that support interpretations 
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for each grade level separately. Vertical scales are often more desirable than horizontal scales 

due to the growth interpretations they support, but vertical scales require more rigorous design 

specifi cations in test development to ensure a meaningful across-grade content continuum. 

Moreover, in many cases, vertical scales are not possible for the subject matter tested. For 

example, science classes may cover distinct topics in each grade and may not support an 

interpretable cross-grade continuum of “science” knowledge.

Vertical scales are necessary for gain-based models and are implicit in intuitive notions of growth. 

If a test has a defensible vertical scale, a user can take a simple difference of individual scores 

over time and interpret this as a gain regardless of the starting point on the continuum. In some 

cases, vertical scales are not formally supported but are implicit and loosely operationalized. An 

example of this is the categorical model where no vertical scale is claimed, but transitions across 

performance category boundaries are treated as gains, an interpretation that requires meaningful 

linkages in cut scores defi ning the performance categories across grades.

 6.3.2 Profi ciency cut scores articulated across grades

Some growth models afford growth predictions, often with inferences about trajectories toward 

some future standard such as “Profi ciency” or “College and Career Readiness.” These models 

proliferated under the Growth Model Pilot Program of 2005 (U.S. Department of Education, 

2005) that required students to be “on track” to profi ciency. Most growth models do not 

require a profi ciency cut score to make a prediction, but the prediction is ultimately referenced 

to the cut score. In these cases, model predictions require articulated cut scores across grades, 

in other words, profi ciency cut scores that maintain some consistent relative stringency or 

pattern of stringency across grades. 

Such cut scores are determined through standard setting procedures in which a committee fi rst 

defi nes what profi cient students should know and be able to do and then sets cuts by taking into 

account characteristics of the test scale, item content and diffi culty levels, and the qualitative 

description of profi ciency. For many growth models, this process requires consideration of the 

defi nitions of profi ciency in all other grade levels. Without articulated cut scores, nonsensical 

conclusions can arise, including a student who is on track to some future standard in one year 

and three years, but not in two years (Ho, Lewis, & Farris, 2009). Lack of articulation leads to 

unpredictable relationships between stringency of standards and the grade of entry, the time 

horizon to profi ciency, and target year by which standards must be reached, respectively.

6.3.3 Multiple cut scores articulated across grades

Many accountability and evaluation policies focus primarily on students reaching a single 

achievement level, usually designated as “Profi ciency.” Some policies also operationalize 

performance levels that support fi ner grain distinctions at higher and lower score points. 
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Performance level descriptors may include Below Basic, Basic, Profi cient, and Advanced, and 

some states include an even fi ner resolution of categories below profi ciency. Standard-setting 

processes help to set these cut scores and elaborate on the descriptions for each category.

Categorical models, sometimes known as transition matrix models or value tables, use such 

ordered performance level categories to determine whether students are making adequate 

gains toward a standard. Such models rely heavily on the assumption that the performance level 

categories have been articulated within and across grades. Moreover, the same performance 

level category in different grades should refl ect the same relative degree of mastery. As an 

extension of the previous argument for profi ciency cut scores, any growth model that uses 

multiple cut scores to document growth must have well-articulated standards across grades to 

avoid counterintuitive results. 

6.3.4 Large numbers of students

Some growth models require large numbers of students to produce reliable estimates. This is 

particularly essential for growth models that require estimation of several parameters, such as 

the Student Growth Percentile (SGP) model. The SGP model involves estimation of hundreds of 

parameters and thus requires large numbers of students to ensure that SGPs support appropriate 

interpretations. A rough, general guideline for a minimum sample size for SGP estimation is 

5000 (Castellano & Ho, in press), but the requirement depends on the inferences that the model 

supports. Although 5000 is a comfortable size for many state-level datasets, some states may fi nd 

instability if SGPs are calculated for particular districts, grades, or subgroups.

6.3.5 Multiple years

For growth models to support value-added inferences, they often need to accommodate 

several years of test score data for the same educator, ideally with large numbers of students 

for that educator. At the same time, students within each classroom require scores from many 

prior years. As the stakes associated with the use of the growth model results become higher, 

more data will be required to increase the precision of estimates. 

6.3.6 Meaningful controls/covariates

Models that set empirical expectations based on selected variables, including all conditional 

status and value-added models, are interpreted most accurately when there is full awareness of 

the set of variables that have been used to set these expectations. In the case of value-added 

inferences, accurate interpretation requires an understanding of how many previous scores 

have been included and which additional student-, teacher-, and school-level variables have 

been incorporated, if any. Possible variables include the percentage of students from low-

income families, the minority/ethnic composition of the school/classroom, and the percentage 
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of limited English profi ciency students. Incorporating these factors can bolster the argument for 

the interpretation of teacher and school effects as “value added,” but the primary goal should 

be adequate communication of the variables to understand the effects. By understanding that 

value added is more accurately interpreted as an average student status beyond expectations, 

the importance of understanding the variables that set these expectations becomes apparent.

6.4 Question 4: What Kinds of Group-Level Interpretations can this Growth 
Model Support?

Growth models use student-level performance data from two or more time points. Accordingly, 

a growth model can provide a number that characterizes a student’s growth. However, 

practitioners are often more interested in group-level summaries of academic growth, 

especially in the context of accountability and evaluation. In most cases, group-level summaries 

are easily obtained by averaging student-level growth values for the students in a group of 

interest, such as averaging over the students in a classroom or school. In other cases, such as 

the case of the multivariate model, group membership is explicitly included in the model. 

As policy, accountability, and evaluation decisions (such as for teacher effectiveness and school 

accountability) are so often associated with the group-level summaries, the validity of group-

level interpretations is of paramount importance. Evidence supporting student-level growth 

interpretations is important, but this evidence does not ensure that an aggregate of a student-

level metric can also be used for high-stakes purposes. In answering Question 4 for each 

model, this guide discusses the group-level interpretations that each model can support and 

describes the evidence needed for these interpretations.

6.5 Question 5: How Does the Growth Model Set Standards for Expected or 
Adequate Growth?

A growth model can be used to set standards for expected or adequate growth in different 

ways. All conditional status and value-added models set statistical standards for expected 

scores. However, these expectations may not be aligned with substantive and policy guidelines 

for adequate growth. In some cases, the choice of standard for growth performance can 

be based on norms or performance by a clearly defi ned group of peers. This can lead to 

judgmental decisions based on percentages, such as fl agging the top or bottom 10 percent of 

students, teachers, or schools for further investigation.

Any standard-setting process involves subjective judgments. The necessity of these judgments 

to the use of operational growth models is a reminder that operational growth models are more 

than statistical models. Judgments are moderated by the stakes involved, the properties of 

the model itself, student performance and impact data, and the theory of action for the policy 

of interest. In each chapter, we review standard setting conventions in theory and practice. 
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Options include setting standards based on the test score scale for growth, standards based 

on a norm-referenced percentage, or standards based on an aggregate-level metric for group 

growth. All of these procedures support inferences about low, high, and adequate growth.

6.6 Question 6: What are the Common Misinterpretations of this Growth Model 
and Possible Unintended Consequences of its Use in Accountability Systems?

When visiting a new region, tourists frequently begin with preconceived notions of what 

they will encounter. These assumptions might be based on something they have heard, 

read, or experienced. A useful guidebook is one that understands common misconceptions 

and addresses them directly. As growth models are incorporated into educational policies, 

some impressions of models do not align with actual model function, and some common 

interpretations of model output may not be defensible. In answering Question 6, this guide 

clarifi es common misconceptions of particular growth models that threaten the validity of the 

inferences derived from their use.

It is also well established that the validation of an evaluation system becomes diffi cult as the 

stakes of the evaluation rise. A metric that is initially designed for informing instructional decisions 

may be susceptible to corruption, infl ation, and gaming when it is incorporated into a high-stakes 

system. A responsible guide is one that anticipates both positive and negative responses to 

growth models. In answering Question 6, this guide also explores how growth metrics can be 

gamed or distorted upon their adoption into a high-stakes accountability system.

This guide is about growth models, including, but not limited to, value-added models for school 

and teacher accountability. A full review of the issues surrounding the use of growth models for 

high-stakes accountability systems is not feasible here. Question 6 is an opportunity to identify 

some of the most obvious concerns that arise in common growth models. For a fuller discussion 

of teacher value-added models, we point to a number of other references that focus on this topic 

more specifi cally.2 We comment on this issue only briefl y here and in subsequent chapters.

Our fi rst critical question makes it clear that we consider value added to be an inference, not 

a model. In the absence of a rigorous design where, among other requirements,3 students are 

randomly assigned to classrooms, no model can support value added inferences on its own. 

The term is best considered to be a hypothesis that must be tested through the triangulation 

of multiple sources of evidence. Nonetheless, many models are used to support value-added 

inferences, and it is on this basis that we classify them, describe them, and, in this critical 

question, identify their strengths and weaknesses.

2 See Reardon & Raudenbush (2009); Baker, Barton, Darling-Hammond, Haertel, Ladd, Linn, Ravitch, 
Rothstein, Shavelson, & Shepard (2010); and Glazerman, Loeb, Goldhaber, Staiger, Raudenbush, & 
Whitehurst (2010).
3 See Reardon & Raudenbush (2009) and Rubin, Stuart, & Zanutto (2004).
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7 - Alternative Growth Model Classifi cation Schemes

This guide differs from many previous efforts at growth model classifi cation. It is not 

intended as an authoritative classifi cation scheme. It is instead, as its title suggests, a guide 

for practitioners, and it should not only aid understanding of growth models, but increase 

appreciation for alternative classifi cation schemes. These alternatives are many, and we list 

them briefl y in this section.

Some classifi cation schemes are more concise than the one presented here. An example of 

this is CCSSO’s Understanding and Using Achievement Growth Data brochure (Council of 

Chief State School Offi cers, 2011). Others are listed later in this section. These schemes tend to 

collapse categories across the critical questions we identify here, resulting in a simpler, one-

dimensional summary. Table A.1 in the appendix maps the classifi cation scheme from CCSSO’s 

brochure onto the classifi cation scheme of this guide.

Other classifi cation schemes are focused on a particular critical question that we raise in this 

guide. For example, the CCSSO Growth Model Comparison Study (Goldschmidt, Choi, & 

Beaudoin, 2012) is an effort at comparing the empirical results of a number of different growth 

models, assuming that all models were reconfi gured toward the goal of school “value-added”-

type rankings. Table A.2 in the appendix also includes a mapping of that classifi cation scheme 

onto that of this guide.

Still other classifi cation schemes are more technical, including those comparing value-added 

models for teacher accountability (McCaffrey et al., 2004), and more specifi c in their primary 

interpretations, such as the fi nal evaluation of the Growth Model Pilot Program that compared 

growth models for growth prediction (Hoffer, Hedberg, Brown, Halverson, Reid-Brossard, Ho, & 

Furgol, 2011). In contrast, this guide includes few empirical results. It represents a broader view 

of the growth model landscape and highlights the similarities and differences that might be 

most useful to practitioners. 

This introductory chapter concludes with a list of comparative studies of growth models and 

alternative growth model classifi cation schemes. Following this, a summary table reviews the 

question-by-model organization of this guide and briefl y summarizes the answers to these 

questions. The remaining seven chapters of this guide in Part II review each of the seven 

growth models of interest. 
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Gain Score Trajectory Categorical Residual Gain Projection Student Growth 
Percentile Multivariate

Brief Description

Describes growth 
with simple 
differences or 
average gains 
over time

Extends gains or 
average gains in a 
predictable, usually 
linear fashion into 
the future

Defi nes growth 
by transitions 
among status 
categories (e.g., 
Basic, Profi cient, 
Advanced) over time

Describes growth 
as the difference 
between current 
status and 
expected status 
given past scores

Uses past scores to 
predict future scores 
through regression 
equations

Percentile rank of 
current status in a 
reference group of 
students with similar 
past scores

Uses entire 
student score 
histories, including 
other subjects 
and teachers, to 
detect higher than 
expected student 
scores associated 
with particular 
teachers

Aliases, Variants, 
Close Extensions

Growth Relative 
to Self, Raw Gain, 
Simple Gain, Slope, 
Average Gain, 
Gains/Slopes-
as-Outcomes, 
Trajectory Model

Growth-to-
Standards Model, 
Gain-Score Model

Transition Model, 
Transition Matrix 
Model, Value Table

Residual Difference 
Model, Covariate 
Adjustment Model, 
Regression Model, 
Percentile Rank of 
Residuals

Regression Model, 
Prediction Model

The Colorado 
Model, Percentile 
Growth Trajectories, 
Conditional Status 
Percentile Ranks

Sanders Model, 
EVAAS, TVAAS, 
Tennessee Model, 
Layered Model, 
Variable Persistence 
Model, Cross-
Classifi ed Model

Primary 
Question(s) 
Addressed

How much has a 
student learned on 
an absolute scale?

If this student 
continues on this 
trajectory, where is 
she likely to be in 
the future?

How has this 
student grown in 
terms of transitions 
through categories 
over time? In which 
category will she 
likely be in the 
future?

How much higher 
or lower has this 
student scored than 
expected given her 
past scores?

Given this student’s 
past scores, and 
based on patterns 
of scores in the 
past, what is her 
predicted score in 
the future?

What is the 
percentile rank of a 
student compared 
to students with 
similar score 
histories? What is 
the minimum SGP 
a student must 
maintain to reach 
a target future 
standard?

Is this teacher 
associated with 
higher scores for 
his or her students 
than expected given 
all available scores 
and other teacher 
effects?

Q1: Primary 
Interpretation Growth Description Growth Prediction

Growth Description 
and Growth 
Prediction

Growth Description Growth Prediction
Growth Description 
and Growth 
Prediction

Value Added

Q2: Statistical 
Foundation Gain-Based Gain-Based Gain-Based Conditional Status Conditional Status Conditional Status Multivariate

Q3: Required 
Data Features Vertical scale Vertical scale

Articulated cut 
scores across years 
and grades. Values 
for value tables. 
Implicit vertical 
scale.

An interpretable 
scale.  Assumptions 
of linear regression 
must be met.

Interpretable future 
scale or future 
standard.

Large sample 
sizes for reliable 
estimation.

For high-stakes 
value-added 
uses, many years 
of student data 
required for stable 
teacher effects.

Q4: Group-Level 
Interpretations Average gain

Average trajectory 
or percentage of 
on-track students

Average across 
value tables or  
percentage of on-
track students

Average residual 
gain

Average future 
prediction or  
percentage of on-
track students

Median or average 
SGP, percentage of 
on-track students

Only group-level 
interpretations: 
Teacher- and school-
level “effects”

Q5: Setting 
Standards

Requires 
judgment about 
adequate gain or 
adequate average 
gain. Requires 
understanding of 
the scale or can be 
norm-referenced.

Set by defi ning a 
future standard and 
a time horizon to 
meet the standard.

Set by defi ning cut 
scores for categories 
and values in value 
table. Requires 
judgmental cut 
scores to defi ne 
adequacy of both  
individual and 
aggregate values.

Requires 
judgment about 
adequate residual 
gain. Requires 
understanding of 
the scale or can be 
norm-referenced.

Set by defi ning a 
future standard and 
a time horizon to 
meet the standard.

Requires judgment 
about an adequate 
SGP or median/
average SGP. 
Predictions require a 
future standard and 
a time horizon to 
meet the standard.

Standards required 
to support 
absolute or relative 
distinctions among 
teacher/school 
effects, e.g., awards/
sanctions to top/
bottom 5%.

Q6: 
Misinterpretations 
and Unintended 
Consequences

Intuitive but 
dependent on 
vertical scales 
that can impart 
undesired 
dependencies 
between growth 
and initial status 
or socioeconomic 
status. Can be 
infl ated by dropping 
initial scores.

Less of an empirical 
prediction than 
an aspirational 
and descriptive 
prediction. 
Requires defensible 
vertical scale over 
many years. Can 
be infl ated by 
dropping initial 
scores.

Loss of 
information due to 
categorization of 
scores. Requires 
careful articulation 
of cut scores across 
grades and years: 
assumes an implicit 
vertical scale. Can 
be infl ated by 
dropping initial 
scores.

Not a “gain” 
but a difference 
from actual and 
expected status. 
Violations of 
linear regression 
assumption can 
lead to distortions. 
Can be infl ated 
by dropping initial 
scores.

The “projection” 
metaphor can 
be confused 
with “trajectory” 
when it is in fact 
a prediction. 
Maximizing 
predictive accuracy 
can diminish 
incentives to 
address low-scoring 
students.

Sometimes 
misinterpreted 
as the percentile 
rank of gain 
scores. Sometimes 
overinterpreted as 
supporting value-
added inferences. 
Can be infl ated 
by dropping initial 
scores.

Naming fallacy: 
calling a metric 
“value-added” 
does not make it so. 
Can be unreliable. 
Detached from 
theories about 
improving teaching. 
Can be infl ated 
by dropping initial 
scores.

Model

Characteristics

Summary Table
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PART II   
THE GROWTH MODELS
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CHAPTER 1
The Gain Score Model

The gain score model is a simple, accessible, and 

intuitive approach that primarily supports 

growth description. As its name suggests, it 

is a gain-based model, and it serves as a basis 

for more complex models like the trajectory and 

categorical models as well as some “value-added” 

models. The gain score model, also referred to 

as “growth relative to self” or “raw/simple gain,” 

addresses the question

How much has a student learned on 
an absolute scale?

The answer to this is the gain score: the simple 

difference between a student’s test scores from

 two time points. For this difference to be 

meaningful, student test scores from the two 

time points must be on a common scale. If the 

two time points represent two grade levels, 

then the common scale should be linked to a 

developmental continuum representing increased 

mastery of a single domain. 

 Question 1.1: 

What Primary Interpretation Does the Gain 
Score Model Best Support?

Of the three primary growth model interpretations 

— growth description, growth prediction, and 

value-added — the gain score model supports 

growth description.

The gain score model describes the absolute change in student performance between 

two time points. This is sometimes called “growth relative to self” (DePascale, 2006) as 

the student is only compared to himself or herself over time. 

GAIN SCORE MODEL

Aliases and Variants:
•  Growth Relative to Self
•  Raw Gain
•  Simple Gain
•   Gains/Slopes-as-Outcomes, 

Trajectory Model

Primary Interpretation: 
Growth Description

Statistical Foundation: 
Gain-based model

Metric/Scale:
Gain score – on the common 
test score scale 

Data: Vertically-scaled tests 
and test scores from two 
time points

Group-Level Statistic: 
Average Gain – describes 
average change in 
performance from Time 1 to 
Time 2 

Set Growth Standards: 
Determining a minimum 
gain score needed for 
“adequate growth”

Operational Examples:
•   Pretest/Posttest 

experimental designs
•   Quick growth summaries 
•   A basis for trajectory models
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The sign and magnitude of a gain score are important in indicating a student’s 

change in performance. The magnitude of the gain indicates how much the student 

has changed, whereas the sign indicates if the gain was positive, signifying 

improvement, or negative, signifying decline. Gain scores require an understanding 

of the underlying test score scale in order to be interpreted meaningfully. A 350, a 375, 

and a difference of 25 carry little meaning unless the scores and the gain refer to well-

understood locations on an academic or developmental scale. When the scale is not 

well known or understood, the gain score can be referenced to a norm or standard, as 

described in Section 1.5.

Gain scores can be generalized to more than two time points through the calculation 

of an average gain or a slope. An average gain is equivalent to the difference between 

the initial and current scores divided by the grade span. A slope is found through a 

regression model that estimates the best-fit line through the trajectory. This use of 

regression to describe scores relative to time contrasts with the use of regression in 

conditional status models, which use regression to describe current scores relative to 

past scores. 

 Question 1.2: 

What is the Statistical Foundation Underlying the Gain Score Model?

The statistical foundation of the gain score model is, as the name suggests, 

a gain-based model.

The gain score model produces gain scores, which are sometimes referred to as 

“raw gains,” “simple gains,” or, just “gains.” A gain score is found using test scores 

from two time points as follows: 

        Gain Score  = Test Score at Current Time Point – Test Score at Previous Time Point

   = Current Status – Initial Status
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Figure 1.1 

Illustration of the Gain Score Model

400

375

350

325

300

Grade 3
2010

Grade 4
2011

Sc
o

re
s

Time

Gain Score Model

Gain Score = Grade 4 Score – Grade 3 Score 
                = 375 – 350 
                = +25

F igure 1.1 illustrates the gain score model calculation using data for a student in Grade 3 in 

2010 and in Grade 4 in 2011 on a hypothetical mathematics test. The horizontal axis represents 

time, and the vertical axis represents the test score scale. For test scores from both the Grade 

3 and Grade 4 assessments to be shown on this continuous scale, these two assessments must 

share an underlying vertical scale. 

The solid, black dots in Figure 1.1 mark a particular student’s test scores. This student, 

represented with stick fi gures, earned a score of 350 in Grade 3 and 375 in Grade 4. The gain 

score is illustrated by the vertical difference in these two scores, which, as shown in the fi gure, 

is 375 – 350 = +25. The reporting scale for the gain score is the common scale of the two test 

scores. Combining the positive sign and the magnitude of the gain score, this student gained 

25 points from 3rd grade to 4th grade on this hypothetical state mathematics assessment. 

 Question 1.3: 

What are the Required Data Features for the Gain Score Model?

The gain score model requires student test score data from at least two time points from 

tests aligned to a common scale. The student test score data must be linked over time, 

requiring unique student identifi ers. 
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Gain scores require scores for students from at least two time points. The database requires unique 

student identifi ers that are constant over time, and group-level identifi ers are necessary to support 

group-level analyses. Even given these data, interpretations of gain scores are only appropriate if 

the test scale is designed to support meaningful differences in test scores. If the scores from the 

two time points are on different scales, then such a difference is not interpretable. Accordingly, the 

scores from each time point must be on a common scale. This context is sometimes described as a 

pretest/posttest design, where the pretest and posttest are either the same test, making their scales 

equivalent, or are carefully developed tests that share content and technical specifi cations that allow 

them to be equated and placed on a common scale. In contrast, when the scores are from different 

grade-levels as in Figure 1.1, their shared scale is typically called a vertical scale. 

Vertical scaling is a diffi cult enterprise, and casually or poorly constructed scales are a serious threat to 

the use and interpretation of gain scores and models based on them. To construct a defensible vertical 

scale, test designers must invest considerable work during the test development process to set content 

specifi cations that span a developmental continuum. Other requirements include items that meet these 

specifi cations, administration of tests to an appropriate sample of students during the scaling process, 

attention to statistical models for creating the vertical scale, and evaluation of the results of the scaling 

(Kolen & Brennan, 2004). Poorly designed vertical scales can result in serious distortions, including ceiling 

effects that artifi cially restrict the gains of initially high scoring students or spurious relationships between 

gains and initial status. This may lead to the illusion that high scoring students have greater gains than 

low scoring students, or vice versa, when this may not actually be the case. A well-designed vertical scale 

will minimize ceiling effects, support defensible interpretations about the relationship between gains and 

status, and be anchored to a substantive domain through which growth can be well understood.

Gain scores are sometimes accused of having low precision and reliability. However, reliability, like 

validity, is best expressed in terms of a desired purpose. If the primary interest is in ranking individuals 

by gain scores, then gain scores are often problematic and are best derived from tests that themselves 

have high reliabilities or data from multiple time points. If the magnitude of the gain is the target 

of inference, rather than relative rankings, gain scores are both appropriate and can have suffi cient 

precision (Rogosa, 1995). Finally, if group-level, or average gain scores are the target of inference, then 

gain scores can support precise inferences provided that the underlying vertical scale is defensible.

 Question 1.4: 

What Kinds of Group-Level Interpretations can the Gain Score Model Support?

Gain scores can be aggregated to the group-level by taking the average of a set of students’ 

gain scores. Average gain scores describe the average change in performance for the group. 

Similar to student-level gain scores, average gain scores are best suited for growth description 

at the group level. 
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The gain score model supports simple calculations of group-level statistics. Most commonly, the 

group-level summary statistic for a set of students of interest, such as in a particular classroom, 

grade level, school, or district, is the average of their individual gain scores. This summary statistic is 

typically referred to simply as an “average gain score.” 

Average gain scores provide descriptions of group-level growth. They describe how much the 

students in that group have improved on average. A near zero average gain score indicates that 

either all students had near zero gains or that there was rough balance between positive gains and 

negative gains that average to near zero. A positive average gain score indicates that students, 

on average, made positive gains, whereas a negative average gain score indicates that students 

generally declined in performance. 

Simple summary statistics are often insuffi cient to support full inferences about the distribution of 

student growth. Graphical displays of student gain scores often provide a clearer picture of the 

overall growth of a group.

Figure 1.2 illustrates a simplistic case in which two groups of students have the same average gain 

score but the distributions of gain scores are quite distinct. Both groups of three students have 

an average gain score of +2, as shown by the thick, vertical line at +2. In Group 1, shown in panel 

(a), all three students have the same gain score of +2. In contrast, in Group 2, two students have 

slightly negative gains of -2 and one student has a large positive gain of 10. Although both groups 

have an average gain score of +2, this single summary statistic provides a limited depiction of the 

distribution of growth of these groups. These coarse averages are best disaggregated when the 

primary purpose of reporting is the support of teaching and learning.

Figure 1.2

Different Distributions of Gain Scores with the Same Average Gain Score 

-10 -8 -6 -4 -2 0 2 4 6 8 10

Gain Scores

(a) Group 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

Gain Scores

(b) Group 2
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An extension of the gain-score model involves using gains as outcome variables in regression 

models. These models predict growth through individual, classroom, and school variables, and 

they identify relationships between these variables and magnitudes of growth over time. These 

types of models can be used to support value-added interpretations. For example, schools or 

classrooms associated with higher levels of average growth may be investigated to understand 

the mechanisms through which this growth may have occurred. However, although no model 

can support value-added inferences on its own, gain-based models are particularly poorly 

suited to value-added inferences given their dependence on vertical scaling properties. 

Vertical scales are typically developed to support growth description and not causal inference 

about growth. For example, in certain curricular domains, vertical scales often refl ect increased 

variability in student achievement as grade levels increase. This is consistent with a positive 

correlation between initial status and growth, where higher scoring students in any particular 

grade are predicted to make greater gains into the future. This is a useful observation for the 

design of instruction, but an undesirable feature for value-added models where giving credit to 

higher growth for higher-scoring students seems unfair. This is a reminder of the fundamental 

importance of specifying the intended interpretations and use of growth models.

 Question 1.5: 

How Does the Gain Score Model Set Standards for Expected or 
Adequate Growth?

Value judgments can determine cut points for “low,” “typical,” and “high” gain scores 

at the individual and group level. Growth expectations can also be norm-referenced 

by comparing students’ gain scores to the growth distribution of a reference group. A 

standard can also be set by anticipating whether a student or group is on track to some 

criterion in the future.

The simple gain score is an index of absolute growth, expressing how much a student grew on 

an absolute scale. Students, teachers, parents, and school administrators may want to know not 

only “how much” a student has grown, but also if that growth is “adequate” or “good enough.” 

As with most growth models, a standard setting committee composed of qualifi ed, informed, 

and invested stakeholders can be charged with defi ning adequate growth. The magnitude 

of the gain score may not be suffi cient to communicate the adequacy of growth. Intuitively, it 

may seem clear that negative gains are inadequate, but to ensure that all data users interpret 

the gain scores in a uniform manner, clearer reporting categories may be required. These 

categories can be determined in three different ways: 1) scale-based standard setting, 2) norm-

referenced standard setting, and 3) target-based standard setting. 
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Scale-based standard setting involves setting cut points on the gain-score scale to differentiate 

among gains, for example, “negative,” “low,” “adequate,” and “high” growth. For determining 

appropriate cuts on the gain score scale, a standard setting committee may consider the 

empirical distribution of gain scores to avoid setting unrealistic standards. Although the 

committee could decide to use the same set of cut scores across grades, the pattern of 

changes across grades would be unlikely to support common standards, as different gains are 

likely to vary across grade level. Similar procedures could be completed at the group level for 

classifying average gain scores as low, typical, or high group growth. 

Norm-referenced standard setting uses a distribution of gain scores from a “reference group” 

to set expectations about adequate growth. This reference group can be a static “norm 

group” sampled from some representative population. Alternatively, the reference group 

can be updated, defi ned each year based on current, operational student performance. A 

natural reporting metric is the percentile rank of each gain score in the reference group, where 

a student whose gain is above 75 percent of the reference group’s gains receives a growth 

percentile of 75.4 In this case, the effective reporting scale is the norm-referenced percentile 

rank scale, and a standard setting committee can identify where cut scores are located on 

this scale. As with scale-based standard setting, these norm-referenced standard setting 

procedures can be applied at the group level to set expectations for adequate group gains 

relative to the distribution of all groups’ average gain scores. 

Target-based standard setting classifi es students/groups as making adequate growth by 

determining if they are “on track” to some target standard at a future point in time. For 

instance, a target may be defi ned as reaching the profi ciency cut point in a particular grade 

level or exceeding the “College and Career Ready” standard by a particular grade. This 

intersects with the primary interpretation of growth prediction, and the trajectory model 

(described in the next chapter) uses the gain score in precisely this way. This extension to the 

gain score model assumes that students continue on their growth trajectories over time, making 

the same gains each year.

 Question 1.6: 

What are the Common Misinterpretations of the Gain Score Model and 
Possible Unintended Consequences of its Use in Accountability Systems?

The gain-score model aligns well with common intuition about growth over time. Biases 

and distortions can be introduced through poor vertical scaling. Gains can be infl ated by 

artifi cially defl ating prior scores. 

4 This contrasts with the Student Growth Percentile (Chapter 6), where the reference group is defi ned 
empirically by a subset of students with similar past scores. In this case, the reference group is a full 
distribution of current or past gains.
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The gain score model aligns closely with intuitive notions of growth. However, there are 

a number of shortcomings of gain-based descriptions that do not follow from common 

intuition about gains. First, simple gain-based approaches use only two time points and can 

be unreliable with respect to individual comparisons of gains. For more robust information 

about an individual’s growth trajectory, more than two time points may be required. This 

is generally addressed by using multiple time points and fi tting a simple regression-based 

estimate of an individual slope over time, resulting in an average gain score for an individual. 

More advanced estimates of individual growth curves can be supported with multiple time 

points, nonlinear trajectories, and latent growth curve analyses. These are natural extensions 

of the simple gain-score model.

Second, properties of the vertical scale may lead to correlations between initial status and 

growth that are poorly suited for accountability metrics. For example, some vertical scales 

refl ect the observation that variability in individual achievement increases over time. In 

these cases, high scoring students are more likely to make greater gains than lower scoring 

students. Although this may be a valid interpretation on a particular developmental score 

scale, it may be poorly suited for accountability metrics, where expectations for higher and 

lower scoring students may be required to be equal. On the other hand, these differential, 

scale-based expectations for lower scoring students may be precisely what the accountability 

model should refl ect. If the vertical scale is well developed, it may refl ect the reality that it 

is more diffi cult for lower scoring students to catch up without adequate intervention. The 

interactions between scaling decisions and growth expectations must be evaluated with 

respect to the inferences and actions that the growth interpretations support. 

Third, a vertical scale that is poorly designed will have biases built into the scale. In these 

cases, associations between initial status and growth may be spurious, and expectations 

based on growth will be similarly unrealistic for higher and lower scoring students. 

Hidden ceiling and fl oor effects will lead to an inability of high or low scoring students to 

demonstrate their true growth. In general, the considerable reliance of the gain-score model 

on responsible vertical scaling leads to greater dependence of results on scaling properties. 

When there are weaknesses, they are likely to arise accidentally, but they are diffi cult to 

detect without thoughtful exploratory data analysis.

Finally, another feature of gain scores can be manipulated more cynically when gain scores 

form the basis of high-stakes accountability decisions. It is apparent from the calculation of 

the gain score that a student can have a higher gain by increasing his or her current score. 

This is a desired response to accountability pressures. However, it is also possible to reverse 

this — a student can have a higher gain by decreasing his or her previous score. This could be 

achieved by distorting reporting, but also more systematically by pushing less experienced 
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teachers to early tested grades. Although this may appear cynical, this guidebook would 

be incomplete without a comprehensive presentation of both intended and unintended 

consequences of each model as it may function in practice.
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CHAPTER 2
 The Trajectory Model

The trajectory model is a natural extension of the gain score 

model. Like the gain score model, the trajectory model is 

gain-based, but instead of describing growth, the trajectory 

model is used primarily for growth prediction. The model 

uses student gain scores to predict student scores in some 

future year. The trajectory model, as the name suggests, 

assumes that a student will continue on his or her same 

trajectory, which is usually operationalized as an assumption 

of linear growth. That is, a student makes the same gains 

each year. For instance, if a student gained 3 points this 

year, the trajectory model predicts that he or she will gain 3 

points in each subsequent year as well. The trajectory model 

answers the question 

If this student continues on her trajectory, 
where is she likely to be in the future?

An additional and sometimes essential component of 

models for growth prediction is a determination of whether 

future predicted performance is satisfactory. Trajectory 

models can support this determination by providing an 

“on track” trajectory for each student into his or her future 

as well as a “predicted” trajectory based on the student’s 

observed gains. The on-track trajectory is formed by 

determining the annual gains needed to meet a target score 

in x years. A comparison between a student’s predicted and 

on-track trajectory can support a decision about whether a 

student is making adequate gains toward the future target 

score. This is discussed further in Sections 2.2 and 2.5. 

 Question 2.1: 

What Primary Interpretation Does the Trajectory Model Best Support?

By assuming that past gains will continue into the future, trajectory models provide 

predictions for future scores. They support growth predictions. 

TRAJECTORY MODEL  

Aliases and Variants: 
•  Growth-to-Standards Model
•  Gain-Score Model

Primary Interpretation: 
Growth prediction

Statistical Foundation: 
Gain-based model

Metric/Scale: 
Predicted future score — on 
the common scale of inputted 
test scores

Data: Vertically-scaled tests 
from an initial time point to 
the fi nal target time point and 
observed test scores from two 
time points

Group-Level Statistic: 
Average slope, or percentage 
of students “on track” to 
reaching profi ciency in x years 
or average trajectory 

Set Growth Standards: 
Defi ne future standard and the 
maximum time until standard is 
reached

Operational Examples:
NCLB Growth Model (e.g., 
Alaska, Arizona, Arkansas, 
Florida, and North Carolina)
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In the gain score model discussed in the previous chapter, the gain score — the difference 

between current and initial status — describes growth as the change from a previous time 

point to a current time point. The trajectory model uses this gain score as the basis for a growth 

trajectory extending into the future. Figure 2.1 illustrates this process. 

Figure 2.1 uses the same hypothetical student’s data from Figure 1.1, where the gain score was 

illustrated. As shown by the solid, black dots, this student earned a score of 350 in Grade 3 in 

2010 and then a score of 375 in Grade 4 in 2011. The vertical distance between these scores 

corresponds to her gain score: 375 – 350 = + 25 from Grade 3 to Grade 4. For this gain score 

to be an interpretable quantity, the scores at Grades 3 and 4 must be expressed on a common 

vertical scale. If this scale also underlies tests at subsequent grade levels, gains through 

subsequent grade levels will also be interpretable quantities. 

Figure 2.1 

The Trajectory Model Makes Predictions about Future Student Performance, Assuming 

that Gains Will Be the Same over Time
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+25 (Predicted Gain Score)

From Grade 3 to Grade 4, Figure 2.1 displays the student’s actual, or observed, gain. 

Accordingly, the gain score from Grade 3 to Grade 4 is labeled the “Observed Gain Score.” 

These two points alone comprise the gain score model from the previous chapter. The 

trajectory mode requires the additional assumption that this student will continue to make 
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positive gains of 25 points each year. In this way, trajectory models support visualization of the 

student’s achievement trajectory from now into the future, as illustrated in Figure 2.1. This line 

has a positive slope because the student made positive gains; if she had made negative gains, 

then the line would have a negative slope. The trajectory could be extending past Grade 6 by 

continuing in this way — adding 25 points to the student’s previous score to obtain a predicted 

score in the subsequent grade — as long as the grade level assessments are all on the same 

vertical scale. 

The vertical scale suggests that the difference of 25 points each year is comparable over 

time. This desired property is known as an equal-interval scale property, where differences, or 

equal intervals, share the same interpretation over the applicable range of the scale. Physical 

scales for height and weight generally support this property: a gain of 5 pounds is equivalent 

regardless of whether the individual originally weighed 120 pounds or 220 pounds. However, 

test score scales generally have weak arguments for equal-interval scale properties. It is diffi cult 

to argue that an achievement gain of 5 points in Grade 3 is the same as an achievement gain 

of 5 points in Grade 8, for example, because the material learned in the two grades can differ 

substantially. The argument becomes more diffi cult to support as the scale spans more grade 

levels. From this perspective, the trajectory is more defensible as a descriptive and aspirational 

prediction than it is as an empirical prediction.

Figure 2.1 helps to visualize how trajectory models answer the key question they address: If 

this student continues on her trajectory, where is she likely to be at some point in the future? 

Trajectory models are appealing because they predict growth along a linear trajectory, which is a 

straightforward way of extrapolating from an observed linear change. The intuition aligns with that 

of physical momentum or even Newton’s First Law — an object in motion tends to stay in motion.

 Question 2.2: 

What is the Statistical Foundation Underlying the Trajectory Model?

Trajectory models are an extension of the gain score model that extrapolates from student 

gains to predict future performance. They are gain-based models. 

Of the three statistical foundations presented in the introduction (gain-based models, 

conditional status models, and value-added models), trajectory models have a gain-based 

statistical foundation. Unlike the gain score model, which typically involves computing a single 

or average gain score over observed time points, the trajectory model extrapolates from 

observed gains to future time points.

The extrapolation of gains to support predictions is usually linear, as shown in Figure 2.1. 

However, in some cases, a nonlinear, curving predicted trajectory is warranted. If scales are 
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designed to support these nonlinear trajectories, then these nonlinear expectations can 

be built into the extrapolated trajectory. If, for example, there is a known acceleration in 

trajectories due to the design of the vertical scale, a gain can be algebraically accelerated 

in future years to match the assumptions of the vertical scale. In these cases, the statistical 

foundation is still fundamentally gain-based, as this accelerating factor is applied 

fundamentally to the observed gain. The key feature of gain-based models is the centrality of 

the gain to all calculations and inferences.

Another straightforward extension of the trajectory model is an averaging of the gain across 

multiple observed time points. The previous section noted that the gain-score model is capable 

of supporting average gains over more than two time points. These average gains can be 

extended in a linear fashion into the future to support predictions. These average gain or slope-

based models use average gains over a given unit of time and extend them in a linear fashion. 

When the vertical scale supports this averaging of gains, these averages over multiple time 

points result in more robust estimates of student trajectories than simple gains over only two 

time points.

A contrasting use of the trajectory model involves “resetting” the trajectory after each year 

of data collection, using only the two most recent years of data to establish a gain-score and 

a linear extrapolation. This approach sacrifi ces robustness in the estimation of a linear trend 

for simplicity and ease in explanation. If the vertical scale properties do not hold over multiple 

grades, this approach can theoretically minimize the distortion imparted by poor vertical 

scaling; but in these cases, the best approach would be to select a model that does not require 

a vertical scale.

 Question 2.3: 

What are the Required Data Features for the Trajectory Model?

The trajectory model requires student test score data from at least two time points and 

a common, vertical scale that underlies all observed and predicted test scores from the 

initial observed score to the future unobserved prediction. 

The trajectory model is a gain-based model whose primary supported interpretation is growth 

prediction. The only student data it requires are student test scores from two time points. The 

difference between the two test scores is the student’s observed gain score, and this gain is 

extrapolated, usually linearly, into the future. Accordingly, this model requires that test scores 

from all observed and future time points of interest are linked to a common vertical scale. 

Vertical scales facilitate comparison of scores from one year to the next. If the tests from 

the two time points are on different scales, then their score differences do not meaningfully 
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relate to changes in performance over time. Using different test scales is analogous to a 

scenario in which an individual takes the temperature one day in Fahrenheit and the next day 

in Celsius, and then takes the difference of the two temperatures on different scales. This 

simple difference is diffi cult to interpret and cannot indicate whether the temperature has 

risen or fallen due to the differences between the scales. In this simple case, the conversion 

of the scales is well known, and a simple linear conversion can locate them on the same 

scale. Vertical scaling is less simple, particularly when the nature of the achievement being 

measured changes fundamentally across grades. Calculating a gain score or trajectory is in 

this case more akin to subtracting temperature on a Fahrenheit scale from humidity on a 

percentage scale, where no simple conversion either exists or is reasonable.

Compared to the gain-score model in the previous chapter, trajectory models are generally 

more dependent on vertical scales. This is because vertical scales become more tenuous 

as the grade span increases. For a simple gain-score model with only two adjacent grades, 

the vertical scale may be well supported. In contrast, trajectory models extrapolate from 

observed gains to future status in even higher grades. There, the argument for a common 

scale can be more diffi cult to support, particularly if the achievement measured in the higher 

grades cannot be mapped meaningfully to achievement measured in the lower grades. 

Depending on the uses of growth predictions, trajectories across particularly large grade 

spans may warrant caveats. Evaluation of the vertical scale is necessary across the entire 

range of grade levels through which the trajectory model extends. 

 Question 2.4: 

What Kinds of Group-Level Interpretations can the Trajectory Model Support?

The average gain score for a group can be extrapolated as if it were for an individual, 

supporting group growth prediction. Alternatively, each student may be classifi ed as 

“on track” by his or her individual trajectory. This can be aggregated to a group-level 

interpretation about the percentage of students who are on track.

The trajectory model supports group-level interpretations in at least two ways. One 

approach concerns average gains and average predictions. This requires calculation of the 

average gain score of the group. The gain is extended into the future to illustrate as if it 

were an individual trajectory, but it can be interpreted as the predicted average trajectory 

of all students in the group. A second approach begins with a straightforward standard 

setting approach described in the next section. This approach classifi es a student as “on 

track” to a future target cut score if the student predicted status exceeds the cut score at 

the grade of interest. These student classifi cations can be aggregated into a “percentage of 

on-track-students” statistic. 
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Figure 2.2 

Illustration of the Trajectory Model at the Aggregate Level for Three Students (A, B, and C). 
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Figure 2.2 illustrates both of these group-level methods for the trajectory model. In this 

fi gure, the trajectory for the student used in Figure 2.1 is displayed as the line with score 

points denoted by the letter “B.” Two additional students, A and C, are part of this student’s 

group. Groups are a general construct and can be formed by students with a common 

teacher, school, school district, or demographic subgroup. For simplicity, assume that these 

three students comprise all fourth graders in a particular school. The average trajectory for 

these three students is shown by the thicker black line with open, black dots denoting the 

average scores at each time point. For both the students and the average trajectory lines, 

the fi rst line segment connecting the scores from Grade 3 to Grade 4 is solid because it 

corresponds to observed gain, whereas the line segments between Grades 4 and 6 are 

dashed because they correspond to predicted gains. 

Calculation of the average trajectory proceeds by taking the simple average of the three 

scores at each of the four time points, then simply connecting the dots. An alternative and 

algebraically equivalent formulation involves 1) taking the average scores of the observed 

time points in Grades 3 and 4; 2) connecting these two points to depict the average observed 

gain (the solid, bold line); and 3) extending this gain in a linear fashion through Grades 5 

and 6 (the dashed, bold line). The average observed gains for students A, B, and C are +30, 

+25, and -10, respectively. The average gain of +15 is the group-level average gain, and the 
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trajectory shown in Figure 2.2 is the visual representation of this gain of +15 extrapolated in a 

linear fashion over the next two grades.

Figure 2.2 also shows a target cut score, set through a process described in the next section, 

that is established at 440 in Grade 6 and marked by a gray asterisk. The location of each 

student’s predicted Grade 6 score can be compared to this line, and it is clear that only student 

A’s predicted score exceeds this future standard. An alternative description of group-level 

growth prediction is that 1/3 or 33 percent of students are on track to the future standard. In 

practice, because students are either profi cient, on track, or not on track, the percentage of 

on track students is either added to the percentage of profi cient students or expressed as a 

percentage of nonprofi cient students who are on track Hoffer, Hedberg, Brown, Halverson, 

Reid-Brossard, Ho, & Furgol, 2011). The suffi ciency of these percentages can be compared 

to minimum required percentages of profi cient and on-track students (for example, Annual 

Measurable Objectives) that are set by other policy committees. The importance of standard 

setting is emphasized in this next section. 

 Question 2.5: 

How Does the Trajectory Model Set Standards for Expected or 
Adequate Growth?

The adequacy of predicted student (or group) growth can be determined by the slope 

of the student trajectory or the student’s predicted future status. At the group level, 

expectations can also be set on the average slope, the average predicted future status, or 

the percentage of students predicted to be on track to meeting a target future status. To 

identify any particular target future status, a time horizon must also be designated.

The trajectory model can support a variety of standards for expected growth. At the individual 

level, the slope of the trajectory can be compared to a standard, but this is equivalent to setting 

a standard on gain-scores, and this is described in the previous chapter. A more common 

approach, related to the model’s primary interpretation of growth prediction, is to compare an 

individual’s predicted future status to a standard. For any individual trajectory, this comparison 

requires two pieces of information: the time horizon to meet the standard and the cut score at 

that time horizon. Following the previous section, this could be expressed as 440 by Grade 6. 

These standards follow from policies that might dictate, for example, student profi ciency, or 

that students should be college and career ready by high school graduation. Profi ciency in 

lower grades may take the form of college readiness cut scores in Grade 12 that are articulated 

down through earlier grades. Trajectories can be compared with target cut scores to evaluate 

whether students are on track. 
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Here, it is worth noting that there are two seemingly different but actually equivalent 

approaches to evaluating on-track status. First, the gain score can be extrapolated and 

compared to the future target cut score. In Figure 2.2, for example, this results in a statement 

like, “Student B has a gain of 25 points and is on track to a score of 425, which is below the 

target score of 440.” Alternatively, the required gain could be calculated by comparing the 

future cut score with the initial status, calculating the required gain, and comparing this to 

the student’s actual gain, resulting in a statement, “Student B gained 25 points this year 

but needed 30 to be on track to a score of 440.” These two formulations are algebraically 

equivalent and should not be considered to be different models.

For trajectory models, the selection of the time horizon to meet a cut score is just as 

consequential a standard setting decision as the selection of the cut score itself (Ho, Lewis, & 

Farris, 2009). A longer time horizon to reach profi ciency is generally more lenient and realistic, 

and a shorter time horizon is generally more stringent. Time horizons can be set by a fi xed 

number of years from the time a student enters the data system. In Figure 2.2, the student 

must be profi cient within three years of entering the system. If profi ciency is required before 

exiting a school, the horizon can be set, for example, as “three years from entry into the 

system or by graduation, whichever is sooner.” As a student progresses through grade levels, 

an additional decision must be made about whether to have a fi xed time horizon for each 

student or allow the time horizon to shift and effectively reset, always staying, for example, 

two years ahead of the student’s most recent completed grade.

Whenever cut scores in different grades serve as targets for a trajectory model, these cut 

scores must be articulated, that is, they must share a common meaning and, ideally, a similar 

level of relative stringency across grades. Without this articulation, counterintuitive results 

follow, including students who are on track to profi ciency in Grades 4 and 6 but are not on 

track to profi ciency in Grade 5. The issues of time horizons and articulated cut scores arise in 

any model for growth prediction that sets standards in terms of a future cut score.

Expectations can also be set on adequate growth at the group level. A group’s average 

trajectory can be extrapolated to determine if, on average, the students in the group are 

predicted to meet/exceed the future target score. This was illustrated in Figure 2.2. The 

average trajectory in this illustrative example results in a predicted average Grade 6 score that 

is lower than the target Grade 6 score. Groups whose averages are not predicted to meet the 

target future score could be deemed as “not making adequate growth,” and groups whose 

averages are predicted to meet the target could be deemed as “making adequate growth.” 

In contrast, standards can be set on the percentage of students who are predicted to be “on 

track.” In practice, this percentage can be combined or cross-referenced with the percentage 

of profi cient students. Each student can be classifi ed into one of four mutually exclusive 
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categories: 1) profi cient and on track, 2) profi cient and not on track, 3) not profi cient and 

on track, and 4) not profi cient and not on track. Under a status model such as the original 

incarnation of the No Child Left Behind Act (NCLB), only the fi rst two categories counted 

positively for a school. A growth model can count the fi rst three categories positively, or it 

may count only categories 1 and 3. The former approach, one that takes the union of status 

and growth, was a popular strategy among states using the trajectory model for revised 

NCLB purposes (Hoffer et al., 2011).

 Question 2.6: 

What are the Common Misinterpretations of the Trajectory Model and 
Possible Unintended Consequences of its Use in Accountability Systems?

The trajectory model is aligned with user intuition about growth over time. However, it 

is deeply dependent on the underlying vertical scale, and the model can create unusual 

incentives to artifi cially lower initial scores, infl ating gain scores and thus trajectories. 

Trajectory models are intuitively appealing because they allow for growth predictions 

that follow an assumption of linear growth over time. However, extrapolated predictions 

based on linear growth are not empirical as much as descriptive and aspirational, and the 

prediction requires thoughtful construction of an underlying vertical scale. Just as gain-

score models can be distorted by vertical scales, trajectory models with poorly developed 

scales can have ceiling effects, fl oor effects, and spurious relationships between initial 

status and growth.

The equal-interval property assumed of vertical scales, where a gain in 25 points from 

Grade 3 to Grade 4 is assumed to be equivalent to a gain in 25 points from Grade 7 to 

Grade 8, can be more salient here than in gain-score models due to the extension of 

trajectories across a large grade span. In extreme cases, the predictions from trajectory 

models can extend to future score points that simply do not exist. Student C in Figure 2.2 

is predicted to have an extremely low Grade 6 score that may not even be possible on the 

Grade 6 test. A nonsensical trajectory does not invalidate trajectory models but motivates 

thoughtfulness in reporting and use of model results.

Finally, as in the gain-score model, trajectory models that function in isolation can motivate 

not only increases in current scores, but decreases in past scores, as both will augment 

gains and increase predicted trajectories. A simple approach to diminishing this “fail-fi rst” 

incentive is the application of a status model in conjunction with a growth model, where the 

artifi cial defl ation of earlier scores is only an advantage if the scores do not fall below the 

status-relevant cut score.
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CHAPTER 3
The Categorical Model

Categorical models characterize growth in terms 

of changes in performance level categories from 

one grade to the next. They are also referred to as 

transition models, transition matrix models, or value 

tables. These names are often used interchangeably, 

although the term “value table” typically refers 

specifically to categorical models that assign 

differential values or weights to transitions.

The categorical model is a gain-based model that 

is fundamentally similar to the gain score model. 

Instead of expressing gains as the change in scale 

score points from one year to the next, the categorical 

model expresses gains as the change in performance 

level categories from one year to the next. This 

results in a large reduction in information about 

student scores, as the entire range of score points is 

substantially reduced to a small number of reporting 

categories. Positive gains are associated with moving 

up one or more performance levels, whereas negative 

gains are associated with moving down one or 

more performance levels. In this sense, categorical 

models support growth descriptions like the gain 

score model. Although, compared to using the scale 

score, performance level categories are coarser and 

information is lost, the categorical model is easy to 

describe and explain, particularly if the category 

defi nitions are relevant and well understood. 

Categorical models also implicitly support growth 

predictions. Transitions through past categories 

can support predictions about student location in 

categories in the future. Categorical models can 

address both of the following questions: 

CATEGORICAL MODEL 

Aliases and Variants:
•  Transition Model
•  Transition Matrix Model
•  Value Table

Primary Interpretation: 
Growth description and 
growth prediction

Statistical Foundation: 
Gain-based model

Metric/Scale: Change in 
performance level categories 
(categorical scale)

Data: Performance levels 
articulated across years 
(implicit vertical scale), 
student status expressed by 
performance level, and values 
for transitions if value tables 
are used

Group-Level Statistic: 
Percentage of students 
“on track” to profi ciency or 
average value across value 
tables

Set Growth Standards: 
Defi ne cut scores for 
performance levels and values 
for value tables; specify rules 
for students being counted 
as “on track”; establish what 
average value is good enough

Operational Examples:
NCLB Growth Model (e.g., 
Delaware and Iowa)
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How has this student grown in terms of transitions through 
performance level categories over time? 

In which category will she likely be in the future?

An advantage of categorical models is their conceptual simplicity. However, they can 

rely on a large number of explicit and implicit judgments. Some accountability systems 

prefer to value certain transitions between performance levels more than others, 

resulting in a categorical model that is often called a “value table.” There is also a series 

of less obvious judgments involved in setting the cut scores that delineate each category. 

These decisions require consideration of several issues, including the transitions 

that receive weight, the differential weighting of transitions, and cut score articulation 

across grades.

 Question 3.1: 

What Primary Interpretation Does the Categorical Model Best Support?

Categorical models can support both growth description and growth prediction. 

They describe how much students grow from one year to the next in terms of changes 

in performance level categories. Categorical models can also implicitly or explicitly 

predict the category a student will achieve in the future, under an assumption of 

linear progress across categories.

Categorical models support growth descriptions and growth predictions. Like both 

the gain score and trajectory model, the categorical model is based on a 

conceptualization of growth as an increase in score points from one year to the next. 

The fundamental distinction between the categorical model and the other gain-based 

models is that the categorical model uses score points that are expressed as a small 

number of performance level categories as opposed to using the tests’ entire score 

point scale. Performance level categories are often ascribed names like “Below Basic,” 

“Basic,” “Profi cient,” and “Advanced” that denote varying degrees of mastery. The 

numerical test score scale is divided into these ordered categories by cut scores on the 

test scale. Figure 3.1 illustrates this for a hypothetical test scale that ranges from 

100 to 200 points. 

Figure 3.1

Illustration of a Test Scale Divided into Ordered Performance Level Categories by Cut Scores

Below Basic Basic Profi cient Advanced

 120100 150 185 200
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As shown in Figure 3.1, ordered performance level categories are just a “chunking” 

of the numerical test scale. A student who earns a score of 125 is in the “Basic” 

performance level, as her score falls between 120 and 150. The scores of 120, 150, 

and 185 are cut scores that divide the four performance level categories. In the usual 

standards-based testing scenario, a standard setting committee would determine 

the cut scores with careful consideration of the test scale, item content and difficulty 

levels, student performance on the items in the tests, and the qualitative descriptions 

of each category. In this example, they are chosen for illustration. Before cut scores 

can be determined, the categories must be carefully defined so that they relate to 

distinct skill sets and mastery levels. Simply dividing the scale into a set of categories 

is not useful unless each category provides useful information about a student’s 

achievement level. 

To implement a categorical growth model, performance levels are ideally articulated 

across grade levels, meaning that they are defined with qualitative descriptions and 

cut scores that reflect not only within grade mastery but a continuum of mastery across 

several grade levels. The same set of category names are usually used in each grade, 

but the qualitative descriptions of the categories differ across grades as they reflect 

different skill sets and ability levels. Accordingly, the cut scores that distinguish among 

the categories may vary in relative stringency across grades. This is discussed further 

in Section 3.5.

After articulating cut scores across all the grade levels of interest, the decisions 

supported by the categorical model can be illustrated by a “transition matrix.” 

Table 3.1 gives an example of a transition matrix for the change in performance level 

category from Grade 3 to Grade 4 for a state mathematics test. In this illustrative 

example, each grade-level test scale is divided into four categories — Below Basic, 

Basic, Proficient, and Advanced — like in Figure 3.1. The cells along the diagonal are 

shaded grey. These shaded cells correspond to cases in which a student maintains the 

same performance level category in Grade 3 and Grade 4. The cells below the 

diagonal correspond to cases in which a student goes down one or more performance 

levels from Grade 3 to Grade 4. The remaining cases, the cells above the diagonal, 

represent growth or moving up one or more performance levels from Grade 3 to 

Grade 4. A student, represented by a stick figure, falls in one of these cells — in the 

first row and second column. This student scored at the Below Basic level in Grade 3 

but in the Basic level in Grade 4. This change in performance level from Grade 3 to 

Grade 4 signifies that the student improved, grew, or increased in terms of achievement 

level categories. 
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Table 3.1 

Example of a Transition Matrix

Performance Level in Grade 4

Performance 

Level in Grade 3
Below Basic Basic Profi cient Advanced

Below Basic

 

Basic

Profi cient

Advanced

 

Table 3.1 illustrates the use of categorical models for growth description. This simple table 

shows the student of interest increased one performance level category. Within the Grade 

3 domain of mathematics, the student only had a Below Basic understanding and mastery 

of the material. However, in Grade 4, she has improved to a Basic understanding of Grade 4 

mathematics. Ostensibly, in terms of achievement level categories, this student has grown.

Interpreting a change in achievement level categories as growth can lead to some 

counterintuitive fi ndings. To clarify these fi ndings, it can be useful to imagine a vertical 

scale that underlies the achievement level categories across grades. This is shown in Figure 

3.2. One counterintuitive fi nding is that the maintenance of an achievement level over 

time represents a kind of stasis. This may confl ict with commonsense notions of growth, as 

maintenance of a standard across grades generally requires growth, as shown by the green 

student in Figure 3.2. This confl ict is generally resolved by observing that interpretations of 

achievement level categories across grades are more relative than they are absolute. 

A second counterintuitive fi nding is that similar levels of growth over time may or may not lead 

to a change in categories. As Figure 3.2 shows, two students (represented by the green and red 

stick fi gures) who make the same absolute scale score gains can either maintain the profi ciency 

category or rise from Basic to Profi cient depending on their starting point and their position with 
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respect to the cut scores. This is explained by the loss of information that arises from dividing 

the score scale into a small number of categories. As a corollary, a change in categories can be 

associated with a very wide range in actual gains, simply due to where the student happens to be 

within the coarse category regions. For example, the blue student scores at the very bottom of 

the scale in Grade 3 and then at the upper boundary of the Profi cient category in Grade 4. The 

red student scores at the top of the Basic category in Grade 3 and the bottom of the Profi cient 

category in Grade 4. The categorical model treats these two students’ gains as equivalent. 

Figure 3.2 

Illustration of Possible Contradictions when Mapping a Vertical-Scale-Based Defi nition of 

Growth onto a Categorical Defi nition of Growth

Grade 3 Grade 4

Sc
o

re
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Advanced

Proficient

Basic

Advanced

Proficient

Basic

As the previous discussion demonstrates, the categorical model affords growth interpretations 

through the articulation of achievement level categories across grades. Although this does not 

require an explicit vertical scale, the resulting interpretations of results assume that a vertical scale 

exists. Through the articulation of cut scores across grades, the categorical model creates an implicit 

vertical scale. Even if a performance level happens to describe different domains across grades, the 

implicit assumption is that an increase in achievement levels is desirable and interpretable as growth. 

If the categorical model supports growth interpretations, it is essential that the performance 

level categories are carefully defi ned and are vertically aligned over an underlying achievement 
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continuum. If scores at the top of the Basic category refl ect markedly different achievement 

than scores at the bottom of the category, then the category should be further subdivided into 

fi ner categories, or alternatives like trajectory models should be considered. 

To support growth predictions, categorical models can include the assumption that 

transitions across categories will continue in a linear fashion over time. This is a coarser, 

categorical version of the trajectory model that assumes that students continue to make the 

same gains each year as they have in recent years. If a student improves one performance 

level category from last year to this year, it might seem reasonable to then assume she 

will improve one more performance level category next year. In our illustrative example, 

our student of interest went from Below Basic to Basic from Grade 3 to Grade 4. Thus, if 

the student continues to make such growth, we would predict that she would move up yet 

another performance level next year and be Profi cient. Rules can be set to label students as 

“on track” to reaching a desired performance level, such as Profi cient or College and Career 

Ready. Section 3.5 discusses these rules further. 

 Question 3.2: 

What is the Statistical Foundation Underlying the Categorical Model?

The categorical model is a re-expression of the gain score model using performance level 

categories instead of scale scores. It is implicitly a gain-based model of growth. 

The categorical model and the gain score model (Chapter 1) are similar in concept, although 

they express growth on different scales. The gain score model requires that each grade level 

test be linked to a common vertical scale, allowing for scores across grades to be comparable. 

It then defi nes gain scores as the difference in scale score points from one year to the next. In 

contrast, the categorical model requires that each grade level test scale be divided into distinct 

achievement level categories that have accompanying qualitative descriptions of the skills and 

mastery level students at that level should have. It then defi nes gain scores as the difference in 

performance level categories from one grade to the next. 

Gains in the categorical model can be expressed qualitatively, for example, “She was Below 

Basic in Grade 3 and Basic in Grade 4.” The gains can also be expressed numerically, as in “a 

gain of one achievement level.” The range of possible gains is substantially reduced from the 

gain score model to the categorical model. The gain score model uses the entire range of 

possible score scale points, whereas as the categorical model collapses the score scale into a 

far smaller number of categories. 

Categorical models allow for fl exibility in the assignment of numbers or values to each 

category or to each transition. In the previous example, the transition could be weighted by 
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the number of categories that each student changed. This numerical assignment would result 

in any increase of one performance level to correspond to a gain of +1, any decrease in two 

performance levels corresponds to a gain of -2, and so on. In contrast, all positive transitions 

might be valued as +1 regardless of how many categories a student jumped. In other cases, 

certain transitions might be valued higher than others. 

A categorical model that uses careful assignment of different values to each transition is 

often referred to specifi cally as a “value table.” Table 3.2 provides an example of a value 

table. In response to the allowance of growth models under the Growth Model Pilot Program, 

Delaware, like several other states, adopted a categorical model for determining accountability 

calculations under NCLB. In this example, there are four performance level categories below 

Profi cient. Any non-profi cient student that gains in terms of achievement level categories 

receives a particular number of points. Students that reach the desired performance level 

category of Profi cient receive the highest weight of 300 points. For the remaining positive 

transitions, larger jumps and jumps starting from performance level categories closer to 

Profi cient are weighted highly. For instance, a student transitioning one category from Level 1A 

to Level 1B counts for 150 points, whereas a student transitioning one category from Level 1B 

to Level 2A counts for 175 points. 

Table 3.2

Example of a Value Table

Year 2
Level

Year 1
Level

Level
1A

Level
1B

Level
2A

Level
2B Profi cient

Level 1A 0 150 225 250 300

Level 1B 0 0 175 225 300

Level 2A 0 0 0 200 300

Level 2B 0 0 0 0 300

Profi cient 0 0 0 0 300

Source: Delaware Department of Education. (2010). For the 2009-2010 school year: State 

accountability in Delaware. Retrieved from, http://www.doe.k12.de.us/aab/accountability/

Accountability_Files/School_Acct_2009-2010.pdf

The choice of values for a transition matrix can depend on several factors, such as policy and 

accountability decisions, the number of performance levels, the perceived diffi culty in making 
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certain jumps in performance levels, and the time horizon for reaching a desired performance 

level. The relative advantage of the value table is that it can set clear incentives for schools 

for particular achievement level transitions. Although the accuracy of individual growth 

reporting and prediction may degrade due to the loss of information into broad categories, 

the categorical model can clearly communicate the relative priorities of educational policies. 

Section 3.5 further delves into important considerations when setting values. 

 Question 3.3: 

What are the Required Data Features for the Categorical Model?

The categorical model requires student achievement levels at each time point of interest. 

These achievement levels are defi ned by cut scores and qualitative descriptions relating to 

student profi ciency. Interpreting the transition between achievement level categories as 

growth requires an implicit vertical scale. 

The categorical model only requires student test scores reported in achievement levels 

like Basic, Profi cient, and Advanced. The mapping of scores to achievement levels requires 

decisions about the number of achievement levels, the descriptions of these levels in terms 

of student performance, and the cut scores that divide the achievement categories on the 

score scale. 

State testing programs commonly set achievement level cut scores in the process of 

test development. However, these categories may be insuffi cient for supporting growth 

interpretations in a categorical model. If a state decides to use a categorical model for 

reporting growth to profi ciency but only has three performance levels currently in place 

— Basic, Profi cient, and Advanced — then a student cannot be deemed as “on track” to 

Profi cient without actually reaching the profi ciency performance level. If a Basic student 

moves up one level, that student is not on track to profi ciency, that student is simply 

Profi cient. In these situations, it is useful to subdivide the Basic category to facilitate fi ner-

grain tracking of student progress toward profi ciency. 

An essential requirement of the categorical model is that achievement levels must be 

articulated across the grade levels for which the growth model is applicable. Cross grade-

level performance levels are linked in several fundamental ways. First, tests in each grade-

level of interest must have the same set of performance levels. In other words, if the Grade 

3 levels are Low-1, Low-2, Intermediate, Profi cient, and Advanced, then the Grade 4 levels 

must also be Low-1, Low-2, Intermediate, Profi cient, and Advanced and likewise for all 

other grades of interest. Second, although the cut scores that classify students into each 

of these categories may change for each grade-level, compared to the other performance 
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levels, a particular performance level should correspond to the same relative achievement 

level each year. Moreover, the performance levels in and across grades must be aligned to 

some underlying continuum of mastery. Under these conditions, it is meaningful to attach 

interpretations of progress or growth to a change from Low-1 in Grade 3 to Low-2 in Grade 

4. Once such interpretations are made, however, even if the tests do not have an explicit 

vertical scale, model users are implicitly assuming a vertical scale exists across all the grade 

levels of interest.

 Question 3.4: 

What Kinds of Group-Level Interpretations can the Categorical 
Model Support?

At the group-level, the two most typical statistics reported for the categorical model are the 

percentage of students “on track” to a desired performance level, like profi ciency or college 

and career readiness, and the average transition value over all the students in a group. 

Like the trajectory model, the categorical model is often implemented as a way to monitor 

and incentivize progress toward a desired performance level, such as profi ciency or college 

and career readiness. Accordingly, a natural statistic to summarize group-level growth 

under this model is the percentage of students on track to the desired performance level. 

An alternative group-level statistic, particularly when weights are differentially attached to 

transitions (see Table 3.2), is the average transition value for all the students in the group. 

The percentage of on-track students describes group growth in terms of progress toward 

a desired goal. If a large percentage of students is making progress, this suggests that the 

group is generally improving with respect to a future standard. As with trajectory models, 

the percentage of on track students is either added to the percentage of profi cient students 

or re-expressed as a percentage of students eligible to be on track. These percentages can 

themselves be compared to benchmarks such as Annual Measurable Objectives or other 

minimum required percentages.

Another useful feature of value tables is that average values for groups are interpretable as 

a kind of average growth. For a simple case where a value table’s cells correspond to the 

number of categories a student has gained or declined, the average over all students is the 

average gain in categories for that particular group. More generally, value tables like those in 

Figure 3.2 can be compared against the value scheme, in this case, a 0 to 300 scale, to gauge 

whether students are generally making transitions toward the desired target. An additional 

standard setting procedure may be used to determine whether averages of value tables are 

suffi cient for particular groups. 
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 Question 3.5: 

How Does the Categorical Model Set Standards for Expected or 
Adequate Growth?

The categorical model is more dependent on judgmental standard setting procedures 

than most growth models. The scores that support growth calculations are achievement 

level categories determined by standards. Additional judgments must be incorporated to 

determine which category transitions are suffi cient or what value they should be assigned. 

A third level of standard setting may be useful for evaluating whether group-level average 

growth is suffi cient.

In categorical models, growth is operationalized as a transition between categories. Any 

increase in a category may be deemed as adequate. Or, a relative value can be assigned to 

each transition as in Table 3.2. The value table framework adequately captures the scope of the 

standard setting task. It also illustrates the amount of control that policy designers can have in 

communicating the desired incentive structure to stakeholders.

In simple models where any category gain is suffi cient, an additional implication is that the 

student is on track to successively higher categories in the future. In this way, the categorical 

model functions as a coarse trajectory model, where a gain of one category is extrapolated and 

assumed to extend to future time points until profi ciency is eventually met. 

For group growth, whether the growth statistic is the percentage of on-track students or the 

average of value table scores across students, separate standard-setting procedures will be 

required to establish whether these group growth magnitudes are suffi cient.

A feature of the categorical model is that no intuitive standard for growth arises naturally from 

the model. There is instead a degree of control in the form of the value table. The value table is 

at once transparent in its dependence on user input and deceptive in its coarseness and in its 

functioning as an implicit vertical scale.

 Question 3.6: 

What are the Common Misinterpretations of the Categorical Model and 
Possible Unintended Consequences of its Use in Accountability Systems?

Although categorical models do not require a vertical scale in a strict sense, the 

articulation of multiple cut scores across grades represents an implicit vertical scale that 

requires the same critical attention as vertical scaling. The grouping of scores into coarse 

categories leads to a loss of information in reporting both status and growth.
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Although the categorical model does not require a vertical scale in the strict sense, the previous 

sections have demonstrated that growth interpretations from categorical models require 

interpretation of the articulated cut scores as an implicit vertical scale. If a transition from Below 

Basic in one grade to Basic in the next grade is interpretable as growth, then the cut score must 

share some common meaning across grades, not just in relative stringency, but in the content 

domain as well. If the model also assumes that a transition across one category boundary 

predicts a transition across subsequent category boundaries, then the categorical model acts 

as a coarse trajectory model and requires the same attention to its underlying vertical scale.

The grouping of the scores into categories leads to a loss of information both in the reporting 

of scores and the description and prediction of growth. As Figure 3.2 demonstrates, the 

categories represent a kind of relative stringency that may or may not confl ict with user intuition 

about growth. More problematically, a broad range of implicit gain scores will be mapped into 

the same transitions, and gain scores that are equal lead to a category gain in some cases and 

not in others. These facts suggest that the reporting of categorical model results should be 

limited or withheld at the student level.

At the school level, the categorical model is clearer than other models in its communication of 

differentiated incentives for different transitions, particularly when values in value tables are 

carefully considered. Although the values may seem arbitrary, they are no less arbitrary than 

assuming that gain scores should count equally, as the gain score model generally does, or that 

students should be on track to a particular standard by a particular time horizon, as a trajectory 

model can do. However, because the categorical model shares the same underlying statistical 

foundation as gain score and trajectory models, it also shares the undesirable feature where the 

artifi cial defl ation of initial scores (in this case, categories) will infl ate the observed transitions of 

students. This can be seen in Table 3.2, where, in any given column, points are maximized when 

students are in lower initial categories. This is the same underlying, “gaming” mechanism that 

can infl ate gain scores and trajectories in the models in the two previous chapters.
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CHAPTER 4
 The Residual Gain Model

The residual gain model can be motivated by concerns 

about the gain scores used in the gain-based models, 

particularly the purported low reliability of gain scores 

and ceiling effects for high-scoring students. The 

residual gain model uses linear regression to determine 

expected current status for students at different initial 

scores. These expectations are derived empirically 

given past scores. The residual gain is simply each 

student’s observed current status minus his or her 

expected current status. This difference between 

observed and expected outcomes is commonly 

referred to as the “residual” in regression terminology. 

Residual gain scores represent the amount students 

scored above or below what was expected given their 

past performance. 

Residual gain scores support growth description by 

answering the question

How much higher or lower has 
this student scored than expected 

given her past scores?

Because residual gain scores are the differences 

between observed and expected current status, they 

are also on the same scale as the current test score. They report current status in terms of, 

or “conditional upon,” past scores, making them a conditional status model instead of a 

gain-based model. 

Although the statistical model used in computing residual gains sets a statistical expectation 

for growth, residual gain models may require additional judgmental standards to determine 

what amount of residual gain represents “adequate” growth. This is described in Section 4.5. 

The following subsections address each of the six questions of interest to further elaborate on 

this model, particularly as it stands in stark contrast to the gain score model. 

RESIDUAL GAIN MODEL 

Aliases and Variants: 
•  Residual Difference Model
•  Covariate Adjustment Model
•  Regression Model
•  Percentile Rank of Residuals

Primary Interpretation: 
Growth description 

Statistical Foundation: 
Conditional status

Metric/Scale: Difference 
score (on the current-grade 
score scale)

Data: An interpretable scale, 
linearly related test scores

Group-Level Statistic: 
Average residual gain 

Set Growth Standards: 
Setting expected or adequate 
residual gain score

Operational Examples:
Evaluating a treatment
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 Question 4.1: 

What Primary Interpretation Does the Residual Gain Model Best Support?

The residual gain model supports growth description by describing how much higher 

or lower a student scored than what was expected given her prior year’s score. 

The simplest form of the residual gain model involves setting expectations for current 

scores based on only one set of previous scores. In this case, the residual gain model and 

the gain score model can use the exact same data but describe growth in a fundamentally 

different way. Instead of describing how much a student changed this year from last year as 

the gain score model does, the residual gain model describes how much higher or lower a 

student scored this year than expected given last year’s scores. 

The residual gain model uses a statistical model known as linear regression to set empirical 

expectations for current scores given past scores. It is useful to note here, however, that 

linear regression in the residual gain model is for describing current scores given past 

scores and not for predicting future scores given current and past scores. This distinction is 

apparent when contrasting the residual gain and projection models in the next chapter. 

 Question 4.2: 

What is the Statistical Foundation Underlying the Residual Gain Model?

Although the name “residual gain model” suggests that this growth model is gain-

based, it is actually a conditional status model. Gain-based models involve taking a 

difference between current and past performance. In contrast, the residual gain model 

takes the difference between current performance and expected current performance 

given, or conditional upon, prior performance. 

The residual gain model uses linear regression to calculate expected current scores given 

past scores. These expectations are statistical and empirically derived. Unlike the gain 

score model, scores from each included grade level do not need to be from vertically 

scaled assessments. This section explains the statistical model underlying the residual gain 

model for the simplest case of using data from only one prior grade level as a predictor 

in the linear regression model. However, it is straightforward and common to include 

greater numbers of previous grade scores, and the regression model is also fully capable of 

incorporating demographic variables to establish expectations as well.

Linear regression is a useful statistical method that supports prediction of an outcome 

variable, in this case, the current score, using one or more other predictor variables, in 

this case, one or more past scores. The choice of predictors is generally motivated by 
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associations between the predictor and the outcome, so that knowing a value on the 

predictor variable provides information about the value of the outcome variable. In this 

case, because relationships between past and current scores are generally moderate to 

strong and linear, the model often fi ts the data well. Linear regression provides expected 

values for the outcome variable by fi nding the line that best fi ts the averages of the 

outcome variable at each level of the predictors. This is most readily understood with an 

example and a graph, which follow for the residual gain model context. 

The following example assumes a small group of students currently in Grade 4 with test 

scores from the current grade and the previous grade, Grade 3. For purely illustrative 

purposes, suppose there are only 8 fourth graders in the group of interest. Figure 4.1(a) 

provides a scatterplot of these students’ Grade 3 and Grade 4 scores. The 8 students 

are represented by 8 solid dots. The horizontal position of the points is determined by 

the student’s Grade 3 score and the vertical position by the student’s Grade 4 score. 

This plot shows that students earned scores of 345, 350, or 355 in Grade 3, but earned 

scores ranging from 335 to 385 in Grade 4. The solid black line in Figure 4.1(a) represents 

the output of the linear regression model, a line that predicts Grade 4 scores given 

Grade 3 scores. 

This line represents the best fi t of the average Grade 4 score across all Grade 3 scores, in 

this case, all 3 of them. Unsurprisingly, the line goes roughly through the middle of each of 

the three vertically aligned sets of points at the Grade 3 scores of 345, 350, and 355. The 

line therefore represents the expected Grade 4 score at each possible Grade 3 score. For 

instance, in Figure 4.1(b) a dashed horizontal arrow from the linear regression line shows 

that at a Grade 3 score of 350, the expected Grade 4 score is 364. This result supports 

an interpretation like the following, “Students who earn a score of 350 in Grade 3 are 

expected, on average, to earn a score of 364 in Grade 4.” 

Fitting the linear regression line is only one step in the residual gain model. Figure 

4.1(b) illustrates the next step that results in residual gain scores. The residual gain score 

is found by taking what is commonly called the residual, or the difference between 

the observed score on the outcome variable and the expected score on the outcome 

variable. In this example, this difference is between students’ observed and expected 

Grade 4 scores. Figure 4.1(b) shows this difference for a particular student who earned 

a score of 350 in Grade 3 and a score of 375 in Grade 4. This student’s expected score 

is empirically derived from the regression line as 364. The student’s residual gain is the 

simple difference between the observed and expected score as follows: 
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      Residual Gain Score  = Observed Grade 4 Score – Expected Grade 4 Score

     = 375 – 364

     = +11

The student’s residual gain score of +11 indicates that he scored 11 points higher on the 

Grade 4 test than expected given his Grade 3 score of 350. A negative residual gain score 

indicates that a student scored below his/her expected score. Graphically, the residual 

gain is visually represented by the vertical distance between any point and the regression 

line. Students above the regression line have positive residual gains, and students 

below the regression line have negative residual gains. This illustration demonstrates 

that the residual gain score does not truly represent a gain, a change in points from one 

grade to the next, as in the gain score, trajectory, and categorical models. Instead, it is 

achievement beyond expectations given past scores.

Figure 4.1 

Illustration of the Residual Gain Model
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(a) Step 1
Regression of Current Grade 4 Scores on Prior Grade 3 Scores
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(b) Step 2
Computing Residuals
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Residual Gain Score =  
Observed Grade 4 Score –    
Expected Grade 4 Score
= 375 – 364
= +11

 Question 4.3: 

What are the Required Data Features for the Residual Gain Model?

Residual gain models, and conditional status models in general, do not require test 

score scales to be linked across grades. This is due to their emphasis on conditional 

status, that is, status beyond expectation, instead of growth over time. Like any 

growth or status model, residual gain models require appropriate within-grade scales. 

The assumptions of linear regression must be met, including linear relationships 

between current and past scores and similar amounts of variation in current scores for 

any particular past score. When these latter assumptions are not met, more fl exible 

regression models can be used. 

By framing growth in terms of conditional status, the residual gain model is applicable to 

a broader range of test score data than gain-based models. The scores of interest do not 

need to be linked on a common vertical scale across grades, and the model can easily 
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accommodate more than one prior year of data if desired. Although the various grade level 

test scores do not need to be linked on a vertical scale, they do need to be linearly related. 

One approach to evaluating this is through plots of the current grade level scores against 

each of the prior grade level scores, where the relationship should look linear, roughly 

like Figure 4.1. When there are nonlinear relationships, inaccurate expectations and thus 

inaccurate residual gains can result. 

An additional requirement of regression models is that the conditional variability of outcome 

scores should be similar across different levels of the predictors. In Figure 4.1, this can be 

visualized in terms of the spread of points around the regression line at each vertical slice, 

345, 350, and 355. At each level, the overall variation should be similar. In the case of Figure 

4.1, it may seem as though the variability at the score level of 355 is smaller, that is, the 

points are clustered closer to the line, but the sample size is far too small to make such a 

determination. However, in a large sample situation, when the variability is not equal across 

predictor values, higher scoring students may have far more or less variable residual gain 

scores than lower scoring students. This may be an observation that refl ects reality, but if it is 

instead an artifact of the scaling of the test, an alternative regression model, like those used 

in Student Growth Percentiles, may be warranted.

To understand why vertical scaling is not required of conditional status models, it is most 

helpful to reframe the nature of the growth that these models measure. This growth is less 

a fi xed quantity that is being estimated and more a comparison between status and a key 

concept: expectations. These expectations can be based on prior year scores from a single 

grade, as in Figure 4.1, or a collection of prior year scores from multiple grades. However, the 

regression model does not consider these prior grade scores as a trajectory over time, but an 

unordered combination of facts that generate an empirical expectation. 

In the context of a newborn growing over time, the gain-based approach tracks the 

weight over time, from 8 pounds to 9 pounds to 10 pounds at one, two, and three months, 

respectively, for example. The conditional status model asks instead, given that the newborn 

was 8 pounds at one month and 9 pounds at two months, how much heavier is she than 

expected at three months? We could also add, given that this newborn is a girl, and breast-

fed, and from the United States, how much heavier is she than expected at three months? 

Each variable that is added, or conditioned upon, changes the expected weight at three 

months, and it is clear the variables that set these expectations need not be on the same 

scale. For example, it is clear that the sex and nationality of the newborn are not on the same 

scale as the outcome. The regression model is a tool for setting expectations, and, as such, 

it does not require the variables that set these expectations to be on the same scale as the 

outcome or each other.
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 Question 4.4: 

What Kinds of Group-Level Interpretations can the Residual Gain 
Model Support?

The residual gain model supports simple group-level statistics through averaging. 

The residual gains of a group can be averaged within a grade, although comparison 

of averages across grade levels requires a common across-grade scale. The average 

residual gain score represents the average amount students in the group scored above 

or below expectations given their past performance. 

Several group-level statistics can be computed for the residual gain model to summarize the 

performance of all students in a group. The most typical summary statistic is the average residual 

gain for the students in a group. As a technical point of reference, it is worth remembering that, 

across the entire dataset to which the regression is applied, the average residual is always zero. 

In Figure 4.1, with a hypothetical group of 8 fourth grade students, the mean residual gain score 

across all 8 students is zero. This should be intuitive. If the regression model is working properly, 

the average expected value should be the same as the average observed value. However, for any 

subgroup of the 8 students, the mean residual gain score is not necessarily zero. 

The sign and magnitude of the average residual gain score refl ects the average status of 

students in the group of interest, above and beyond expectations. Figure 4.2 helps to illustrate 

group-level performance as measured by the residual gain model. Figure 4.2 is a reproduction 

of Figure 4.1(a), but, in this case, there are circles around some collections of points to indicate 

different groups, in this case, hypothetical small classrooms of students. One set of students is 

labeled as “Group A” and another as “Group B.” The three students in Group A have varying 

prior Grade 3 scores, but all have points above the regression line, indicating that all of these 

students have Grade 4 scores greater than expectations based on Grade 3 scores. Their 

residual gain scores are about 10.51, 10.64, and 5.77 from left to right in the fi gure. The simple 

average of these three residual gain scores is around 9. 

This average residual gain of 9 can be interpreted as, “Students in Group A, on average, scored 

nine points higher than expected given their prior year scores.” In other words, given their Grade 3 

scores, on average, these students exceeded expectations for their Grade 4 test by 9 points. Group 

A is thus labeled as a “High Residual Gain” group in Figure 4.2. In contrast, Group B’s two students 

performed worse than expected given their initial scores. Both of these students have points that lie 

below the regression line and thus have negative residual gain scores. These residual gain scores are 

about -14.49 and -9.36, which results in an average residual gain score of around -12. On average, 

Group B’s students scored about 12 points below expected on the Grade 4 test given their Grade 

3 scores. Relative to other students with the same prior Grade 3 scores, these students performed 

worse on the Grade 4 test than expected, making them a “low residual gain” group. 
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Figure 4.2 

Group-Level Interpretations from the Residual Gain Model
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This example is rather simplifi ed as it involves extremely small groups comprised of students who 

had either all negative residual gain scores or all positive residual gain scores. In practice, groups 

will likely have a mixture, but summary statistics like the mean, median, and standard deviation of 

residual gains can summarize the patterns of student status beyond expectations for groups.

A more formal statistical approach to simple averages of residual gains is known as the 

covariate adjustment model. Instead of growth description, the covariate adjustment model 

primarily supports value-added interpretations. It is called a covariate adjustment model 

because it adjusts expectations about current status using various predictor variables, just as 

the residual gain model does. It contrasts with the residual gain model by providing formal 

group-level estimates of group status compared to a baseline by explicitly incorporating group 

membership variables in the model. These group-level estimates can support discussions about 

whether group membership, whether it is to a classroom or school, predicts student test scores 

above and beyond past scores.
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The intuition behind the covariate adjustment model is nearly identical to that supporting 

Figure 4.2. Classroom and school estimates from covariate adjustment models are in fact 

strikingly similar to averages of residual gain scores in practice. However, the covariate 

adjustment model fi ts separate regression lines for each group and compares these lines to 

each other, where higher lines imply higher status beyond expectation. This is a statistical 

improvement over the ad hoc, two-step approach of averaging residual gains after the 

regression model has been fi t.

The underlying similarities between the residual gain model and the covariate adjustment 

model allow for deeper insight into the use of these models for value-added interpretations. 

The residual gain model is used for growth description. This growth is best described as 

status above and beyond expectations set by other variables. At the group level, an average 

residual gain is a statement about a group’s average status beyond expectations. The covariate 

adjustment model supports both a statistical and substantive extension of the averaged 

residual gain approach. The statistical extension is an improved method for estimating average 

status beyond expectations. The substantive extension is the assumption that this average 

status beyond expectations is the value that the educator or school adds to the average test 

scores in the group.

 Question 4.5: 

How Does the Residual Gain Model Set Standards for Expected or 
Adequate Growth?

The residual gain model references expected status given past performance. Such 

expectations are statistically defi ned and do not relate to what amount of growth is 

“adequate” in an accountability setting. Value judgments can be made by an informed 

committee about thresholds for adequate student-level and group-level (average) residual 

gain scores for particular grades and subjects. 

As a linear regression model, the residual gain model sets statistical expectations for current 

performance given past performance. Accordingly, this model allows for computations of 

how much students deviate from an expected level of performance, resulting in residual gain 

scores. However, the residual gain score in and of itself does not indicate whether improvement 

was “good enough” in the settings of accountability or evaluation. Such judgments require 

additional input by invested stakeholders. 

One approach involves selecting a standard and operationalizing it as a cut score on the 

residual gain metric. The cut score can be set on the scale itself if there is clear understanding 

of what 5, 10, or 50 points above expectations actually means on the score scale. 
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Alternatively, the standard can be set normatively, such as defi ning the top 30 percent of 

residual gain scores as exceeding expectations. Alternatively, the residual gains can be sorted 

and reported as percentile ranks, resulting in percentile ranks of residuals. In practice, these 

percentile ranks of residuals are very similar to Student Growth Percentiles (Castellano & Ho, 

in press). This normative approach can support comparisons of residual gains across different 

grades and subjects. 

The residual gain model sets expectations empirically for a particular group of interest. By 

defi nition, for this group, approximately half of the residual gain scores will be positive and 

the others negative. Setting standards on a fundamentally relative metric may be undesirable 

as, ironically, growth over time will be diffi cult to measure. An alternative approach involves 

assuming that residual gains will persist over time into the future, and comparing these future 

scores to future cut scores. This extension shifts the primary interpretation of the residual gain 

model from growth description to growth prediction, but it allows for standards to be set on 

the residual gain metric that are free from the “tyranny of averages” where approximately half 

of students will always be below average.

 Question 4.6: 

What are the Common Misinterpretations of the Residual Gain Model and 
Possible Unintended Consequences of its Use in Accountability Systems?

The residual gain model is something of a misnomer, as it is less a gain than it is status 

beyond expectations given past scores. When assumptions of the linear regression model, 

including linearity and common outcome variance across prior scores, do not hold, residual 

gains can be systematically distorted for higher or lower scorers. 

The residual gain model is not a central feature of any active state accountability systems, 

although it serves as a basis or helpful contrast for many active models, including its close 

cousin, Student Growth Percentiles. Its most natural extension, the covariate adjustment model, 

is one of the most common models supporting value-added interpretations. The model is often 

used in experimental research where there is interest in the effectiveness of a treatment in a 

pretest/posttest design.

An obvious misinterpretation of the residual gain model would be to assume it describes 

growth over time in a similar manner as the gain-score model. As this section has 

demonstrated, the residual gain is a fundamentally distinct quantity from the gain score. It is 

a difference between an actual score and an expected score. The expected score is derived 

empirically from past scores and will change if different combinations of variables are used to 

establish expectations.
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If residual gain scores were used in a high-stakes system, the model assumptions — linearity 

and common outcome variance across prior scores — become more important. Violations will 

lead to systematic relationships between initial status and the average and variability of residual 

gains. More generally, residual gain models, like gain-based models, share the property that 

may incentivize “gaming” the system by artifi cially decreasing students’ initial scores so as to 

increase their residual gains. This can be visualized in Figure 4.1b, where points that shift to 

the left, that is, declining in initial scores while maintaining current scores, will have a larger 

residual gain. Of course, unlike gain-based models, the shifting of points changes the empirical 

expectations, thus this strategy only works if these shifting points have a negligible effect on 

the regression line.

The empirical derivation of expected scores using extant student data is a reminder that 

residual gains are based on the performance of their peers. It follows that expectations will 

change if different students were included in the regression analysis. This is a property of all 

conditional status metrics. The word “conditional” emphasizes that any growth interpretation 

is conditional on prior performance — not just of the student of interest, but all students in the 

cohort of interest. Returning to the example presented in this chapter, a student who is in fourth 

grade next year could earn the exact same Grade 3 and Grade 4 scores as a student in this 

year’s cohort, but receive a different residual gain score if the students in general performed 

differently. In particular, if the relationship between current and prior scores is distinct from 

the one presented in Figures 4.1 and 4.2, the fi tted regression line will be different, resulting in 

different expected scores and, in turn, different residual gain scores. 

Reference

Castellano, K.E., and Ho, A.D. (in press). Contrasting OLS and quantile regression approaches 

to student “growth” percentiles. Journal of Educational and Behavioral Statistics.
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CHAPTER 5
 The Projection Model

The projection model, sometimes known as the prediction 

or regression model, is primarily used to project or predict 

scores in a future grade, supporting growth prediction. It 

fundamentally answers the question 

Given this student’s observed past scores, 
and based on patterns of scores in the past, 

where is she likely to score in the future?

The projection model relies on linear regression to 

answer this question. The model uses test score data 

from a past cohort of students who have already 

completed the future grade of interest to estimate a 

prediction equation. This equation is then applied to 

the data for a current cohort of students to predict 

their future scores. A necessary step in establishing a 

projection model is the determination of a time horizon 

to which the model will predict future status. 

The predicted future status can be evaluated with respect 

to a future standard such as “Profi ciency.” Predicted 

status above this standard can support the judgment that 

the student is “on track” and making “adequate growth.”

 Question 5.1: 

What Primary Interpretation Does the Projection Model Best Support?

The projection model uses a statistical technique to predict future scores from current and 

prior year scores. It is specifi cally designed to support growth prediction. 

The projection model is designed to predict student test scores in a future grade. Relying on the 

statistical tool of linear regression, this model allows for interpretations like, “On average, students 

with a score of 110 on the Grade 3 mathematics test and 250 on the Grade 4 mathematics test 

have a predicted Grade 5 mathematics score of 275.” The predicted scores can be compared 

against a target score, such as the future grade’s profi ciency cut score, to support interpretations 

about adequate growth. 

PROJECTION MODEL 

Aliases and Variants: 
•  Regression model 
•  Prediction model

Primary Interpretation: 
Growth prediction 

Statistical Foundation: 
Conditional status model

Metric/Scale: Score scale of test 
in the future target grade level  

Data: Interpretable future 
scale or future standard

Group-Level Statistic: Average 
future prediction or percentage 
of on-track students

Set Growth Standards: 
Defi ne future standard, 
minimum time until standard 
is reached

Operational Examples:
NCLB Growth Model (e.g., 
Ohio and Tennessee) 
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The projection model and the trajectory model both support growth prediction; however the 

projection model operates under fundamentally different assumptions and data requirements than 

the trajectory model. A simple way to describe the contrast is that the projection model is more data-

driven, whereas the trajectory model is more scale-driven. The projection model uses regression to 

maximize the predictive accuracy of the model. If a variable does not contribute to the prediction of 

future status, the regression model will assign it a lower weight. In this way, the projection model is 

informed by the data and results in an equation that maximizes predictive accuracy.

In contrast, the trajectory model is scale-driven. It relies on the construction of a vertical scale and the 

assumption that a linear extrapolation of observed trajectories is defensible. Because it is less reliant 

on data-driven predictions, it is, as noted in Chapter 2, more of a descriptive and aspirational model 

than an empirical model. 

The projection model approach to growth prediction can be taken to a mercenary extreme. Any 

available variable can be used to increase predictive accuracy, extending beyond previous test scores 

in the same subject to test scores from different subjects, demographic variables, and classroom- 

and school-level variables. If predictive accuracy is the primary goal, inclusion of these variables 

can be well motivated even as it becomes detached from an intuitive idea of growth. If the model 

is intended to create incentives to maximize student growth, prediction may be less important than 

communicating information that supports educator efforts to increase student growth.

 Question 5.2: 

What is the Statistical Foundation Underlying the Projection Model?

The projection model is an example of a conditional status model. Given current and past 

scores, the model predicts a future status. Unlike gain-based models, growth is not defi ned 

as an increase in some quantity over time. Instead, current and past scores are used as 

unordered inputs to a weighted prediction equation for future status. 

The projection model, like the residual gain model, uses linear regression for prediction and the 

setting of expectations given past scores. Unlike the residual gain model, the outcome variable 

is not the “current” year score but a future score for which a prediction is desired. Although both 

the residual gain model and the projection model use linear regression, the differences between 

the models are more substantial than, for example, the difference between the gain-score and the 

trajectory model. The projection model is not an “extension” of a residual gain score in the same 

way that the trajectory model is an extension of a gain score. The residual gain model describes the 

difference between current status and an empirical expectation for current status. The projection 

model establishes an empirical expectation for future status, period. The next paragraphs review 

the example used in the previous chapter and adapt it for the primary goal of growth prediction. 
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As was noted in the previous chapter, the residual gain model provides a score for each student 

that denotes how much a student scored beyond expectations given past scores. In the 

simplest case, only one prior year score is included in the regression. The current year score is 

the outcome variable and the prior year score is the predictor. Figure 5.1 illustrates this scenario 

by reproducing Figure 4.1(b), where a small group of eight Grade 4 students has their Grade 4 

scores plotted on their Grade 3 scores. Each point in Figure 5.1 represents a student, where the 

horizontal location of the point is determined by the Grade 3 score, and the vertical location is 

determined by the Grade 4 score. 

In the residual gain model, the prediction of the outcome variable is an intermediate step 

on the way to the residual gain score calculation. The predicted outcome is for the current 

year score, which has already been observed for this set of students. The interest is in the 

distance between the observed outcome and this predicted or, more specifi cally, expected 

outcome. This difference between the observed scores and expected Grade 4 scores is called 

a “residual” in the context of regression and a “residual gain score” in the context of this guide. 

The projection model, in contrast, focuses on the prediction itself, but for a different set of 

students who have not yet taken the Grade 4 test.

Figure 5.1 

Illustration of the Residual Gain Model: Regression of Grade 4 Scores on 

Grade 3 Scores
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Figure 5.1 illustrates the computation of the residual gain score for a particular student. This 

student earned a 375 in Grade 4 and a 350 in Grade 3. It is clear from the graph that the 

student scored higher than the other two students who also scored a 350 in Grade 3. The 

regression line establishes the student’s expected Grade 4 score at about 364, 11 score points 

below the observed score of 375. The residual gain score for this student is +11, indicating a 

score that is 11 points higher than expected given past performance.

The residual gain model allows for growth description for the students used to fi t the regression. 

The projection model, on the other hand, takes the linear regression fi tted for one cohort 

of students and applies it to another set of students who have yet to reach the future grade 

of interest. Using the same example, we may switch our primary interpretation from growth 

description for current Grade 4 students to growth prediction for current Grade 3 students. The 

current Grade 3 students will not enter Grade 4 until the next academic year. Their Grade 4 scores 

are not known, but their Grade 3 scores are. However, the prediction line in Figure 5.1 can be 

estimated from the current Grade 4 students who do have data. Then, this line, which was used to 

provide expected Grade 4 scores for the current fourth graders in the residual gain model, can be 

used to predict the future Grade 4 scores of the current third graders. 

Figure 5.2 

The Projection Model: Using a Prediction Line Estimated from one Cohort to Predict 

Grade 4 Scores for another Cohort 
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To illustrate this prediction process, Figure 5.2 reproduces the exact same prediction line 

estimated in Figure 5.1. Although this line is estimated using the scores of the students shown in 

Figure 5.1, these students are no longer of interest and are not shown. Instead, their prediction 

line is used to predict Grade 4 scores given current Grade 3 scores. Figure 5.2 illustrates 

predictions for students earning Grade 3 scores of 350 and 356. From the previous discussion, 

the expected or predicted Grade 4 score is 364 for students who scored 350 on the Grade 3 

test. This is illustrated by the solid arrow going from the Grade 3 score of 350 to the regression 

line and then from the regression line to the vertical axis at the Grade 4 predicted value of 364. 

The regression line allows for Grade 4 score predictions based on any possible Grade 3 score, not 

just for students at the score values of the cohort from which the line was derived. For instance, 

Figure 5.1 contains no students in the current Grade 4 cohort who scored a 356 on the Grade 3 

test. However, a student in the current Grade 3 cohort may have a score of 356, and this student 

will still have a prediction, 382, as shown in Figure 5.2. This calculation is supported by a prediction 

equation that is the output of the regression model. In this example, the prediction equation is 

Predicted Grade 4 Score = -677.667 + (2.974)*(Observed Grade 3 Score)

where -677.667 is the intercept and 2.974 is the slope or regression weight for the prior 

observed Grade 3 score. Any student with an observed Grade 3 score can be entered into 

this equation to fi nd a predicted Grade 4 score. For instance, entering 350 and 356 into this 

equation for the “Observed Grade 3 Score” will return the predicted values shown in Figure 

5.2. It is clear that this regression equation can only be estimated using data for students who 

already have Grade 4 scores. The projection model thus requires longitudinal data from a past 

cohort of students that have test scores in all predictor and target grades.

Figures 5.1 and 5.2 are the simplest versions of the projection model where there is only one 

predictor. In practice, projection models make predictions much farther into the future than 

one year and use more than one year of data as a predictor. With a large enough longitudinal 

dataset that spans 6 grades, a prediction equation can be estimated to support predictions 

for current Grade 5 students on the future Grade 8 test. In such a scenario, the current Grade 

5 cohort may use scores in Grades 3, 4, and 5 to support their predictions. The prediction 

equation takes the following form:

Predicted Grade 8 Score = Intercept + [a * (Observed Grade 3 Score)] + 

        [b * (Observed Grade 4 Score)] + [c * (Observed Grade 5 Score)] 

Here, a, b, and c are simply placeholders for the estimated regression weights. The intercept 

is the predicted Grade 8 score when the Grade 3, 4, and 5 scores are all zero, which does not 

mean that zero must be a possible score for each grade-level test. The intercept is needed to 

anchor the regression line and is usually not an interpretable value in a practical setting. In this 
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case, and any case in which there is more than one predictor, it is no longer possible to graph 

the relationships in two dimensions, however the intuition of fi tting a model to set expectations 

and maximize predictive accuracy still applies.

 Question 5.3: 

What are the Required Data Features for the Projection Model?

The projection model does not require vertical scales underlying different grade level 

tests and can accommodate as many predictor variables as are available. The model does 

rely on regression assumptions, such as linear relationships between predictors and the 

outcome, for predictive accuracy. The projection model also requires longitudinal data 

over a signifi cant grade span. To obtain a prediction equation for a future target grade, 

the model must use a previous cohort of students with longitudinally linked data from the 

earliest grade that supports prediction to the target grade of interest. 

The projection model is fl exible in the types of variables it can accommodate, but is demanding 

in terms of the data required to produce growth predictions. The model is more fl exible than 

gain-based models in not requiring a vertical scale, and many prior years of data can function 

as predictors along with non-test-score variables, if desired. However, with greater numbers 

of grade-level and subject area tests included as predictors in the model, the percentage of 

students with missing data will be higher and may need to be addressed through “imputation” 

of missing values, where missing data are estimated according to assumptions.. Missing data 

will be an issue with both the current cohort that requires prediction and the previous cohort 

that supports the prediction equation. 

The projection model requires selection of predictor variables and the future target outcome of 

interest. Once these are selected, a cohort must exist that has longitudinally linked data for all of 

these variables. In the example in the previous section, where three recent grades of data are used 

to predict an outcome three years into the future, the model requires longitudinal data spanning six 

years. This past “reference” cohort will generate the prediction equation. There is also a requirement 

that this reference cohort be substantively similar to the current cohort. Substantive differences 

between the cohorts may result in an irrelevant regression equation and poor prediction.

The use of the regression model requires attention to regression model assumptions. Like the residual 

gain model, the projection model assumes a linear relationship between the outcome variable and the 

predictors. If there are nonlinear relationships, this will degrade the overall predictive accuracy of the 

model and may lead to inaccurate predictions for students with particular patterns of scores. 

Finally, if the projection model’s predicted scores are compared to standards in that particular 

grade, some articulation of standards across grades is necessary to prevent counterintuitive 
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fi ndings. For both the trajectory and the projection model, highly variable standards across 

grades can lead to nonsensical results where, for example, students are on track to profi ciency 

in Grades 6 and 8, but not Grade 7.

 Question 5.4: 

What Kinds of Group-Level Interpretations can the Projection Model Support?

Projection models result in predicted scores that can be aggregated to average predicted 

scores. Alternatively, individual students can be classifi ed as satisfactory or “on track” to 

some future standard based on their predicted future score, and a group-level statistic can 

be the percentage of students who are on track to reach the future target score.

The projection model can produce two useful group-level statistics — an average predicted 

future score and a percentage of students “on track” to some future standard. The projection 

model uses the estimated prediction equation to provide predicted scores for all students. 

These may be averaged for a group of interest. Other summary statistics, like the median 

and standard deviation, can be used to describe the central tendency and variability of the 

predicted scores of a group. Using the example from Figures 5.1 and 5.2, if a particular group 

of interest has three students with Grade 3 scores of 350, 350, and 356, these can be readily 

inserted into the prediction equation. The Grade 4 predicted scores are 364, 364, and 382 

respectively, and the average predicted Grade 4 score is 370.

This average can be interpreted as, “Based on their Grade 3 performance, the students in this 

group have an average predicted Grade 4 score of 370.” This average predicted score can be 

compared against a future standard, such as the Profi cient cut score in Grade 4. If the average 

predicted score is above the target score, then, on average, the average student in the group 

is predicted to exceed the standard. Standard setting committees could also determine cut 

points for which average predicted scores might correspond to “low,” “typical,” or “high” 

group growth.

If an individual’s growth to a standard is the primary focus of accountability, the predicted 

status of each individual can be compared to the future standard. If a student’s predicted status 

is higher than the future standard, that student can be considered to be “on track.” Group 

performance can be summarized by the percentage of students in the group who are predicted 

to meet or exceed the future standard. If, in our example, the Grade 4 standard of interest 

is a profi ciency cut score of 375, then only one of the three students is predicted to exceed 

this target, resulting in the group having 33 percent (1/3) of its students on track. Additional 

standards could be set for gauging whether this percentage is adequate. 
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 Question 5.5: 

How Does the Projection Model Set Standards for Expected or 
Adequate Growth?

The projection model returns a predicted future score for each student. This score can 

be compared to a target cut score or otherwise evaluated for adequacy. Similarly, the 

aggregation of predicted scores for a particular group, for example, into an average 

predicted score, can be compared to a group-level standard, and the percentage of 

students on track to the target cut score can be compared against some desirable threshold. 

The trajectory and projection models both support growth prediction and offer predicted 

scores on the scale of the test at the target grade. These scores can be compared to the 

relevant cut score at the target grade. This may be a cut score that has been previously set 

for another purpose, or it may be an alternative cut score established with explicit attention 

to the role of growth prediction. The decision rule is then as simple as deeming students as 

“on track” if their predicted score exceeds the standard. Finer grain categorical distinctions 

are also possible. There may be multiple standards for both students’ predicted scores and 

for groups’ average predicted scores. These additional cut scores could distinguish among 

different levels of growth, such as “low,” “typical,” and “high.”

Like the trajectory model, growth predictions can be updated each year that new data 

become available. Students transitioning to a new grade may use the prediction equation that 

includes the most recent grade as an additional predictor. A decision also needs to be made 

about whether the time horizon for prediction should be a moving window of, say, three 

years, or if it should diminish with each year the student is in the growth model. This might, 

for example, require a student to actually reach a standard (instead of merely being on track) 

within three years or before graduation from the school, whichever is sooner. As with the 

trajectory model, the number of years to the target time horizon of interest is a consequential 

standard setting decision. 

As each year brings new data, the prediction equations themselves may be updated. It 

may be more desirable to fix prediction equations for multiple year windows instead of 

recalculating them annually. In spite of a possible degradation in prediction accuracy, 

fixing prediction equations keeps two students with identical score patterns from having 

different predictions from one year to the next. Instability in prediction equations is akin 

to instability in standards and may be minimized to allow standards to gain consistent 

meaning over time. 
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 Question 5.6: 

What are the Common Misinterpretations of the Projection Model and 
Possible Unintended Consequences of its Use in Accountability Systems?

The metaphor of “projection” can imply an extension from a current trend, thus 

the projection model is often incorrectly assumed to function like the trajectory 

model. Pursuing a goal of prediction can lead to diminishing returns for the goal of 

incentivizing growth. 

The word “projection” is consistent with both prediction and the extrapolation of 

a line, thus the projection model is often assumed to work the same as a trajectory 

model. Instead, the two contrast starkly, and no trajectory over time is modeled or even 

recoverable from the construction of the projection model. 

When the cohort that estimates the prediction equation differs from the cohort whose 

scores are predicted, poor prediction and systematic distortions can be introduced into the 

model. The prediction equations will also tend to degrade over time as the relationships 

between grade-to-grade scores change with shifting instruction and accountability 

structures. More generally, violations of the linear regression model, including nonlinearity 

of relationships between target and predictor grades, will have similar negative effects on 

prediction accuracy.

Finally, strict adherence to the goal of predictive accuracy is likely to diminish the 

formative potential of this particular model. First, maximizing prediction motivates the 

incorporation of ancillary predictor variables that may have weak substantive justification, 

like including scores from other subjects or demographic variables. These will improve 

prediction but are poorly aligned with intuition about classroom learning. Second, 

teacher response to a student with low predicted growth does not follow from the model, 

particularly when so few of the variables are under the teacher’s direct control. Trying to 

maximize the accuracy of future predictions seems at odds with the classroom goal, which 

is, ideally, rendering predictions for low-scoring students inaccurate. When multi-predictor 

prediction equations show that no score on any single test is sufficient to raise a low-

projection student to an on-track designation, the predictive accuracy of the model seems 

to diminish the incentives to teach these students. Although a status model layered over a 

projection model can provide more hope for these “condemned-by-prediction” students, 

gain-based alternatives like trajectory models may allow for improved incentives while 

preserving a reasonable level of predictive utility (Hoffer, Hedberg, Brown, Halverson, 

Reid-Brossard, Ho, & Furgol, 2011; Ho, 2011).
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CHAPTER 6
The Student Growth Percentile Model

The Student Growth Percentile (SGP) model offers a 

normative foundation for the calculation and interpretation 

of growth. Although this model uses a relatively complex 

statistical framework, the procedure is open-source, 

well described, and explainable with accessible, visually 

appealing graphics (Betebenner, 2009). Because the SGP 

model is a relatively recent and popular development, this 

chapter will offer a particularly detailed exposition.

Damien Betebenner’s SPG model (Betebenner, 2010b)  

involves two related procedures resulting in 1) student 

growth percentiles, which will be referred to as “SGPs,” 

and 2) percentile growth trajectories (see further discussion 

of Betebenner’s model in the following pages). These 

primarily support interpretations of growth description 

and growth prediction, respectively. SGPs locate current 

student status relative to past performance history and 

thus use a conditional status statistical foundation. SGPs 

answer the question 

What is the percentile rank of a 
student compared to students with 

similar score histories?

Simplistically, SGPs describe the relative location of a 

student’s current score compared to the current scores of 

students with similar score histories. The location in this 

reference group of “academic peers” is expressed as a 

percentile rank. For example, a student earning an SGP of 

80 performed as well as or better than 80 percent of her 

academic peers. 

A strict implementation of this procedure would seem 

to involve the selection of “academic peers” that have 

identical previous scores. This is impractical and imprecise with large numbers of prior grade scores. 

Regression-based methods can address this problem, but, as described in previous chapters, linear 

STUDENT GROWTH 
PERCENTILE MODEL

Aliases and Variants: 
•   The Colorado Model
•   Percentile Growth 

Trajectories
•   Conditional Status Percentile 

Ranks

Primary Interpretation: 
Growth description 
Growth prediction 

Statistical Foundation: 
Conditional status model

Metric/Scale: Percentile rank 
(whole numbers 1 - 99)

Data: Set of psychometrically 
sound tests over two or more 
grade levels in a single domain 
and large sample sizes 

Group-Level Statistic: Median/
mean SGP – describes the 
average/typical status of students 
relative to their past performance, 
or percentage of students on-
track (to a future standard)

Set Growth Standards: 
Requires judgment about an 
adequate SGP or median/
average SGP. Predictions require 
a future standard and a time 
horizon to meet the standard.

Operational Examples: 
NCLB Growth Model (e.g., 
Colorado and  Massachusetts)
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regression methods require 1) assumptions of linear relationships between predictors and outcomes 

and 2) equal variability in current scores across prior-year scores. The computation of SGPs involves a 

more fl exible statistical tool called quantile regression that loosens these requirements to fi t a broader 

range of test score distributions in practice. The software that estimates SGPs is open-source and 

freely available in the statistical software package, R. 

Figure 6.1 

Illustration of a Simple Linear Regression Line (that models the conditional average) and 

the Median Quantile Regression Line (that models the conditional median)
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360
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A simple linear regression model, like the one shown by the solid black line in Figure 6.1, results 

in a single line that represents the best prediction of an outcome variable (current status) by a 

predictor variable (past performance). Equivalently, this line represents a “conditional average,” 

the average value of the outcome at each level of the predictor. In Figure 6.1 and in real data, the 

line represents an approximation of the conditional averages — a best guess about the value of 

an outcome given a predictor.

Instead of fi tting one line for the conditional average, the SGP model fi ts 99 lines, one for each 

conditional percentile, 1 through 99. As a point of reference, the 50th line is the line for the 
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conditional median, and it is shown by the dashed black line in Figure 6.1. Typically, for real 

statewide datasets, the median quantile regression line and the simple linear regression line will 

likely be closer together than they are in this illustrative example, which is based on a very small 

dataset. This conditional median line represents the best guess about the median of an outcome 

given a predictor, just as the usual regression line represents the best guess about the average of an 

outcome given a predictor. Points closest to this conditional median line will be assigned an SGP of 

50. For instance, two students actually lie on this line — the middle Grade 4 scoring student of the 

three students who scored 345 in Grade 3 and the lower Grade 4 scoring of the two students who 

scored 355 in Grade 3. These two students will receive SGPs of 50. Students at points above the 

conditional median line will be assigned SGPs higher than 50 according to the conditional percentile 

lines to which they are closest and vice versa for students at points below this line.

For illustrative purposes, this chapter explains the empirical calculation of SGPs in a simplistic 

case with limited data. This empirical method is analogous to operational SGP calculations and 

provides intuition about the statistical machinery underlying SGPs. We refer the interested reader 

to the SGP R package and references by its primary author, Betebenner, for a full description of 

operational SGP computations.5

An extension of the SGP model known as “percentile growth trajectories” supports growth 

predictions. The approach has similarities to both the trajectory model and the projection model, 

where SGPs are extrapolated and assumed to be maintained over time. This prediction helps to 

answer the question

Assuming the student maintains her SGP over time, what will her future score be?

This future score can be compared to a target future standard to support an “on track” 

designation. In this standards-based context, an alternative framing is captured by the question

What is the minimum SGP a student must maintain to reach a target future standard?

When determining whether students are “on track,” these two questions are functionally equivalent. 

Determining whether a student’s predicted future status exceeds the future standard is equivalent 

to determining whether the student’s trajectory exceeds the minimum required trajectory. This 

equivalence was established in the context of the trajectory model in Section 2.5. Both the trajectory 

model and the percentile growth trajectories procedures involve an assumption of students continuing 

on their same “growth” path. The trajectory model operates under the assumption of linear growth, 

where students maintain constant gains each year. The percentile growth trajectories, in contrast, 

assume students maintain constant ranks with respect to their academic peers each year. 

The percentile growth trajectory procedure is also similar to the projection model, in that growth 

5 See Betebenner (2009; 2010a; 2010b).
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predictions require data from a cohort of students that has already reached the target grade 

of interest. These reference cohorts provide the hypothetical trajectories for each student’s 

extrapolated SGP over time. However, percentile growth trajectories are less data driven than 

the projection model. Previous data are used to estimate where consecutively maintained SGPs 

will lead into the future, but the data are not used to predict whether or not students will actually 

consecutively maintain these SGPs. Thus, percentile growth trajectories, like the trajectory model, 

make an aspirational, descriptive assumption that a measure of growth is maintained over time.

 Question 6.1: 

What Primary Interpretation Does the Student Growth Percentile Model 
Best Support?

The SGP model supports growth description with SGPs and growth prediction with 

percentile growth trajectories.

This guide considers growth models less as coherent packages than as collections of defi nitions, 

calculations, and rules. The SGP model is an example of this, where SGPs describe growth 

through one procedure, and percentile growth trajectories predict growth through an additional 

layer of assumptions. These latter assumptions include students’ maintenance of SGPs over 

consecutive years. The distinction between SGPs and percentile growth trajectories is analogous 

to the distinction between the gain-score model and the trajectory model, but this chapter 

discusses both given the unfamiliar statistical machinery that they both share.

SGPs describe the relative performance of students by comparing their current scores to those of a set 

of students with similar scores on prior grade-level tests. The SGP metric expresses this relative status 

in terms of percentile ranks. Typically, SGPs are expressed as whole number values from 1 to 99. By 

creating norm groups of students with similar past scores, both low- and high-performing students 

can theoretically receive any SGP from 1 to 99. In other words, SGP models will typically have zero or 

near-zero associations between status and SGPs, a unifying feature of conditional status models. In 

contrast, gain-based models can have these associations built into the vertical scale, ideally to refl ect 

true changes in the variability of student achievement over time. From the perspective of growth 

description, these associations may be desirable to the extent that they refl ect true growth over time. 

From the perspective of evaluation for accountability, these associations may seem unfair.

If the desired use of the growth model is to predict future student performance, the SGP model can be 

extended to provide percentile growth trajectories. These trajectories assume that students will maintain 

their SGPs through to the future, continuing to obtain scores at the same relative rank with respect to 

their academic peers. In practice, 99 different percentile growth trajectories can be computed starting 

at each score point and continuing into the future. For a group of 30 students who happen to have 
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30 different current scores, there will be 30 x 99 = 2970 possible trajectories, 99 for each student. The 

predicted trajectory for each student is the one that corresponds to his or her current SGP.

Each percentile growth trajectory assumes that a student at a particular starting score will have a 

particular SGP and maintain that SGP each year. In this way, the percentile growth trajectory that 

corresponds to a student’s actual SGP will lead to a predicted score in the future. This score can 

be compared to a target score at a time horizon, or, equivalently, the student’s actual SGP can be 

compared to the SGP required to reach the target future score. The derivation of these trajectories 

is described later in this chapter.

 Question 6.2: 

What is the Statistical Foundation Underlying the Student Growth 
Percentile Model?

The SGP model is a conditional status model.

SGPs represent conditional status. They re-express a student’s current score as a percentile rank 

in a theoretical distribution of students with identical past scores. This statistical foundation is 

best understood through an illustration of the computation of SGPs. The SGPs currently used by 

states like Colorado and Massachusetts rely on a statistical tool called quantile regression. The 

term “quantile” is general and includes “percentile” as a special case, and, in fact, the statistical 

method underlying the SGP model is more literally “percentile regression.” We begin with a 

heuristic example that introduces the central idea supporting interpretations of SGPs — the 

academic peer group. Although this is not precisely the way SGPs are estimated in practice, it is a 

useful intuitive aid that supports understanding of the actual procedure.

Figure 6.2 introduces a longitudinal dataset for a cohort of Grade 4 students with one prior year 

of Grade 3 scores. Like the conditional status models from the two previous chapters, SGPs can 

accommodate scores from any number of prior grade levels and other non-test-score variables as 

well, but this one-prior-year case will suffi ce as an illustration. The initial Grade 3 score scale has 

scores ranging from 200 to 300 and represents the “initial status” of students in this cohort. Arrows 

are located at Grade 3 scores of 220 and 280 to focus exclusively on the students who earned these 

particular Grade 3 scores. Six students earned a score of 220 on the Grade 3 test, and six other 

students earned a score of 280. These students are represented by stick fi gures located above their 

“current” Grade 4 score on a score scale that ranges from 250 to 350. In each set of students, one 

student earned a score of 310 on the Grade 4 test, which, in this hypothetical scenario, refl ects an 

above-average score. Although these two students earned the same current Grade 4 score, they 

are in different relative positions among their “academic peers,” their peers with the same Grade 3 

scores. The percentile ranks of these two students are displayed in boxes above their heads.
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Figure 6.2 

Illustration of a Heuristic Approach to Computing Student Growth Percentiles

200

250 270 290 310 330 350

220 240 260

Initial Grade 3

Current Grade 4

Percentile Rank = 75th

280 300

250 270 290 310 330 350

Current Grade 4

Percentile Rank = 42nd

The percentile ranks of these two students are heuristic estimates of their SGPs, their percentile 

ranks within their group of “academic peers.” The percentile rank calculation follows simply 

from their ranks. Given the small number of students in each group of academic peers, we use 

the following percentile rank formula that has a slight adjustment for small, discrete variables.

     Percentile Rank =  Number of students below Score + (.5 * Number of students at Score)                       Number of students in the academic peer group

This formula allows for calculation of any student’s percentile rank relative to their academic peers by 

simply counting the number of students below and at the student’s score. Among the six students 

who scored 220 in Grade 3, the student who scored a 310 in Grade 4 has four students scoring 

strictly below her and only one student, herself, scoring at her score. Her percentile rank is then

Percentile Rank =  Number of students at or below 310 + (.5 * Number of students at 310) ×100               Number of students in the academic peer group

              =  4 + (.5 * 1) ×100

 
            6  

              =  4.5  ×100 = 75

 
       6  
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This supports a statement like, “This student performed as well as or better than 75 percent 

of her academic peers.” Among the six students who scored a 280 in Grade 3, the student 

who scored a 310 in Grade 4 has two students scoring strictly below his score and only himself 

scoring at his score. His percentile rank is then

Percentile Rank =  Number of students at or below 310 + (.5 * Number of students at 310) ×100               Number of students in the academic peer group

              =  2 + (.5 * 1) ×100

 
            6  

              =  2.5  ×100 ≈ 75

 
       6  

This supports a similar statement, “This student performed as well as or better than 42 percent 

of his academic peers.” 

The SGP model does not actually divide students into groups with identical past scores. This 

heuristic approach would result in intractably small groups when there are multiple prior year 

scores. With one prior year as in Figure 6.2, the numbers of students with the same prior year 

scores may be large. However, with two or more years, the numbers of students with the exact 

same prior year scores will dwindle and become unsupportable as a reference group. Instead, 

the SGP model performs a kind of smoothing that borrows information from nearby academic 

peer groups to support the estimation of percentile ranks. Even though increasing the number 

of prior year scores will diminish the sizes of groups of students with identical past scores, this 

borrowing of information allows for continued support of SGP estimation.

The actual calculation of SGPs involves the estimation of 99 regression lines,6 one for each 

percentile from 1 to 99. In Figure 6.1, this can be visualized by 99 lines that curve from the 

lower left to the upper right and try to slice through their respective percentiles at each level 

of the Grade 3 score. For example, the 50th regression line is given by the dashed black line 

and estimates the median Grade 4 score at each Grade 3 score. This line passes through 

the central score of the trio of students who scored 345 in Grade 3. It does not pass exactly 

through the central score of the trio of students who scored 350 in Grade 3 because the line is 

pulled upwards by the students who scored a 355 in Grade 3. This median regression line can 

support interpretations like, “Students with a Grade 3 score of 350 have a predicted median 

Grade 4 score of 365.” Accordingly, students with Grade 3 scores of 350 and observed Grade 

4 scores of 365 have a SGP of 50. The 90th regression line will lie above the 50th regression line 

6 Technically, the SGP model estimates regression lines only when there is a single prior year score. With 
two prior year scores, these are regression surfaces in a three dimensional space. With three or more prior 
year scores, these are regression hypersurfaces in multidimensional space.
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and may, for example, predict a Grade 4 90th percentile of 375. Students that are closest to the 

90th regression line will be above the median regression line shown in Figure 6.1 and will be 

assigned an SGP of 90. 

This SGP of 90 indicates that this student performed as well as or better than 90 percent of her 

academic peers. In practice, this will be an estimate that not only estimates percentile ranks 

for students with the exact same previous scores, but also borrows information from “nearby” 

students with similar, but not identical, past scores. This frames the academic peer group as 

more of an academic neighborhood. This is illustrated by the fact that that median regression 

line in Figure 6.1 does not go directly through the central score for students who scored a 350 

in Grade 3; rather, the line is pulled up by the students who scored a 355 in Grade 3. 

This metaphor extends to all conditional status metrics. SGPs, like residual gain scores, 

describe growth in terms of relative status in an academic neighborhood. This conditional 

status is normative and cannot be interpreted in terms of an absolute amount of growth on any 

developmental scale. If there is an underlying vertical scale score with sound properties, there 

would be no way to tell which SGPs, if any, would be associated with negative growth. Conditional 

status is also dependent on the defi nition of the academic neighborhood, which changes with the 

addition of additional prior grade scores or other predictor variables. These are not shortcomings 

but reminders that conditional status metrics support a contrasting perspective on growth.

 Question 6.3: 

What are the Required Data Features for the Student Growth 
Percentile Model?

The SGP model requires test scores for large numbers of students to support stable 

estimation of SGPs. 

Part of the appeal of SGPs and other conditional status metrics is that they do not require 

test scores from multiple time points to share a common vertical scale. The SGP model is also 

more fl exible than the residual gain model in that neither linear relationships nor common 

outcome variance across predictor levels is required. However, this fl exibility can come at a 

cost, as SGPs require estimation of large numbers of parameters for the 99 regression lines. 

This requires suffi cient data. A loose rule of thumb is to include at least 5,000 students, 

but, like all guidelines, this can depend on a number of factors; in this case, it depends on 

the interrelationships between the variables and the number of prior years of data included 

(Castellano & Ho, in press). Estimation tends to be most problematic for outlying students on 

one or more test score distributions. These students can receive highly unstable SGPs as there 

are too few students in the same academic neighborhood to obtain stable relative ranks. 
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 Question 6.4: 

What Kinds of Group-Level Interpretations can the Student Growth 
Percentile Model Support?

SGPs are often summarized at the group-level with a median SGP that represents the 

SGP of a typical student. It is also possible to use a simple average of SGPs for a group. 

In either case, aggregated SGPs provide descriptive measures of group growth. In the 

context of growth prediction, percentile growth trajectories can support calculation of 

percentages of students predicted to be on track to reaching a desired standard. 

The SGP model provides useful norm groups for describing student status. However, school 

administrators and policymakers are often more interested in summary measures of student 

growth than individual growth results. SGPs can easily be aggregated for any group of students 

by taking the median or mean of the SGPs. In practice, median SGPs are the most common 

aggregate SGP metric. The median function is motivated by the fact that SGPs are percentile 

ranks and are thus on a scale that is generally not recommended for averaging (Betebenner, 

2009). Others have shown that averages or averages of transformed percentile ranks can in some 

cases support more stable aggregate statistics (Castellano & Ho, in press). Castellano, K. E. (2012).  

Contrasting OLS and quantile regression approaches to student “growth” percentiles. Journal of 

Educational and Behavioral Statistics. Advance online publication. doi: 10.3102/1076998611435413

These simple aggregates of SGPs support descriptions of group growth, whether the groups 

are classrooms, schools, or districts. They summarize the distribution of SGP with an average or 

typical value from the group. These measures can thus be described with statements like, “The 

average fourth grade student in School A performed as well as or better than 55 percent of her 

academic peers.” SGPs are generally not recommended for the support of causal, or value-added, 

interpretations on their own (Betebenner, 2009). That is, they are not recommended in support 

of interpretations like, “The fourth grade teachers at School A are the cause of this higher-than-

expected performance.”

SGPs for a group can also be summarized by other statistics and graphical displays. These can 

augment simple averages to provide a fuller picture of the distribution of SGPs for particular groups. 

Additionally, the relationship between group SGPs and group status can be displayed to communicate 

the distinction between high and low average status and high and low average growth.7

In the context of growth prediction, percentile growth trajectories can be summarized at the 

group level by calculating the percentage of students who are designated as on track to the 

target future score. This is described in further detail in this next section. 

7 For further information, this Colorado Department of Education website includes examples of 
attractive SGP-related graphics summarizing school and district performance: http://www.schoolview.org/
ColoradoGrowthModel.asp.
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 Question 6.5: 

How Does the Student Growth Percentile Model Set Standards for 
Expected or Adequate Growth?

Like the residual gain model, the SGP model sets empirical expectations for growth through 

the estimation of percentile regression lines. However, this statistical machinery is not 

suffi cient to determine which SGPs are “good enough,” and additional standards may be 

desired to support interpretations on the SGP scale. For growth prediction, percentile 

growth trajectories can be compared to a future target score, such as the Profi cient cut 

score in a target grade level. They can also be used to determine the minimum SGP a 

student must maintain to reach the future target score.

An essential step in implementing most growth models is the defi nition and communication of 

adequate growth. These determinations are useful at both the student and the group level. The 

Colorado Department of Education (CDE) uses SGPs of 35 and 65 to distinguish among low, 

typical, and high growth (CDE, 2009). In contrast, the Massachusetts Department of Elementary 

and Secondary Education (MDESE) defi nes 5 growth categories at the student level: Very Low, 

Low, Moderate, High, and Very High. These are delineated by SGP cuts of 20, 40, 60, and 80 

(MDESE, 2009). These classifi cations support growth reporting and accurate user interpretation 

of SGPs. At the aggregate level, median SGPs can also be evaluated with respect to standards, 

where the most common standard in practice is a simple cut score set at 50 that delineates 

groups with higher and lower growth than expected.

A higher-level standard setting approach arises from an extension of SGPs to support growth 

predictions. These “percentile growth trajectories” can support inferences about student 

trajectories toward a particular standard, such as Profi cient or College and Career Ready. 

Percentile growth trajectories combine aspects of the projection and trajectory models. 

Like the projection model, percentile growth trajectories are found by estimating regression 

equations using cohorts of students who already have scores from the future target grade 

level. These prediction equations are then applied to students whose future trajectories are 

of interest. Like the trajectory model, percentile growth trajectories assume that students 

will maintain constant gains each year. For percentile growth trajectories, a constant gain is 

the maintenance of the same SGP each year into the future. This is akin to an assumption of 

continued relative gains.

The trajectory model can both predict a future score and report the minimum gain necessary to 

achieve a future standard. Similarly, percentile growth trajectories can predict where a student will 

be in the future and also report the minimum SGP that must be maintained to reach the future 

target. Percentile growth trajectories can also report a range of future outcomes associated with 

the maintenance of different SGP levels. Figure 6.3 reproduces a plot from a presentation by 
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Betebenner (2011) that shows a range of percentile growth trajectories for a student. These plots 

are rich with information about student status, growth, and predicted growth. 

Figure 6.3 shows one student’s observed Reading scores from Grades 3 to 6 with predictions to 

Grade 7. This student is currently in Grade 6, scored a 609 on the reading achievement test, is 

Profi cient, and given her scores in Grades 3, 4, and 5, scored an SGP of 90. In the next year, there is 

a distribution of colors — green, yellow, and red — showing where the student is predicted to fall 

if the student scores a high, typical, or low SGP next year. These predictions are constructed from 

percentile growth trajectories one year into the future. Although all 99 percentile growth trajectories 

are not specifi ed in the fi gure, the color bands summarize the span of trajectories across the SGP 

range. The color classifi cations are based on Colorado’s SGP cut scores of 35 and 65.

Figure 6.3 

An Illustration of Percentile Growth Trajectories 

High

Typical

Low

66th - 99th

Percentiles

CSAP Reading
Scale Score

Level
Growth

Achievement

Growth
Achievement
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Unsatisfactory

Scale Score
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2009

Next Year
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Typical

Low

Source: Betebenner (2011). Retrieved March 29, 2012, from http://ccsso.confex.com/ccsso/2011/

webprogram/Session2199.html. This fi gure was generated using the “studentGrowthPlot” 

function using the SGP package and R software. Several states are currently using this package 

to produce student reports for their state assessment programs. 

Figure 6.3 also shows that the student will continue to be profi cient if she has a high SGP, 

but a typical SGP will result in a decline from profi cient to partially profi cient. A particularly 

low SGP could result in a decline to the “unsatisfactory” category. The fi gure emphasizes the 

importance of standard setting, not only in the defi nition of high, typical, and low growth, but 

in the articulation of standards across grades. The fi gure also masks an essential assumption 
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underlying the plot: a vertical scale underlies all of the grade level tests. Without an assumed 

or actual vertical scale, these kinds of plots cannot be constructed. With a vertical scale, 

alternative gain-based models become possible and represent useful contrasts. 

 Question 6.6: 

What are the Common Misinterpretations of the Student Growth 
Percentile Model and Possible Unintended Consequences of its Use in 
Accountability Systems?

Student Growth Percentiles are often incorrectly assumed to describe an absolute amount 

of growth in a normative frame of reference. They are instead a relative metric in two 

ways, both with respect to the variables included as predictors and with respect to other 

students in the model. Group-level SGPs may be overinterpreted as value-added measures 

when they are not intended to support these inferences on their own. 

A literal interpretation of a growth percentile is one where growth is expressed as a percentile 

rank. This might entail describing an absolute growth measure like a gain score in terms of its rank 

relative to other gain scores. This percentile rank of gain scores is a gain-based expression that is 

a natural extension of a gain-score model. In contrast, SGPs represent a relative metric in at least 

two ways. First and most intuitively, like any percentile rank, SGPs describe growth normatively 

with respect to a particular reference group. Second and less intuitively, the SGP — and any 

conditional status approach to growth — defi nes status relative to other variables in the model. 

In the case of SGPs, these predictor variables are the prior grade scores that set expectations 

for current status. As such, adding or removing prior grade variables will alter SGPs, because 

expectations about status will change when expectations are based on different pieces of 

information. Of course, gain-based models will also change as prior-grade variables are 

added, but the quantity estimated in gain-based models (the average gain or slope) generally 

improves as more information is added. In conditional status models like SGPs, the addition of 

information fundamentally changes the expectations and therefore the substantive defi nition of 

the quantity being estimated. 

As an example of this, assume that a fi fth grade student with a prior year of fourth grade data has 

an SGP of 90. Say that a research analyst uncovers an additional previous year of data from third 

grade, recalculates all SGPs, and fi nds that the student now has an SGP of 50. Is the student’s true 

SGP 50, 90, or somewhere in between? There is no single answer to this question. The SGP of 

90 compares the student’s current status to academic peers defi ned by fourth grade scores. The 

SGP of 50 compares the student’s current status to academic peers defi ned by third and fourth 

grade scores. If it seems that more grades allow for an improved defi nition of academic peers, 

then why not improve the defi nition further by including demographic variables? 
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Expectations change based on the predictors used to set expectations, thus there is no 

immediately obvious answer to the question of which SGP is “true.” In contrast, if a student 

gains 10 points from Grades 3 to 4 and 90 points from Grades 4 to 5, there is a clearer 

argument for averaging these gains to obtain an average gain. This is not an inherent advantage 

of gain-based models or a disadvantage to conditional status models. Conditional status should 

depend upon the variables used to set expectations, and this is preferred if there is substantive 

interest in these expectations. The distinction emphasizes that these two statistical foundations 

support fundamentally different conceptions of growth.

Like gain-based models and, more directly, residual gain models, SGPs can be artifi cially 

increased by defl ating initial year scores. In the intuition of SGPs, this defl ation changes the 

academic peer group of students to one that will tend to be lower scoring, resulting in an infl ated 

SGP. As a corollary, this will also infl ate percentile growth trajectories. As with other models, these 

incentives can be diminished through a thoughtful combination of status and growth model. 
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CHAPTER 7
The Multivariate Model

The multivariate model is designed for the primary 

purpose of supporting value-added inferences for teachers 

and schools. It supports answers to questions such as

How much better or worse did the 
students in a particular classroom perform 

when compared to expectations given

1) students’ scores in other grades and subjects, 

2) average district scores for each 
grade-subject combination, and 

3) other teachers who are previously or 
currently teaching the same students?

The term “multivariate,” meaning multiple variables, 

arises from the model’s consideration of all student score 

variables, past and current, as a simultaneous target for 

modeling. Through this complex web of students moving 

through classrooms, schools, and school districts over 

time, statistical expectations for student performance 

are set. Higher or lower than expected performance can 

be directly related with students’ particular teachers or 

schools, resulting in estimates for each teacher or school. 

These estimates are often interpreted as causal 

effects — the teacher or school’s direct contribution 

to average student performance. These inferences are 

generally diffi cult to support using model results alone. 

For simplicity, we will explain the underpinnings of the multivariate model using classrooms 

and their teachers as the target of inference. In many models, including the popular 

Educational Value-Added Assessment System (EVAAS) (Sanders & Horn, 1994) that we will 

use in this chapter as our prototypical multivariate model, these teacher associations are 

assumed to persist undiminished into the future. This persistence suggests that the student 

performance attributable to a student’s third grade teacher persists into fourth grade, fi fth 

MULTIVARIATE MODEL 

Aliases and Variants:
•  Sanders Model
•  EVAAS
•  TVAAS/Tennessee Model
•  Layered Model
•   Variable Persistence Model
•   Cross-Classifi ed Model

Primary Interpretation: 
Value-Added

Statistical Foundation: 
Multivariate

Metric/Scale:
Usually a standardized 
(standard deviation unit) scale

Data: Generally no vertical 
scale is required; multiple years 
of data are recommended for 
teachers and students

Group-Level Statistic: Teacher 
“Value-Added” 

Set Growth Standards: 
Standards required to support 
absolute or relative distinctions 
among teacher/school effects, 
e.g., awards/sanctions to top/
bottom 5%.

Operational Examples:
Ohio and  Tennessee
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grade, and so on. This is sometimes called a layered model, in a reference to the layering 

of estimated teacher “effects” onto a particular student over time. It is possible to relax this 

assumption using a “variable persistence” model (McCaffrey, Lockwood, Koretz, Louis, & 

Hamilton, 2004).

The EVAAS model sets expectations for any particular teacher’s students by considering 

all of these students’ scores, usually in a fi ve-year window, both before and after the 

students enter and leave the teacher’s classroom, and including all scores in other subjects. 

In addition, the district’s average scores are factored into the expectation, as well as the 

teacher estimates from all of the students’ other teachers over time. The EVAAS model and 

multivariate models in general are capable of incorporating other student-, teacher-, and 

school-level demographic or structural variables, although this is not done operationally 

(Ballou, Sanders, & Wright, 2004). The EVAAS model is complex, requires highly specialized 

and proprietary software, and is diffi cult to explain without reducing teacher estimates to a 

simplistic “value added” (causal) inference.

 Question 7.1: 

What Primary Interpretation Does the Multivariate Model Best Support?

The multivariate model supports value-added interpretations by expressing a teacher’s 

students’ performances in terms of their average distance from expectations. These 

expectations are set by considering students’ other test scores, average district 

performance, and the other teachers that the students have had.

The primary outputs of interest from the EVAAS model are teacher-level, not student-level 

estimates. These estimates are found using equations for each grade and subject test 

that are connected through the covariance matrix, a summary of the interrelationships 

between test scores over grade levels. The multivariate model improves upon the 

covariate adjustment model (see Section 4.4), which also models “effects” for groups, by 

incorporating more information: over time, across subjects, and across other teachers. 

The intuition underlying the multivariate model is that a student’s entire score history 

can be affected by membership in a particular teacher’s classroom. As a heuristic device, 

imagine that we wish to estimate the added value associated with being in a particular 

classroom at a particular grade. We can take all the students who passed through that 

classroom and compare them to students like them, taking into account scores on other 

tests and the other teachers that they have had. Average differences between the score 

histories of students with this particular teacher and the score histories of other students 

can be described as a “teacher effect.” This is only a heuristic that understates the 

complexity and assumptions of the multivariate model considerably, but it illustrates how 
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this model can support interpretations about the contribution of teachers to student test 

scores. The EVAAS model can be applied to multiple cohorts, and a more stable estimate 

for a teacher in a particular grade and subject area can be calculated by pooling teacher 

estimates from different cohorts together (Braun, 2005).

These estimates can support value-added interpretations. This assumes a causal 

attribution of the difference between actual and expected classroom performance to the 

particular teacher for that grade and subject. It is best to supplement these estimates 

with other sources of information when evaluating the teacher’s effectiveness. For 

instance, the EVAAS model does not take into account the specific strategies and lesson 

plans that teachers utilize, preventing understanding of the mechanisms that might 

underlie added value (Braun, 2005). Although the EVAAS teacher estimates undergo a 

great deal of scrutiny and may have higher reliability than, say, classroom observations, 

triangulation of multiple sources of information is always desirable when making high-

stakes decisions. 

 Question 7.2: 

What is the Statistical Foundation Underlying the Multivariate Model?

As the name suggests, these models use a multivariate statistical foundation that allows for 

simultaneous consideration of many years of student scores as well as scores in other subjects.

From a more advanced statistical perspective, the gain-based and conditional status 

models are actually restrictive special cases of the multivariate model, which in its most 

unspecifi ed form represents a useful unifying framework. From a practical perspective, 

and as the model is operationalized, the multivariate foundation is a stark contrast to 

the foundations underlying gain-based and conditional status models, which result in 

substantially more interpretable output. The advantages of the multivariate statistical 

foundation include the opportunistic use of data, not only over time but also across 

subjects and for students with missing data, to maximize information about the students in 

teachers’ classrooms. The model is also fl exible enough to allow for the layering of teacher 

estimates onto any given student’s scores in a way that simpler models cannot. Alternative 

forms of the model can include an estimate of the fading out of teacher associations over 

time in what is known as a variable persistence model (McCaffrey, et al., 2004).

To help visualize the mechanics of the EVAAS model, the following layering of equations 

demonstrates how each student’s grade-level score is decomposed for the simplest case 

of a single school system, a single subject, and a single cohort of students with Grade 3 to 

Grade 6 scores: 
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Student i’s Grade 3 Score =  Average Grade 3 Score + Grade 3 Teacher Estimate 

 + Individual Student Error for Grade 3

Student i’s Grade 4 Score = Average Grade 4 Score + Grade 3 Teacher Estimate 

       + Grade 4 Teacher Estimate 

 + Individual Student Error for Grade 4

Student i’s Grade 5 Score = Average Grade 5 Score + Grade 3 Teacher Estimate 

     + Grade 4 Teacher Estimate + Grade 5 Teacher Estimate

  + Individual Student Error for Grade 5

Student i’s Grade 6 Score =  Average Grade 6 Score + Grade 3 Teacher Estimate

 + Grade 4 Teacher Estimate + Grade 5 Teacher Estimate

 + Grade 6 Teacher Estimate 

 + Individual Student Error for Grade 6

These equations demonstrate the persistence of a teacher’s estimate into each subsequent grade-

level—that is, the Grade 3 teacher estimate is carried over to Grades 4, 5, and 6, and, similarly, the 

Grade 4 teacher’s estimate is carried over to Grades 5 and 6, and so on. A variable persistence 

model would allow the magnitude of a prior grade-level teacher’s estimate to decrease over time. 

It is not easy to deduce from the above equations precisely how the teacher estimates are 

estimated. A detailed explanation of this statistical model is beyond the scope of this chapter. 

However, it is useful to note that in the fi rst grade-level included in the model, the teacher 

estimate is not adjusted for any prior performance or other “historical factors,” such as 

demographic or economic variables. Thus, these historical factors are confounded with the Grade 

3 teacher estimate and should therefore be interpreted cautiously (McCaffrey, et al., 2004). 

Disadvantages to this statistical approach include a lack of parsimony and clarity in model 

interpretation. Gain-based models align with intuitive notions of growth over time. Conditional 

status models align less well to intuitive conceptions of growth, but it is not diffi cult to imagine 

an expected score empirically determined from past scores and a referencing of actual 

performance to expected performance. The conditional interpretation from the multivariate 

model is aggregated to the level of teachers or schools, and the expectation is based on 1) 

not only past scores but future scores after students leave a teacher’s class, 2) not only same-

subject scores but all available scores, and 3) a layering of other teacher associations from all 

teachers who have ever had each student in their class. Although it is easy to casually abstract 

these scores to “value added,” the more rigorous interpretation considers the variables that set 

the expectations, and these variables are numerous with complex interrelationships. 
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 Question 7.3: 

What are the Required Data Features for the Multivariate Model?

The multivariate model is very fl exible in terms of the data it can utilize. Generally, it 

can accommodate a large amount of test score data from multiple grade-levels and 

subjects. Moreover, as this model is primarily for producing group-level estimates 

(e.g., for teachers or schools), students not only need to have unique identifi ers but 

also identifi ers for all of their teachers, schools, and districts over time so that these 

associations can be tracked in the model. 

Without the need to report student-level growth results, the sample sizes of interest 

pertain to the number of test scores for students in each teacher’s classroom over time. 

The effi ciency of the model in using available data usually results in a substantial 

improvement over covariate-adjustment models, although this can also sacrifi ce 

interpretability of model results. A vertical scale is not required for most uses of the 

multivariate model, but standard deviation units are assumed to hold consistent meaning 

across grades and subjects. Due to the assumption of persistent teacher effects, their 

magnitudes, expressed in standard deviation units, are assumed to stay constant across 

the test score scales of different grades and subjects.

 Question 7.4: 

What Kinds of Group-Level Interpretations can the Multivariate 
Model Support?

The multivariate model is designed for group-level interpretations, particularly at the 

classroom level, although school and district level interpretations are also possible 

through minor reconfi gurations of the model. 

Generally, teacher or school estimates from the EVAAS model are most appropriate for 

identifying teachers who may benefit from additional professional development and for 

identifying schools for further investigation as they may be underperforming. In these 

cases, the group-level estimates serve as a screening tool that selects teachers or 

schools that may need additional resources (Braun, 2005). Value-added interpretations 

of the group-level estimates should be triangulated with other sources of information, 

such as teacher portfolios and classroom observations. Given that the entire focus 

of this chapter is on group-level interpretations, we do not expand on this topic 

further here. 
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 Question 7.5: 

How Does the Multivariate Model Set Standards for Expected or 
Adequate Growth?

The “value-added” scores are most often interpretable in terms of standard deviation 

units with respect to a baseline average centered on zero. Relative comparisons of value-

added scores are possible, such as fl agging a certain top and bottom proportion for 

further investigation. 

The multivariate model results in a distribution of educator or school estimates. These are not 

interpretable on an absolute scale and must be interpreted normatively. Standards may be set 

by selecting a top or bottom proportion or identifying a number of standard deviation units 

away from a reference point. Additionally, statistical signifi cance tests can be conducted to 

support inferences about an educator’s estimate being higher or lower than a particular target 

cut score to a degree of statistical signifi cance. 

 Question 7.6: 

What are the Common Misinterpretations of the Multivariate Model and 
Possible Unintended Consequences of its Use in Accountability Systems?

The interpretation of value-added scores as actual value that a teacher has added is an example 

of a naming fallacy — naming a metric “value added” does not necessarily make it so. 

Ascribing causal effects to teachers is generally not warranted by educational data designs. It 

is more precisely a deviation from expectations associated with the class of students, where 

the expectation is set by student scores and students’ past and future teachers from other 

classrooms. This more disciplined interpretation can allow for an interpretation of the “teacher 

effect” in context and a deeper exploration of plausible alternative explanations for high or low 

scores. Moreover, some studies have found that the most extreme ranks — those at the very 

top and bottom — are unreliable (Lockwood, Thomas, & McCaffrey, 2002), which could have 

substantial implications for high-stakes decisions focused on the very top and bottom ranked 

teachers. In addition, often only a small fraction of teachers, 33 percent or less, are found to be 

reliably different from the average teacher in a district (Braun, 2005).

Like conditional status models, multivariate models do not allow for intuitive growth 

interpretations but instead represent an enhancement of status interpretations by incorporating 

a reference point, an expectation based on other information. Like incentives for gain-based 

models, a teacher is incentivized to maximize the scores of the students in his or her class. The 

teacher also benefi ts if the scores of his or her students are artifi cially defl ated in every other 

classroom except that teacher’s own.
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APPENDIX A
CROSS-REFERENCING GROWTH MODEL TERMS

Growth model classifi cation systems, like growth models themselves, serve multiple purposes. Two 

documents associated with this guide deserve special attention for their growth model classifi cation 

systems, the CCSSO Growth Model Comparison Study (Goldschmidt, Choi, & Beaudoin, 2012) ) 

and the CCSSO Understanding and Using Achievement Growth Data brochure (Council of Chief 

State School Offi cers, 2011). CCSSO’s growth brochure was intended as a concise review of growth 

model principles, and the Growth Model Comparison Study is more empirical, more technical, and 

focuses primarily on school-level accountability metrics. In contrast, The Practitioner’s Guide to 

Growth Models represents a middle ground, an in-depth overview of the growth model landscape. 

The distinct purposes of these three documents lead to different growth model classifi cations. This 

appendix summarizes the contrasting growth classifi cation schemes.

The CCSSO brochure identifi ed fi ve basic types of growth models: Categorical, Gain-Score, 

Regression, Value-Added, and Normative. These fi ve growth model types are listed and related to 

this guide’s terminology in Table A.1 below. For instance, this guide also reviews Categorical and 

Gain-Score models but emphasizes that the Categorical model is a type of gain-based model that 

creates an implicit vertical scale. This is elaborated fully in Chapter 3 on the Categorical model. 

The Practitioner’s Guide treats the Regression model as a statistical approach that underlies many 

models. Regression is essential for all models that use the conditional status statistical foundation, 

from Projection Models to Student Growth Percentiles. Regression, as a statistical technique, also 

supports Multivariate models. Although a Regression model refers in practice to Projection models 

for growth prediction and Covariate Adjustment models for value-added inferences, this guide uses 

“regression” in reference to the statistical technique. 

Finally, this guide uses “normative” to refer to the referencing of scores to a norm group, that is, 

a reporting technique, and not a particular model. Although Student Growth Percentiles report 

scores on a norm-referenced metric, other growth models are also capable of reporting different 

conceptions of growth in a norm-referenced fashion.

Table A.2 below presents the 9 growth models reviewed in the Growth Model Comparison Study. 

One of the uses of this guide is to help to contextualize and explain the observed differences 

between growth models when they are applied to real data. An important conceptual distinction 

between the Practitioner’s Guide and the Growth Model Comparison Study is that the latter focuses 

on a single purpose, a “value-added” type of ranking, at a single level of aggregation — the school 

level. In contrast, this guide includes multiple purposes, including growth description and growth 

prediction, and multiple levels, including the student, teacher, and school levels.
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Table A.1 

Mapping Growth Model Terminology from CCSSO’s Understanding and Using 

Achievement Growth Data to those in this Practitioner’s Guide8 

Understanding and Using 

Achievement Growth Data8

Practitioner’s Guide to Growth Models

Categorical  Categorical Model and Type of Gain-Based Model

Gain-Score  Gain Score Model and Type of Gain-based Model 

Regression  A statistical approach that supports many models, Residual 

Gain, Projection, Student Growth Percentiles, Covariate 

Adjustment, and Multivariate

Value-Added  A purpose associated with many models, particularly 

Covariate Adjustment and Multivariate Models

Normative  A reporting metric associated particularly with Student 

Growth Percentiles, but more broadly applicable 

Table A.2 

Mapping Growth Model Terminology from the CCSSO Growth Model Comparison Study 

to those in this Practitioner’s Guide9

Growth Model Comparison Study9 Practitioner’s Guide to Growth Models

Simple Gain   Gain Score Model and Type of Gain-Based Model

Fixed Effects Gain  Type of Gain-Based Model 

True Score Gain   Type of Multivariate Model

Covariate Adjustment with  

School Fixed Effects 

Covariate Adjustment Model

Covariate Adjustment with  

School Random Effects 

Covariate Adjustment Model

Simple Panel Growth  Type of Multivariate Model 

Layered Model   Type of Multivariate Model

Student Growth Percentile Student Growth Percentiles (in the Student Growth 

Percentile Model)

Growth to Standards  Trajectory Model

8 See CCSSO (2011).
9 See Goldschmidt et al. (2012).
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