S-061: Statistical and Psychometric Methods for Educational Measurement
Syllabus, Harvard Graduate School of Education
September 3 – December 18, 2019

Class meets Mondays and Wednesdays, 10:10-12:00, perhaps in Gutman Library 302
Course website: https://canvas.harvard.edu/courses/67935

Instructor: Andrew Ho TF: Thomas Kelley-Kemple
Andrew_Ho@gse.harvard.edu tkelleykemple@g.harvard.edu

Scheduled Meetings: After class or email wendy_angus@gse.harvard.edu for appointments.
“Please-Drop-By-My-Office” Hours: Wednesdays, 4pm, 455 Gutman Library

Description

This course covers statistical and psychometric methods for improving the design and use of educational and psychological measurements. Students will learn classical and modern measurement techniques, including reliability, generalizability theory, validation, differential item functioning, item response theory, scaling, linking, standard setting, and adjustments for measurement error. Contexts of assessments include small-scale educational and psychological measures for targeted research studies as well as large-scale district, state, and national assessments for formative, summative, and evaluative purposes. In the first two thirds of the course, students will learn and apply methods in class and complete data analytic assignments. In the remainder of the course, students will read and critique recent research in educational measurement. Students will also develop and present a research proposal that has promise for advancing the field.

Prerequisite: S-052 or at least two semesters of applied statistics that includes estimation and interpretation of logistic regression coefficients. Experience with multilevel models is encouraged but not required. This course complements S-043 and S-090, and students may enroll in these courses in any order. Students who do not meet the prerequisite may enroll instead in S-011, which provides a nontechnical introduction to educational measurement.

Grading

The requirements of the course include in-class attendance (5%), active and effortful participation in class and in out-of-class Google Doc discussions (15%), satisfactory completion of 4 assignments (35%), an in-person oral exam (15%), and satisfactory completion and in-person presentation of a full research proposal/project (30%). These weights are approximate—the final course grade may factor in improvement over time and exemplary performance on one or more dimensions. Students are required to complete the first assignment individually and the remaining three in pairs. The oral exam must be completed individually in person.

This course is letter-grade-only; students may not take this course on a Satisfactory/No Credit basis. Registered students must submit a course evaluation form at the end of the semester to fulfill the requirements of the course. In-person auditing of this course is not allowed—all attendees must be registered students.
Support
Our TF, Thomas, will hold weekly office hours by appointment. Occasionally, Thomas may also offer optional discussion sections as he sees necessary; these may be most common around assignment due dates. Attendance at these sessions is strongly recommended. Meetings with me are typically available after class meetings and are also available by appointment. Contact my assistant, at Wendy_Angus@gse.harvard.edu to schedule appointments. Occasional one-on-one check-ins me are welcome strongly recommended. To facilitate this, I also hold, “please drop by my office” hours on Wednesdays at 4pm. No pre-set agenda or questions are necessary. Just drop by!

CALENDAR
(I expect this calendar to change slightly as I accommodate the pace and preferences of the class)

<table>
<thead>
<tr>
<th>September 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>October 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>27</td>
</tr>
</tbody>
</table>
November 2019

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4 – Class 17 Item Writing</td>
<td>5</td>
<td>6 – Class 18 Frontiers</td>
<td>7 – Oral Exam Day</td>
<td>8 – Oral Exam Day</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11 – Holiday</td>
<td>12</td>
<td>13 – Class 19 Effect Sizes</td>
<td>14</td>
<td>15 – Prelim proposal due</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18 – Class 20 Inflation</td>
<td>19</td>
<td>20 – Class 21 Development</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25 – Class 22 NAEP</td>
<td>26</td>
<td>27 – No Class</td>
<td>28 – Thanksgiving</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

*** I may adapt topics and readings for the last 4 classes to relate to student projects.

December 2019

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2 – Class 23 SEDA</td>
<td>3</td>
<td>4 – Present 1: 10am-1pm</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18 – Projects Due (5PM)</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
</tbody>
</table>

READINGS

I require students to respond to online, Google Doc, discussion questions to central readings once a week, by 10PM on Tuesdays between classes. A good response will demonstrate that the student has read and carefully considered the central reading and spent time considering what the discussion question is asking. Central readings that are very technical need not be mastered in detail but do pay attention to notation and the underlying motivation of derivations. I intend noncentral readings as additional context and citations for future reference. Links will work on campus and, if you are off campus, if you have a VPN connection. Other readings are available via the library reserves tab here: https://canvas.harvard.edu/courses/67935/external_tools/33439

There are two required textbooks that are available for purchase:
September 3 – Class 1: Validation

1) Koretz (2008), Chapter 2, pp. 16-34. (required text)
2) AERA/APA/NCME Standards, Chapter 1, pp. 11-31. (required text)
3) 2017 MCAS Technical Report Section 2.4 and 3.9: [link]

Supplemental reading:
4) Koretz (2008), Chapter 9, pp. 215-234. (required text)

September 4 – Class 2: Reliability and Classical Test Theory

1) AERA/APA/NCME Standards, Chapter 2, pp. 33-47. (required text)
2) 2017 MCAS Technical Report Section 3.7: [link]

Supplemental reading:
3) Koretz (2008), Chapter 7, pp. 143-178. (required text)

September 9 – Class 3: Reliability

Supplemental reading:

September 11 – Class 4: Generalizability Theory

Supplemental reading:

September 16 – Class 5: Generalizability Theory

Supplemental reading:
1) Ho, A.D. & Kane, T.J. (2013). *The reliability of classroom observations by school personnel*. Bill & Melinda Gates Foundation. (reserves)

September 18 – Class 6: Generalizability Theory Extensions

Supplemental reading:

September 23 – Class 7: Scaling and Item Response Theory

2) 2017 MCAS Technical Report Section 3.6: link

Supplemental reading:
5) AERA/APA/NCME Standards, Chapter 5, pp. 95-109, focus on scores, scales, and norms. (required text)

September 25 – Class 8: Item Response Theory

Supplemental reading:

September 30 – Class 9: Item Response Modeling and…

October 2 – Class 10: Polytomous Extensions

October 7 – Class 11: Linking

1) AERA/APA/NCME Standards, Chapter 5, pp. 95-109, focus on linking. (required text)

Supplemental reading:
2) Reardon, S. F., Kalogrides, D., & Ho, A. D. (forthcoming). Validation methods for aggregate-level test scale linking: A case study mapping school district test score distributions to a common scale. *Journal of Educational and Behavioral Statistics.* (reserves)

October 9 – Class 12: Bias/DIF

1) AERA/APA/NCME Standards, Chapter 3, pp. 49-72. (required text)

Supplemental reading:

October 16 – Class 13: Factor Analysis

October 21 – Class 14: Connections to Structural Equation Modeling

October 28 – Class 15: Standard Setting and Criterion-Referenced Reporting

1) AERA/APA/NCME Standards, Chapter 5. (required text)

Supplemental reading:
5) Koretz (2008), Chapter 8. (required text)
October 30 – Class 16: Growth and Vertical Scaling

Supplemental reading:

November 4 – Class 17: Item Writing and…

November 6 – Class 18: Psychometric Frontiers

Supplemental reading:

November 13 – Class 19: Effect Sizes

November 18 – Class 20: Inflation and Test-Based Accountability

1) AERA/APA/NCME Standards, Chapter 12 and 13, pp. 183-213. (required text)
2) Koretz (2008), Chapter 10, pp. 235-259. (required text)

Supplemental reading:

November 20 – Class 21: Development and Validation

November 25 – Class 22: NAEP and Plausible Values

December 2 – Class 23: Psychometric methods behind SEDA

Oral Exam

I will administer a 20-minute oral (conversational) exam to each of you on November 7 or 8 during set time windows to be scheduled. The goal is to encourage you to become fluent enough in the language of measurement and psychometrics that you can speak it actively and accurately in conversation. Questions will be based on the assignments you will have already completed in class.

Course Project

To complete the course, you must develop an original research project, present it to other class members, and submit a final written product. In conducting this research project, you may collaborate with a partner in the class. While my vision of what constitutes a viable project is somewhat contextual and subject to negotiation, there are two broad possibilities:

1. A complete and extended outline of a research paper, including results from data analysis that uses the methods introduced in this course. I will provide more detail on what is meant by “complete and extended outline”, but this will require you to write down the underlying structure of the paper from start to finish. This includes (in order): 1) Introduction / motivation; 2) Background / literature review; 3) Data and sample; 4) Methods; 5) Results; and 6) Discussion and implications for policy and/or practice. To be clear, while this is less effort than a completed final paper, it also means that you must produce the main tables and figures that you intend to include in a final version of your paper.

2. If producing results is not possible, I will require you to write a “pre-analysis plan”. This is very similar to #1 above, except that the “Results” section will instead require a full list of models that you wish to estimate, a detailed discussion of what you expect to find, and what you might learn from your study (regardless of how the analysis turns out). This option is available primarily for students who are working on a project that has scholarly promise, but also logistical headaches that are beyond your control (for example, if you are collecting data or waiting on the acquisition of a restricted-use data set).

Your grade on the course project will depend on the contribution of the project is and how well you implement it. In addition to the scheduled deadlines on the syllabus, I encourage you to keep me informed on the progress of your project throughout the semester.
The maximum length of the extended outline or pre-analysis plan (not counting references, tables, and figures) is 20 pages of double-spaced 12-point type with one-inch margins. During the course, we will provide explicit guidance and support tailored to each research project. I expect that your course project will eventually (after the course is complete) result in a published research paper that can appear on your Curriculum Vitae.

To help you prepare the presentation of your course project, we will devote class time to discussing the components of a good scholarly talk. We may also be available to help you practice a “dry run” of your presentation. You (and perhaps your research partner) should make an appointment with me to discuss the feedback I provide on your draft. You should also see Thomas or me for ongoing support for your project. Prior to any meetings with either of us, please prepare a brief memo describing your agenda for the meeting and email it the day before our meeting. This will help us to help you.

As we evaluate your project, we will ask the following five questions:
1) Have you asked at least one compelling research question motivated and framed by existing literature?
2) Have you answered at least one interesting research question in a cogent and thoughtful manner?
3) Have you articulated your methods clearly enough that readers can replicate them?
4) Have you demonstrated mastery of a measurement concept or technique, including accurate interpretation of analytic results?
5) Have you demonstrated sufficient momentum toward a publishable paper?

Additional optional texts

All students should consider #1, below, for their reference library. Application-oriented students should consider #3 and #6 for Generalizability Theory and IRT, respectively. More technically oriented students should consider #4 and #5. Students interested in practical methods for large-scale testing should consider #2.

3) Generalizability Theory: A Primer. ISBN: 978-0803937451

4) Generalizability Theory. ISBN: 978-1441929389

6) Applications of Item Response Theory to Practical Testing Problems. ISBN: 978-0898590067

Statistical and psychometric computing
Statistical computing is an integral part of S-061. I will be using Stata this year, and you will require at least Stata 14 to use Item Response Theory methods. I assume that everyone is comfortable using a computer to perform basic statistical analysis, although I don’t necessarily assume that you’ve used Stata.

I do not teach programming during class time, although code is threaded through the lecture slides. We provide resources to help you learn how to program on your own at your own pace. Thomas may also cover coding issues in his sections.

There are two ways you can access Stata. The least expensive option is to use one of the networked workstations available in the Learning Technology Center (LTC) on the 3rd floor of Gutman Library and elsewhere on the HGSE campus (e.g., on the 2nd and 4th floors of Gutman Library). For students who would like to use Stata on their own PCs, you may purchase Stata following this link: http://www.stata.com/order/new/edu/gradplans/student-pricing/. Stata/IC, which will be enough for this course, is available for $45 for a 6-month license and $198 for a perpetual license.

I do allow students to complete problem sets in R, although students are responsible for their own coding help and code quality assurance.

Collaboration and study groups
Many people learn best when working in a group, and I encourage collaborative learning. To mimic statistical and psychometric work in the real world and to provide a chance for you to use this language actively, I mandate completion of assignments in pairs starting from the second assignment.

We mandate collaboration for at least three reasons. First, learning statistical and psychometric methods is like learning a language. To learn it, one must “speak” it actively and in a genuine context with other individuals. Second, collaborative quantitative analysis is the norm and individual work is the exception in the world of practice. Third, my experience has been that, on average, students who work in pairs and groups both perform better and enjoy themselves more than students who work individually. Statistical and psychometric collaboration is a case where the whole is greater than the sum of its parts.

Beyond pairs, study groups can be helpful to you as you prepare to do the assignments, both in terms of how to approach the work (including how to use the computer effectively) and in terms of how to think about important concepts. However, students must turn in work as pairs or
individuals where specified. Papers should be written in the pair or individual’s own words—your text should reflect your own understanding of the material.

Each group will undoubtedly develop its own structure; nevertheless, here are a few suggestions:

- Groups with six or more members become less useful and may be harder to organize because finding common meeting times becomes increasingly problematic.

- Plan at least one session of 1½ to 2 hours (early enough so that there is sufficient time if an additional session is necessary). After 2 hours of statistics, everyone’s eyes will be glazing over.

- Schedule the meetings so that you have sufficient time afterwards to write in pairs or individually. When we read your assignments, we focus on what you say and how you say it. The assignments have been devised to require not only computation and programming skills, but skills in analyzing and reporting the material.

- Use the groups to ask questions, try out interpretations, and so on—you each represent each other’s resources. Often one person can explain something that makes you see something in a new way—or the other way around. Different people have different insights and strengths—some are good programmers, some ask good questions, others value contextual analysis—and you can learn from listening to what others in a group have to offer.

- **Be careful about sitting in groups at laptops or computers and simultaneously composing text.** You and your partner must write your own paper, on your own, using your own language. **Your papers should be written in your own words, not those of your study group.**

- Be sensitive to the distinction between collaboration to plan for and interpret the assignment and collaboration to write up the assignment. The former is encouraged; the latter is forbidden beyond, when applicable, your partner. If the distinction begins to feel murky, refocus your group's work on lecture content and course materials. And see me if you have any questions at all.

Accommodations

We encourage students needing accommodations in instruction or evaluation to notify us early in the semester. If you have a disability or health concern that may have some impact on your work in this class and for which you may require adjustments or accommodations, please contact Maritza Hernandez at maritza_hernandez@gse.harvard.edu, Access and Disability Services (ADS) administrator in Gutman 124. No accommodations can be given without authorization from ADS, or without notice. If you already have a Faculty Contact Form for this course from ADS, please provide us with that information privately in our offices so that we can make those adjustments in a timely manner. All inquiries and discussions about accommodations will remain confidential.
A Note on Plagiarism
Please read the School’s policy on plagiarism in the HGSE Student Handbook, which includes the statement, "Students who submit work either not their own or without clear attribution to the original source, for whatever reason, ordinarily will be dismissed from the Harvard Graduate School of Education." Attention to this policy is particularly important in a course like S-061, in which collaboration with other students is often required and generally encouraged. If you work closely with other students or partnerships—a process that I encourage and fully support—recognize the other students’ contributions explicitly in your written account (a footnote is fine for this purpose). This helps avoid the natural questions that arise when similarities are detected at grading. If you have any questions about what constitutes appropriate collaboration, or how to define what constitutes your own work, please see me or Thomas.

Other Writing Resources

- HGSE Academic Writing Services: Gutman Library
- APA Online Tutorial: http://isites.harvard.edu/icb/icb.do?keyword=apa_exposed
- Writing Resources (including Writing Like an Educator Course and Reference Materials): http://isites.harvard.edu/icb/icb.do?keyword=awrs&pageid=icb.page48297
- Sign-up for Individual Sessions at the Writing Center: http://www.appointmentquest.com/provider/2030159020
Finally, some tips from last year’s S-061 wonderful student cohort follow. These are the responses to my favorite question (#9) from our course evaluations. I have not edited or omitted any responses. For the full course evaluations, see: https://evaluations.gse.harvard.edu/submit-course-evaluations

What advice would you give to students who are thinking of taking this course (about its level, the amount of work required, any prior training needed, ways to get the most out of the course, etc.)?

This course is a real eye-opener about educational and psychological testing and, although the subject matter is complex and the workload is heavy, the course and its delivery make the content easy and work easy to digest.

Workload pretty consistent over the semester (besides the final project, and that depends on your time management). Use office hours and the google docs and things to ask questions and get feedback on your ideas and current understanding. A really solid Stats background and a good level of comfort in Stata should be all the background required.

Would very highly recommend this course.

n/a

Take the course! It was really beneficial BUT HARD. It takes time, folks. No two ways around it. You will have to spend time with the content, time digging into Stata, time putting presentations together, turning that into a proposal, making meaning from the tools. But is really does come together in the end - this from someone who really struggled through this course. I still recommend it for those who want to leave here with solid quantitative chops. Plus Andrew is awesome - I took it, knowing that it would be hard for me, because I knew he could help me get through it.

TAKE THIS COURSE! If you're going to do any kind of quantitative research in education, you're probably dealing with test scores. And if you're dealing with test scores, knowledge of psychometrics is absolutely essential (and in demand. It will help bring in the $$.).

The workload is totally worth it because the class helps you build extremely useful technical and practical skills in dealing with assessments. Consider balancing out workload by taking some easier classes in order to make time for this. If the technical requirements of the course deter you, don't worry about that. I took this course with no background in Stata and just some knowledge of multiple regression. I worked a bit extra to understand logistic regression before the course started, and to replicate code in R through the semester and I was able to get through the course just fine.

Andrew is likely to be one of the best instructors you have had because of his expertise in the field, his love for teaching and deep enthusiasm for improving education.
This is a great course to get you up and running with measurement theory. It provides hands on experience thinking through your own project. It could be a steep learning curve if you are new to the field. The time commitment is slightly above average, but by no means unreasonable. The best part is that you get to work on your own project and take it in any direction you’d like. Andrew is amazing at teaching and he really makes an extra effort. The personalized feedback and support was really valuable.

Lots of work and complex content, but if you care about the material and are willing to stay on it week in and week out, you won’t get a more rigorous learning experience.

I would recommend them to think about potential data to use in an original project even before starting the course. Also, to be prepared to work A LOT of hours on this course... it will be worthy!

This class is a lot of work, but if you are really into psychometric or the technical aspect of testing that it is worth taking. I like how the class also devoted some time to discuss the less technical issues, such as the implication of test-taking strategies, and incorporated real world examples of common practices in standardized testing. The stats part can sometimes be intimidating, but as long as you have some basic knowledge in logit regression, it will be fine. Don’t worry about the Stata coding too, because almost all codes are provided. Not advisable to take if your stats foundation is not really strong.

I remember reading in last year’s course reviews someone writing that S-061 should be required for all education researchers, and I completely agree! This was a difficult class—there is a lot of time that must be spent reading and just digesting all of the concepts presented. But, I am extremely happy that I took it. Looking back, I learned a lot and am proud of the progress I am making on a publishable paper based on the project I did in the class.

Pro tip: Make the most of S-061 by coming in with a dataset you can use.

This course is both a sprint and a marathon. As soon as I felt I mastered the material, we moved onto a completely new, but related, topic. This course, easily, was the most time consuming during my 1+ year at HGSE.
It’s a heavy lift and very fast paced, but the material is super valuable. It will change the way you look at any measure or scale, and you’ll have the tools to critically assess the data you inevitably use in your research. You also walk away with a lot of solid technical skills for measuring reliability and validity of measures and data. The final project can definitely lead to a published paper, too, but you have to put a lot of time into it, ideally while you’re also doing the problem sets (which are time consuming for sure).

It’s fast paced but if you can take time to focus on the problem sets, readings, and review the materials regularly you can definitely get a lot out of it.

This course is highly useful if you have the time and energy to fully immerse yourself in the material. Andrew is at his absolute best as an instructor - brilliant, inspiring, humorous - able to continually push you to new levels of understanding. After taking this course, you will never see the world in the same way again.

You must make a full commitment to this course because it consumes 15-20 hours per week for class preparation. You also have a required final project, which will be a nearly publishable manuscript. The instructor and the teaching fellow are quite helpful, and you are sure to ask them a lot of questions. After the semester is over, you will be surprised that you have learned so much about almost all the contemporary psychometric methods and it is totally worth the endeavor to take this amazing course.

This course was a lot more manageable than I expected (I think some changes to content load were made) so I wouldn’t feel intimidated by an excessive time commitment. My advice: reference the problem sets while writing the final paper - they end up being very helpful!