Trade Agreements and the Nature of Price Determination

Pol Antràs and Robert W. Staiger
Harvard and NBER; Stanford, Wisconsin and NBER

January 5, 2012
Introduction

- Terms-of-Trade Theory of Trade Agreements:
 - in the Nash equilibrium, tariffs are inefficiently high but domestic policies are internationally efficient.
 - negotiations over tariffs alone, coupled with a "market access preservation rule," can bring governments to the efficiency frontier – "shallow" integration.

- This paper: nature of international price determination is important for these predictions:
 - "deep" integration needed when prices are not fully disciplined by market clearing (bilateral bargaining).
Market Clearing with Perfect Competition

- Perfectly competitive trade model: Foreign (‘*’) exports a single good to Home.

- Measure $\frac{1}{2}$ of H consumers with demand $D(p)$.

- Measure $\frac{1}{2}$ of F consumers with demand $D(p^*)$.

- Measure 1 of firms in F with increasing-concave production technology $y^* = F(L^*)$.

- Measure Λ of workers in each country paid a wage of 1 (pinned down by outside sector).
Market Clearing with Perfect Competition

- H has import tariff τ, F has both export tax τ^* and labor subsidy s^* (applied only to the export sector), all defined in specific terms.

- Governments are social welfare maximizers (W and W^*).

- Efficient policies maximize world welfare and deliver $T^e \equiv \tau^e + \tau^{*e} = 0$, $s^{*e} = 0$. No surprise (no frictions).

- Nash policies: FOCs $\Rightarrow \tau^N = \hat{p}^*/\eta^*_E$, $\tau^{*N} = \hat{p}/\eta_M$ and $s^{*N} = 0$ (where all prices and elasticities are evaluated at the Nash policies).

- Why isn’t s^{*N} distorted? τ^* is first best for terms of trade manipulation in this setting.
Market Clearing with Perfect Competition

- **Shallow integration:** Suppose H agrees to eliminate its tariff and F agrees to eliminate its tariff and in addition F agrees to a **“market access preservation” constraint** on its future choices of s^*:

$$
\frac{d\tau^*}{ds^*} = \frac{-dp/ds^*}{dp/d\tau^*}.
$$

- Then F solves

$$
\frac{dW^*}{ds^*} = \frac{\partial W^*}{\partial s^*} - \frac{\partial W^*}{\partial \tau^*} \frac{dp/d\tau^*}{dp/d\tau^*} = 0
$$

with W^* evaluated at $\tau = 0$.

- Delivers $s^{*R} = 0$ and $\tau^{*R} = 0$. Hence, with $\tau = 0$, efficiency frontier achieved.
Market Clearing with Market Power

- A monopoly firm in F; H and F markets segmented.
 - special form of imperfect competition, but insights are more general.

- Efficient policies \(T^e = 0, \ s^e = 1/\eta^*_D \): No role for tariffs, but F subsidizes labor to ensure that price in each market is equated to marginal cost.

- Nash policies: FOCs \(\Rightarrow \tau^N = -\hat{x}/(d\hat{x}/d\tau) - \hat{p}/\eta_D, \ \tau^*N = \hat{p}^*/\eta_D^* \) and \(s^N = 1/\eta_D^* \) (with all prices/elasticities evaluated at the Nash policies).

- Note: \(s^N \neq s^e \), but conditional on trade volume \(s^N \) (and \(s^R \)) is efficient.
Market Clearing with Market Power

- **Shallow integration:** Suppose H agrees to eliminate its tariff and F agrees to set its tariff at a level $\tilde{\tau}^*$ s.t. $\hat{x}(s^N, 0 + \tilde{\tau}^*) = \hat{x}(s^e, T^e)$, and F agrees to constrain its future choices of s^* according to

$$\frac{d\tau^*}{ds^*} = -\frac{d\hat{x}}{ds^*} \frac{d\hat{x}}{d\tau^*}. $$

- Then F solves

$$\frac{dW^*}{ds^*} = \frac{\partial W^*}{\partial s^*} - \frac{\partial W^*}{\partial \tau^*} \frac{d\hat{x}}{d\tau^*} = 0$$

with W^* evaluated at $\tau = 0$.

- Delivers $s^R = s^e$ and $\tau^R = 0$. Hence, with $\tau = 0$, efficiency frontier again achieved (key: $s^R = s^e$ *conditional* on efficient trade volume).
Matching Model

- Measure 1 of consumers each matched with measure 1 of producers; no possibility of rematching (0 outside option of the agents).
 - extreme assumption but results generalize to any pricing not fully disciplined by market clearing.

- Each producer produces an amount of x with the production function $F(L)$ in anticipation of payoff obtained upon matching.

- Consumer utility $u(x)$, where u is increasing and concave.

- With cost of producing x sunk at time of matching, consumer and producer Nash bargain over the surplus, with producer capturing share $\alpha \in (0, 1)$.
Matching Model

- **International match**: F seller takes her good to H market; tariff costs not sunk at time of bargaining, so ex-post surplus over which parties negotiate is

\[S(L, \tau + \tau^*) = u(F(L)) - (\tau + \tau^*) F(L). \]

- Labor \(L \) hired by F selling to H is then determined by maxing \(\alpha S(L, \tau + \tau^*) - (1 - s^*) L \), which defines \(\hat{L}(s^*, \tau + \tau^*) \) and trade volume \(F(\hat{L}) \).

- **Local (F) match**: tariffs irrelevant to bargaining surplus, so labor hired by F selling to F is \(\hat{L}^*(s^*) \) and production for local sales is \(F(\hat{L}^*) \).
Matching Model

- Efficient policies $T^e = 0, \ s^* = 1 - \alpha$: no role for tariffs, and F labor subsidy resolves the under-investment in L.

- Nash policies: FOCs $\Rightarrow \tau^N + \tau^*N > 0, \ s^*N > 1 - \alpha$.

- Hence, $T^N > T^e$, but now s^*N is inefficient even conditional on trade volume.
Matching Model: Shallow Integration

- Consider F’s preferred \(\tau^* \) and \(s^* \) to deliver efficient trade volume.

- Efficient trade volume is \(F(\hat{L}(1 - \alpha, 0)) \), so starting from efficient policies changes in \(\tau^* \) and \(s^* \) must satisfy

\[
\frac{d\tau^*}{ds^*} = -\frac{d\hat{L}/ds^*}{d\hat{L}/d\tau^*}.
\]

- Then F solves

\[
\frac{dW^*}{ds^*} = \frac{\partial W^*}{\partial s^*} - \frac{\partial W^*}{\partial \tau^*} \frac{d\hat{L}/d\tau^*}{d\hat{L}/ds^*} = 0.
\]

- Delivers \(s^{*R} > s^{*e} \). Hence, shallow negotiations cannot achieve the efficiency frontier.
Matching Model: Another Interpretation

- “World”/exporter price:

\[
\hat{p}^w = \frac{\alpha u(F(\hat{L}))}{F(\hat{L})} + (1 - \alpha) \tau^* - \alpha \tau.
\]

- But \(\frac{-d\hat{L}/ds^*}{d\hat{L}/d\tau^*} > 0\), so F maintains trade volume with an increase in \(\tau^*\) and \(s^*\) while raising \(\hat{p}^w\) and improving its terms of trade.

- Shallow integration cannot fully eliminate terms-of-trade manipulation when international prices are determined through bargaining.

- But if negotiations impose \(s^* = s^{*e}\) (i.e., “deep” integration), then efficiency frontier is immediately achieved.
Conclusion: Some Open Questions

- How much are international prices disciplined by market clearing?
 - Antràs and Staiger (AER, forthcoming): arguably less and less so with the increase in offshoring.

- How sensitive is the performance of the market-access/shallow integration approach to the nature of international price determination?

- And how sensitive is the performance of reciprocity/non-discrimination rules to the nature of international price determination?
 - Antràs and Staiger (AER, forthcoming): novel “political externalities.”
 - Important questions for the architecture of the WTO moving forward.