Globalization and Pandemics

Pol Antràs
Harvard University and NBER

Stephen Redding
Princeton University and NBER

Esteban Rossi-Hansberg
Princeton University and NBER
Motivation

• What is the relationship between globalization and pandemics?
 • Does globalization make societies more vulnerable to pandemics?
 • How do pandemics affect globalization (present and future)?
Motivation

- What is the relationship between globalization and pandemics?
 - Does globalization make societies more vulnerable to pandemics?
 - How do pandemics affect globalization (present and future)?

- We develop a model in which trade involves human interaction and human interaction transmits disease
 - Gravity model of trade
 - R_0 and disease dynamics are endogenous to trade
Motivation

• What is the relationship between globalization and pandemics?
 • Does globalization make societies more vulnerable to pandemics?
 • How do pandemics affect globalization (present and future)?

• We develop a model in which trade involves human interaction and
 human interaction transmits disease
 – Gravity model of trade
 – R_0 and disease dynamics are endogenous to trade

• Health policy externalities between countries
 – Good domestic policy may not stem an epidemic in the face of bad
 foreign policy
 – But (in some cases): unilateral incentive to be open to country with bad
 foreign policy
Motivation

• What is the relationship between globalization and pandemics?
 • Does globalization make societies more vulnerable to pandemics?
 • How do pandemics affect globalization (present and future)?

• We develop a model in which trade involves human interaction and human interaction transmits disease
 – Gravity model of trade
 – R_0 and disease dynamics are endogenous to trade

• Health policy externalities between countries
 – Good domestic policy may not stem an epidemic in the face of bad foreign policy
 – But (in some cases): unilateral incentive to be open to country with bad foreign policy

• General equilibrium forces (terms of trade) influence pandemic
Motivation

• What is the relationship between globalization and pandemics?
 • Does globalization make societies more vulnerable to pandemics?
 • How do pandemics affect globalization (present and future)?

• We develop a model in which trade involves human interaction and human interaction transmits disease
 – Gravity model of trade
 – R_0 and disease dynamics are endogenous to trade

• Health policy externalities between countries
 – Good domestic policy may not stem an epidemic in the face of bad foreign policy
 – But (in some cases): unilateral incentive to be open to country with bad foreign policy

• General equilibrium forces (terms of trade) influence pandemic

• We introduce forward-looking endogenous social distancing
Model: Trade

- Welfare of households in country i

$$W_i = \left(\sum_{j \in J} \int_0^{n_{ij}} q_{ij}(k) \frac{\sigma - 1}{\sigma} dk \right)^{\frac{\sigma}{\sigma - 1}} - \frac{c}{\phi} \sum_{j \in J} \mu_{ij} (d_{ij})^\rho \times (n_{ij})^\phi,$$
Model: Trade

- Welfare of households in country i

 $$W_i = \left(\sum_{j \in J} \int_0^{n_{ij}} q_{ij}(k) \frac{\sigma-1}{\sigma} \, dk \right)^{\frac{\sigma}{\sigma-1}} - \frac{c}{\phi} \sum_{j \in J} \mu_{ij} (d_{ij})^\rho \times (n_{ij})^\phi,$$

- Iceberg trade costs $\tau_{ij} = t_{ij} \times (d_{ij})^\delta$

- Human Contacts $n_{ij} = \left(c \left(\frac{\sigma-1}{\phi} \right) \mu_{ij} \left(d_{ij} \right) \right)^{\frac{1}{\phi-1}} - \frac{\sigma}{\phi} (t_{ij})^\rho Z_j P_i - \left(\frac{\sigma}{\phi} \right) \left(w_i P_i \right)^{\frac{1}{\phi-1}}$

- Gravity $\pi_{ij} = \left(\frac{w_j}{Z_j} \right)^{\frac{\sigma}{\phi}} - \phi \left(\frac{\sigma-1}{\phi} \right) \left(\frac{\phi-1}{\phi} \right) (\mu_{ij})^{\frac{1}{\phi-1}} \left(d_{ij} \right)^{\frac{\sigma}{\phi-1}} + \phi \left(\frac{\sigma-1}{\phi} \right) \delta (\phi-1) (t_{ij})^{\rho} Z_j P_i - \left(\frac{\sigma}{\phi} \right) \left(w_i P_i \right)^{\frac{1}{\phi-1}} \left(\frac{\phi-1}{\phi} \right) (\mu_{ij})^{\frac{1}{\phi-1}} \left(d_{ij} \right)^{\frac{\sigma}{\phi-1}}$
Model: Trade

• Welfare of households in country i

$$W_i = \left(\sum_{j \in \mathcal{J}} \int_0^{n_{ij}} q_{ij}(k) \frac{\sigma-1}{\sigma} \, dk \right)^{\frac{\sigma}{\sigma-1}} - \frac{c}{\phi} \sum_{j \in \mathcal{J}} \mu_{ij} (d_{ij})^{\rho} \times (n_{ij})^{\phi},$$

• Iceberg trade costs \(\tau_{ij} = t_{ij} \times (d_{ij})^{\delta} \)

• Human Contacts

$$n_{ij} = \left(c \,(\sigma - 1) \, \mu_{ij} \right)^{-1/(\phi-1)} \,(d_{ij})^{-\frac{\rho+(\sigma-1)\delta}{\phi-1}} \left(\frac{t_{ij} w_j}{Z_j P_i} \right)^{-\frac{\sigma-1}{\phi-1}} \left(\frac{w_i}{P_i} \right)^{1/(\phi-1)}$$
Model: Trade

- Welfare of households in country i

\[W_i = \left(\sum_{j \in J} \int_0^{n_{ij}} q_{ij}(k) \frac{\sigma - 1}{\sigma} \, dk \right)^{\frac{\sigma}{\sigma - 1}} - \frac{c}{\phi} \sum_{j \in J} \mu_{ij} (d_{ij})^\rho \times (n_{ij})^\phi, \]

- Iceberg trade costs $\tau_{ij} = t_{ij} \times (d_{ij})^\delta$

- Human Contacts

\[n_{ij} = (c (\sigma - 1) \mu_{ij})^{-1/(\phi - 1)} (d_{ij})^{-\frac{\rho + (\sigma - 1)\delta}{\phi - 1}} \left(\frac{t_{ij} w_j}{Z_j P_i} \right)^{-\frac{\sigma - 1}{\phi - 1}} \left(\frac{w_i}{P_i} \right)^{1/(\phi - 1)} \]

- Gravity

\[\pi_{ij} = \left(\frac{w_j}{Z_j} \right)^{-\frac{\phi(\sigma - 1)}{\phi - 1}} \times (\mu_{ij})^{-\frac{1}{\phi - 1}} (d_{ij})^{-\frac{\rho + \phi(\sigma - 1)\delta}{\phi - 1}} (t_{ij})^{-\frac{\phi(\sigma - 1)}{\phi - 1}} \sum_{\ell \in J} \left(\frac{w_\ell}{Z_\ell} \right)^{-\frac{(\sigma - 1)\phi}{\phi - 1}} \times (\Gamma_{i\ell})^{-\varepsilon} \]
Model: Trade

- Welfare of households in country i
 \[W_i = \left(\sum_{j \in J} \int_0^{n_{ij}} q_{ij}(k) \frac{\sigma-1}{\sigma} dk \right)^{\frac{\sigma}{\sigma-1}} - \frac{c}{\phi} \sum_{j \in J} \mu_{ij} (d_{ij})^\rho \times (n_{ij})^\phi, \]

- Iceberg trade costs $\tau_{ij} = t_{ij} \times (d_{ij})^\delta$

- Human Contacts
 \[n_{ij} = \left(c (\sigma - 1) \mu_{ij} \right)^{-1/\left(\phi - 1\right)} \left(d_{ij} \right)^{-\frac{\rho + (\sigma - 1)\delta}{\phi - 1}} \left(t_{ij} \frac{w_j}{Z_j P_i} \right)^{-\frac{\sigma - 1}{\phi - 1}} \left(\frac{w_i}{P_i} \right)^{1/\left(\phi - 1\right)} \]

- Gravity
 \[\pi_{ij} = \left(\frac{w_j}{Z_j} \right)^{-\frac{\phi (\sigma - 1)}{\phi - 1}} \times \left(\mu_{ij} \right)^{-\frac{1}{\phi - 1}} \left(d_{ij} \right)^{-\frac{\rho + \phi (\sigma - 1)\delta}{\phi - 1}} \left(t_{ij} \right)^{-\frac{\phi (\sigma - 1)}{\phi - 1}} \sum_{\ell \in J} \left(\frac{w_\ell}{Z_\ell} \right)^{-\frac{(\sigma - 1)\phi}{\phi - 1}} \times (\Gamma_{i\ell})^{-\varepsilon} \]

- Welfare gains from trade (at household level)
 \[W_i = \frac{\phi (\sigma - 1) - 1}{\phi (\sigma - 1)} \times (\pi_{ii})^{-\frac{(\phi - 1)}{\phi (\sigma - 1) - 1}} \times \left(\frac{(Z_i)^{\phi (\sigma - 1)}}{c (\sigma - 1)} (\Gamma_{ii})^{-\varepsilon (\phi - 1)} \right)^{\frac{1}{\phi (\sigma - 1) - 1}} \]
Model: Pandemic

- Dynamics of infection in two-country SIR model

\[
\begin{bmatrix}
\dot{I}_1 \\
\dot{I}_2 \\
\end{bmatrix} =
\begin{bmatrix}
2\alpha_1 n_{11} S_i \\
(\alpha_2 n_{12} + \alpha_1 n_{21}) S_2 \\
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
\end{bmatrix} -
\begin{bmatrix}
\gamma_1 & 0 \\
0 & \gamma_2 \\
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
\end{bmatrix}
\]

- Disease can only be contained (stable pandemic-free equilibrium) if both countries' disease reproduction under autarky is less than one:

\[
R_0 \geq R_0 \bigg|_{n_{12} = n_{21} = 0} = \max \left\{ \frac{2\alpha_1 n_{11}}{\gamma_1}, \frac{2\alpha_2 n_{22}}{\gamma_2} \right\}
\]
Model: Pandemic

- Dynamics of infection in two-country SIR model

\[
\begin{bmatrix}
\dot{I}_1 \\
\dot{I}_2
\end{bmatrix} =
\begin{bmatrix}
2\alpha_1 n_{11} S_i \\
(\alpha_2 n_{12} + \alpha_1 n_{21}) S_2
\end{bmatrix}
\begin{bmatrix}
\alpha_2 n_{12} + \alpha_1 n_{21} \\
2\alpha_2 n_{22}
\end{bmatrix}
\begin{bmatrix}
S_1 \\
S_2
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix} -
\begin{bmatrix}
\gamma_1 & 0 \\
0 & \gamma_2
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
\]

- \(R_0 \) determined by spectral radius of next generation matrix \(FV^{-1} \)

\[
R_0 = \frac{1}{2} \left(\frac{2\alpha_1 n_{11}}{\gamma_1} + \frac{2\alpha_2 n_{22}}{\gamma_2} \right) + \frac{1}{2} \sqrt{\left(\frac{2\alpha_1 n_{11}}{\gamma_1} - \frac{2\alpha_2 n_{22}}{\gamma_2} \right)^2 + 4 \left(\frac{\alpha_2 n_{12} + \alpha_1 n_{21}}{\gamma_1 \gamma_2} \right)^2}.
\]
Model: Pandemic

• Dynamics of infection in two-country SIR model

\[
\begin{bmatrix}
\dot{I}_1 \\
\dot{I}_2
\end{bmatrix} = \begin{bmatrix}
2\alpha_1 n_{11} S_i & (\alpha_2 n_{12} + \alpha_1 n_{21}) S_1 \\
(\alpha_2 n_{12} + \alpha_1 n_{21}) S_2 & 2\alpha_2 n_{22} S_2
\end{bmatrix} \begin{bmatrix}
I_1 \\
I_2
\end{bmatrix} - \begin{bmatrix}
\gamma_1 & 0 \\
0 & \gamma_2
\end{bmatrix} \begin{bmatrix}
I_1 \\
I_2
\end{bmatrix}
\]

• \(R_0 \) determined by spectral radius of next generation matrix \(FV^{-1} \)

\[
R_0 = \frac{1}{2} \left(\frac{2\alpha_1 n_{11}}{\gamma_1} + \frac{2\alpha_2 n_{22}}{\gamma_2} \right) + \frac{1}{2} \sqrt{\left(\frac{2\alpha_1 n_{11}}{\gamma_1} - \frac{2\alpha_2 n_{22}}{\gamma_2} \right)^2 + 4 \left(\frac{\alpha_2 n_{12} + \alpha_1 n_{21}}{\gamma_1 \gamma_2} \right)^2}.
\]

• Disease can only be contained (stable pandemic-free equilibrium) if both countries disease reproduction under autarky less than one

\[
R_0 \geq R_0 \big|_{n_{12}=n_{21}=0} = \max \left\{ \frac{2\alpha_1 n_{11}}{\gamma_1}, \frac{2\alpha_2 n_{22}}{\gamma_2} \right\}.
\]
Model: Pandemic

- Gradually increase α_2 while holding $\alpha_1 = 0.04$ constant

\[\alpha_1 = 0.04, \alpha_2 \in [0.04, 0.10].\]
Proposition

Suppose that countries are symmetric, in the sense that $L_i = L$, $Z_i = Z$, $\Gamma_{ij} = \Gamma$, $\alpha_i = \alpha$, and $\gamma_i = \gamma$ for all i. Then, a decline in any (symmetric) international trade friction:

(i) decreases the likelihood of a pandemic-free equilibrium being stable
(ii) increases the share of steady-state infected in both countries
Asymmetries in Contagion and Recovery

Proposition

When the contagion rate α_i and the recovery rate γ_i vary sufficiently across countries, a decline in any international trade friction increases the likelihood of a pandemic-free equilibrium being stable.
Asymmetries in Contagion and Recovery

Proposition

When the contagion rate α_i and the recovery rate γ_i vary sufficiently across countries, a decline in any international trade friction increases the likelihood of a pandemic-free equilibrium being stable.
Other Results (Stay Tuned)

- Other results from our analysis
 - Multiple waves of infection in open economy without lock-downs
 - Characterize globalization and steady-state share of susceptibles
 - Incorporate terms of trade effects through endogenous labor supply
 - Dynamic forward-looking model of endogenous social distancing
 - Add adjustment costs - fear of future pandemics leads to slow recovery
Other Results (Stay Tuned)

- Other results from our analysis
 - Multiple waves of infection in open economy without lock-downs
 - Characterize globalization and steady-state share of susceptibles
 - Incorporate terms of trade effects through endogenous labor supply
 - Dynamic forward-looking model of endogenous social distancing
 - Add adjustment costs - fear of future pandemics leads to slow recovery

\[R_1 = 1.08, \quad R_2 = 1.66, \quad R_0 = 1.66 \]