A natural origin for unnatural gradient phonotactics

Gašper Beguš
Harvard University
begus@fas.harvard.edu

13th OCP, Budapest, Hungary
January 13, 2016

Introduction

- Can gradient phonotactics be “unnatural”?
- What is unnatural?
- A model for explaining unnaturalness
- How to capture (unnatural) gradience theoretically?

Outline

- Gradience and naturalness
- Data
- A new explanation
- Phonetics
- A problem for theory?
- Conclusion

Naturalness

- Both “naturalness” and “gradience” are to some degree confusing
- Traditionally, unnatural all processes that lack phonetic motivation
- This division misses one important aspect: phonetically unmotivated vs. going in the opposite direction

Naturalness

- A new proposal:
 - Natural: phonetically grounded
 - Unmotivated: lack phonetic motivations
 - Unnatural: operating in the opposite direction from universal phonetic tendency

Naturalness

- Natural processes phonetically motivated, typologically common, usually attested as minor phonetic tendencies cross-linguistically
- Unmotivated: lack motivation
- Most processes in the survey (Blevins 2008) unmotivated
 a) p → s/ i
 b) i → u/d
- No universal phonetic tendency operating against these processes

Naturalness

- Unnatural: operating against universal phonetic tendency (UPT)
- UPT: phonetically (articulatory) motivated, typologically common, attested as phonetic tendency in languages without phonological process. Reverse processes usually not attested
Phonotactics

- Most studies on phonotactics involve unmotivated restrictions (Hayes and White 2013, Albright 2009)
- Likewise, studies on gradience only include natural processes
- No cases of unnatural gradient phonotactics so far

Gradient phonotactics

- Gradient phonotactics subject of in depth theoretical study only recently (Frisch et al. 2004, Antilla 2008, Coetzee and Pater 2008)
- Generally accepted that gradience needs to be encoded in grammar
- Shows necessity for weights in phonology

Data

- Tarma Quechua, a dialect of Quechua spoken in Tarma, Junín, Peru (Adelaar 1977, Nazarov 2008)
- Stop voicing
 - Proto-Quechua, Pre-Tarma only voiceless stops
 - Voicing occurs: intervocally, post-consonantically, but not post-nasally
 - Bilabial, velar series undergo voicing, dental remain voiceless

- Post-consonantly voicing after (Nazarov 2008): t, ñ, ñ, k, s, f, x, l, ñ, ñ, w

- First locus of unnaturalness: kb, tb, tg

- Intervocalic stop-stop cluster: VC_1C_2V when C_2 = [b] or [g]

- Clusters that agree in voice preferred
- Pre-voicing preferred
- Tarma Quechua gradience in the opposite direction

Data

- Even more surprising is the distribution

Native vocabulary analyzed by Nazarov (2008)
Data

▶ Post-nasally voiced stops universally preferred
(Hayes and Stivers 2000)
▶ After voiceless stops voiced stops universally dispreferred
(voice disagree)
▶ Intervocally, voiced stops universally preferred
▶ Gradience goes in the opposite direction!

Data

▶ More voicing after T than after Y, R
(Nazarov 2008)

<table>
<thead>
<tr>
<th></th>
<th>Y,R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voiced</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Voiceless</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

However, this is not significant $p < 0.10$

Data

▶ Not many explanations
▶ As with other cases of unnatural processes, the origins often sought in Ohala’s hypercorrection
▶ Problems:
 ▶ Why such distribution?
 ▶ Why the asymmetry: dental vs. labial and velar?

Explanations

Outline

Gradience and naturalness:

Data

A new explanation

Phonetics

A problem for theory?

Conclusion

Blurring cycle

▶ Combination of sound changes:
(Beguš 2015a)

\[
\begin{align*}
D & > Z / [-\text{nas}] \\
D & > T \\
Z & > D
\end{align*}
\]

Blurring cycle

▶ Universal phonetic tendency

\[
A > B / X
\]

▶ Unnatural process

\[
B > A / X
\]

▶ Blurring cycle

\[
\begin{align*}
B & > C / Z; Z \text{ complement of } X \\
B & > A \\
C & > B
\end{align*}
\]

(a) a set of segments enters complementary distribution;

(b) a sound change occurs that operates on the unchanged subset of those segments;

(c) optionally, another sound change occurs that blurs the original complementary distribution.
Blurring chain

- Another logically possible scenario
 \[B > A / X \]
- **Blurring chain**
 \[B > C / X \]
 \[C > D \]
 \[D > A \]

Berawan dialects (Blust 2005)

- Blurring chain explains **intervocalic devoicing** in Kiput and Berawan
- Unnatural sound change/phonotactics: voice contrastive initially
- Intervocally neutralization in the dispreferred direction

Berawan dialects (Blust 2005)

- Berawan stops
 - # ___ V V
 - \# *b b k
 - *d d r
 - *g g k
- **Scenario 1**
 1. b > p
 2. p > k
- **Scenario 2**
 1. b > g
 2. g > k

Berawan dialects (Blust 2005)

- Blurring chain
 - **Blurring chain**
 - Berawan
 - B > C / X
 - C > D
 - D > A

Tarma Quechua

- How to explain such a distribution

Tarma Quechua

- Claim: Tarma Quechua too underwent three sound changes

Tarma Quechua

- If we accept blurring chain, the explanation becomes straightforward
- Fricativization: very common in consonant clusters, intervocally
- Fricatives in post-nasal position highly dispreferred
Tarma Quechua

- Fricativization in consonant clusters nearly categorical, intervocally variation
- After that, voicing of fricatives occurs, which in pre-vocalic position is a common, motivated, and natural sound change
- Third sound change: fricative occlusion

Advantages

- Asymmetry in place of articulation: velar and labial vs. dental
- Distribution of voicing:
 a) 4% post-nasally
 b) 49% intervocally
 c) 87% in clusters

Three natural, well-motivated sound changes in combination gave rise to unnatural gradient phonotactics

Phonetics

- There exist strong phonetic evidence in favor of my proposal
- Old recordings by Willem Adelaar in Tarma, Peru
- Echoing disturbs the analysis
- The dialect highly endangered (Adelaar, p.c.)

Outline

- Gradience and naturalness
- Data
- A new explanation
- Phonetics
- A problem for theory?
- Conclusion

BLUERING CHAIN

<table>
<thead>
<tr>
<th>B > C / X</th>
<th>Tarma Quechua</th>
</tr>
</thead>
<tbody>
<tr>
<td>C > D</td>
<td>S > Z</td>
</tr>
<tr>
<td>D > A</td>
<td>Z > D</td>
</tr>
</tbody>
</table>
Phonetics

- Stops surface as fricatives sometimes

This indicates that there was a stage in the development with voiced fricatives
- Occlusion to stops not operated categorically

Outline

Gradience and naturalness
Data
A new explanation
Phonetics
A problem for theory?
Conclusion

A problem for theory?

- It is generally agreed upon that gradient phonotactics has to be encoded in the grammar (Coetzee and Pater 2008, Antilla 2008)
- Various approaches for capturing gradience theoretically
- The problem: how to derive a system in which unnatural element is more common?

- Harmony (HG) can be transformed to percentages, but given richness of the base, we cannot derive a system in which the unnatural element is more frequent
- Faith and a markedness constraint *X
- If equal weights, \(P(\text{Unnat}) < .5 \)
- If either Faith or *X have greater weights:
 a) If Faith > *X: \(P(\text{Unnat}) = .5 \)
 b) If Faith < *X: \(P(\text{Unnat}) < .5 \)
A problem for theory?

![Graph showing percentage of No Voicing and Voicing for N, V, Y, R, S, T]

<table>
<thead>
<tr>
<th>Count</th>
<th>TT</th>
<th>TD</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labial</td>
<td>41</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Voiced</td>
<td>55</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>% Voil</td>
<td>79</td>
<td>100</td>
<td>53</td>
</tr>
</tbody>
</table>

Berawan dialects (analysis based on data from Burkhardt 2014)

A new proposal: Inherently Weighted Constraints

 ◦ Should Con be restricted?
 ◦ *−X
 ◦ DisAgree?
 ◦ *VDV?
 ◦ Problem: how to encode these are rare?
 ◦ Not just Tarma Quechua

Berawan

![Graph showing percentage of Vless and Voiced for labial and velar]

A new proposal

 ◦ A new proposal: Inherently Weighted Constraints
 ◦ Both *X and *−X
 ◦ Constraints weighted, subject to normal distribution
 ◦ Derives such systems and encodes typology

Outline

Gradience and naturalness

Data

A new explanation

Phonetics

A problem for theory?

Conclusion

 ◦ Gradient phonotactics can be unnatural
 ◦ Sound change restricted: combinations result in unnatural processes
 ◦ Blurring chain
 ◦ In non-negligible part of unnatural processes Blurring Cycle/Chain more successful than hypercorrection
 ◦ Theoretical implications: a new constraint architecture required
References

Begül, Gábor. 2015a. Post-nasal devoicing as a sound change. Presentation at the 89th Annual LSA Meeting, Portland, OR.

———. 2015b. Intervocalic Devoicing in Kiput and Berawan Dialects. Presentation at the 22nd AFLA, McGill University.

Thank you!

* I would like to thank Kevin Ryan, Donca Steriade, and Edward Flemming for their useful comments and Willem Adelaar for his kind permission to analyze his recordings. Special thanks goes also to David Rockefeller Center for Latin American Studies at Harvard University for supporting my research. All mistakes are my own.