Gradient Trends against Phonetic Naturalness: The Case of Tarma Quechua

Gašper Beguš1 Aleksei Nazarov2

1Harvard University
\texttt{begus@fas.harvard.edu}

2University of Huddersfield
\texttt{a.nazarov@hud.ac.uk}

NELS 48
University of Iceland
October 27-29, 2017
Gradient phonotactics

- Two aspects of OT widely discussed:
 - How to represent **gradient** phonotactic restrictions
 - How to represent **unnatural** processes

- No systematic treatment of the intersection: **unnatural gradient** phonotactics

- Can gradient phonotactic restrictions operate in the phonetically unnatural direction?

- Tarma Quechua stop voicing
Naturalness

- A new division of naturalness

<table>
<thead>
<tr>
<th>Naturalness</th>
<th>Phonetic tendencies are enforced by</th>
<th>Contradicted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural processes</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Unmotivated processes</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Unnatural processes</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Literature so far

- Unnatural categorical process: post-nasal devoicing, confirmed in Tswana with wug-tests (Coetzee and Pretorius 2010)
- Most other processes discussed are in fact *unmotivated*
- Some processes labeled as “unnatural” in Hayes and White (2013)
 - “No [θ, ð] before stressless rounded vowels”

 \[
 \begin{array}{c}
 +COR \\
 +cont \\
 -strid \\
 \end{array} \begin{array}{c}
 -stress \\
 +round \\
 \end{array} \\
 \]

 - “No [ʒ] before stressed vowel + obstruent”

 \[
 \begin{array}{c}
 +cont \\
 +voice \\
 -ant \\
 \end{array} \begin{array}{c}
 +stress \\
 -son \\
 \end{array} \\
 \]
Outline

1 Introduction

2 Background

3 Data

4 Origins

5 Synchronic implications

6 Conclusions
Tarma Quechua a dialect of Quechua spoken in Tarma, Junín, Peru (Adelaar 1977, Puente Baldoceda 1977)

Distribution of $[\pm \text{voice}]$ in [DOR] and [LAB] stops

Adelaar (1977): $[+\text{voice}]$: intervocalically, post-consonantally, but not post-nasally
Data

From Adelaar (1977):

\[
\begin{align*}
\text{b, g / C___; C \neq N} \\
\text{b, g / V___V} \\
\text{p, k / elsewhere} \\
\text{\#__ R, T [pirwa]} \\
\text{__R, T [rikra]} \\
\text{N__ [wampu]} \\
\text{V__V [kuba]} \\
\text{R, T__ [takba]}
\end{align*}
\]

Adelaar (1977) offers no further descriptions on the distribution.
Data

- From Adelaar (1977):
 \[b, \ g \ / \ C_____; \ C \neq N \]
 \[b, \ g \ / \ V_____V \]
 \[p, \ k \ / \ \text{elsewhere} \]
 \[\#____\]
 \[___R, \ T \]
 \[N___\]
 \[V___V \]
 \[R, \ T__\]
 \[[\text{pirwa}] \]
 \[[\text{rikra}] \]
 \[[\text{wampu}] \]
 \[[\text{kuba}] \]
 \[[\text{takba}] \]

- Adelaar (1977) offers no further descriptions on the distribution
Data

- From Adelaar (1977):

 - $b, g / C\text{---}; C \neq N$
 - $b, g / V\text{---}V$
 - $p, k / \text{elsewhere}$

#__	[pirwa]
___R, T	[rikra]
N__	[wampu]
V__V	[kuba]
R, T__	[takba]

- Adelaar (1977) offers no further descriptions on the distribution
Data

- Lexical, phonetic, and morphophonological analysis
- Unnatural gradient phonotactic restrictions
Data

- Distribution of voicing
- Native vocabulary from Adelaar (1977)
- Counts:
 - All tokens with [DOR] or [LAB] in Tarma Quechua vocabulary (Adelaar 1977)
 - 1199 tokens: 910 in native vocabulary, 289 in loans from Spanish
 - Each data point was annotated for presence or absence of voicing, place of articulation of the stop (labial or velar), and position in the word
Data

Counts:

<table>
<thead>
<tr>
<th></th>
<th>#__</th>
<th>N__</th>
<th>V__V</th>
<th>R__</th>
<th>T__</th>
</tr>
</thead>
<tbody>
<tr>
<td>voiced</td>
<td>7</td>
<td>7</td>
<td>99</td>
<td>72</td>
<td>68</td>
</tr>
<tr>
<td>voiceless</td>
<td>276</td>
<td>67</td>
<td>134</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>% voiced</td>
<td>2.5</td>
<td>9.5</td>
<td>42.5</td>
<td>84.7</td>
<td>86.1</td>
</tr>
</tbody>
</table>
Data

- **Logistic regression model:**

| | Est. | SE | z value | Pr(>|z|) |
|-------------------------|-------|-------|---------|----------|
| (Intercept) | -0.045| 0.172 | -0.260 | 0.7952 |
| V__V vs. R__ | 2.044 | 0.332 | 6.164 | 0.0000 |
| V__V vs. T__ | 2.155 | 0.353 | 6.101 | 0.0000 |
| V__V vs. N__ | -1.884| 0.421 | -4.478 | 0.0000 |
| V__V vs. #__ | -3.437| 0.407 | -8.437 | 0.0000 |
| velar vs. labial | -0.502| 0.214 | -2.344 | 0.0191 |
Data

![Graph showing gradient trends against phonetic naturalness. The x-axis represents position (#, N, V, R, T) and the y-axis represents the percentage of voiced sounds. The graph shows an increase in voiced sounds from the beginning to the end of the sequence.]
Data

The diagram shows the percentage of voiced sounds across different positions. The x-axis represents the position, and the y-axis represents the percentage voiced. The data points are marked with error bars, indicating the variability in the measurements.
Data

Gradient Trends against Phonetic Naturalness: The Case of Tarma Quechua
Data

<table>
<thead>
<tr>
<th>Universal tendencies for $[+\text{voice}]$</th>
<th>Observed significant trends in TQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T__ < V__V$</td>
<td>$V__V < T__$</td>
</tr>
<tr>
<td>$T__ < N__$</td>
<td>$N__ < V__V < T__$</td>
</tr>
</tbody>
</table>
Another locus of unnaturalness: TT sequences

<table>
<thead>
<tr>
<th>1st member</th>
<th>2nd member</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>lutbi</td>
</tr>
<tr>
<td>tʃ</td>
<td>/</td>
</tr>
<tr>
<td>ʈʃ</td>
<td>าʈʃba</td>
</tr>
<tr>
<td>k</td>
<td>takba</td>
</tr>
<tr>
<td>s</td>
<td>tʃasbu</td>
</tr>
<tr>
<td>j</td>
<td>kaʃbi</td>
</tr>
<tr>
<td>x</td>
<td>saxbi</td>
</tr>
<tr>
<td>l</td>
<td>tʃilbi</td>
</tr>
<tr>
<td>r</td>
<td>karba</td>
</tr>
<tr>
<td>j</td>
<td>ajba</td>
</tr>
<tr>
<td>w</td>
<td>kawbu</td>
</tr>
</tbody>
</table>
Data

- Second-element stops (labial and velar) are significantly more frequently voiced (as opposed to voiceless) in clusters with a voiceless first element in Tarma Quechua native vocabulary ($\beta = 1.8$, $z = 5.6$, $p < 0.0001$)

<table>
<thead>
<tr>
<th></th>
<th>TT</th>
<th>TD</th>
<th>DT</th>
<th>DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>11</td>
<td>68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent</td>
<td>13.9%</td>
<td>86.1%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- All effects thus far remain even if we add loanwords to the models
Data

- Phonetic analysis
- Recordings by Willem Adelaar, analyzed in Praat (Boersma and Weenink 2015)
[atbi]
[akba]

Time (s) 88.52 88.78
Frequency (Hz) 0 5000

Gradient Trends against Phonetic Naturalness: The Case of Tarma Quechua

Gašper Beguš, Aleksei Nazarov
Harvard University and University of Huddersfield
[ukba]
Data

- After fricatives
[asba]
[asga]
Data

- After nasals
- Unaspirated
ampaa
[aŋki]
Productivity

- **Alternating suffixes**
 - -ba/-pa ‘genitive’
 - -bax/-pax ‘purposive’
 - -bita/-pita ‘procedentive’
 - -bis/-pis ‘even, too’
Productivity

- **Alternating suffixes**
 - -ba/-pa ‘genitive’
 - -bax/-pax ‘purposive’
 - -bita/-pita ‘procedentive’
 - -bis/-pis ‘even, too’

- **Intervocalic**
 wawxi-gi-ba wayi-n
 ‘the house of your brother’

- **Post-nasal**
 wayi-n-pa pasa-un
 ‘we’re going to walk by way of his house’

- **Post-obstruent**
 tamya-ya-n nuqa-ntik-baq
 ‘it is raining now for us’ (Creider 1968:12-13)
Productivity

- **Alternating suffixes**
 - -ba/-pa ‘genitive’
 - -bax/-pax ‘purposive’
 - -bita/-pita ‘procedentive’
 - -bis/-pis ‘even, too’

- **Intervocalic**
 - wawxi-gi-**ba** wayi-n
 ‘the house of your brother’

- **Post-nasal**
 - wayi-n-pa pasa-un
 ‘we’re going to walk by way of his house’

- **Post-obstruent**
 - tamya-ya-n nuqa-ntik-baq
 ‘it is raining now for us’ (Creider 1968:12-13)
Productivity

- **Alternating suffixes**
 - -ba/-pa ‘genitive’
 - -bax/-pax ‘purposive’
 - -bita/-pita ‘procedentive’
 - -bis/-pis ‘even, too’

- **Intervocalic**
 - wawxi-gi-ba wayi-n
 ‘the house of your brother’

- **Post-nasal**
 - wayi-n-**pa** pasa-un
 ‘we’re going to walk by way of his house’

- **Post-obstruent**
 - tamya-ya-n nuqa-ntik-baq
 ‘it is raining now for us’
 (Creider 1968:12-13)
Productivity

- **Alternating suffixes**
 - -ba/-pa ‘genitive’
 - -bax/-pax ‘purposive’
 - -bita/-pita ‘procedentive’
 - -bis/-pis ‘even, too’

- **Intervocalic**
 wawxi-gi-ba wayi-n
 ‘the house of your brother’

- **Post-nasal**
 wayi-n-pa pasa-un
 ‘we’re going to walk by way of his house’

- **Post-obstruent**
 tamya-ya-n nuqa-ntik-\textbf{baq}
 ‘it is raining now for us’ \footnote{Creider 1968:12-13}
Productivity

- Loanwords:
 - Sp. *cuculi* > kuguli: ‘white-winged dove’
 - Sp. *cotpe* > kutbi ‘an animal from the mountains’
 - Sp. *sauco* > sawgu ‘magic tree’
 - Sp. *vaca* > wa:ga ‘cow’

- In two loanwords, a Spanish voiced intervocalic stop devoices to a Tarma Quechua voiceless stop (data from Adelaar 1977).
 - Sp. *taruga* > taruka ‘deer’
 - Sp. *dios se lo pague* > jusulpa:ki ‘thank you’
Outline

1 Introduction

2 Background

3 Data

4 Origins

5 Synchronic implications

6 Conclusions
Origins of Tarma Quechua stop voicing

- How did this phonotactic restriction arise?

<table>
<thead>
<tr>
<th>Context</th>
<th>Voicing</th>
<th>Labial Pre-TQ</th>
<th>TQ</th>
<th>Velar Pre-TQ</th>
<th>TQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>#__</td>
<td>X</td>
<td>*pirwa</td>
<td>pirwa</td>
<td>*kawa</td>
<td>kawa</td>
</tr>
<tr>
<td>N__</td>
<td>X</td>
<td>*wampu</td>
<td>wampu</td>
<td>*τiŋka</td>
<td>τiŋka</td>
</tr>
<tr>
<td>V__V</td>
<td>✓</td>
<td>*kupa</td>
<td>kuba</td>
<td>*τ̣aki</td>
<td>τ̣agi</td>
</tr>
<tr>
<td>R,T__</td>
<td>✓</td>
<td>*takpa</td>
<td>takba</td>
<td>*ktuʃka</td>
<td>ktuʃga</td>
</tr>
</tbody>
</table>

- The most intriguing aspect about this hypothetical sound change is that this unnatural voicing operates gradiently rather than categorically with different rates of application across different environments.
Origins of Tarma Quechua stop voicing

- A diachronic device for explaining unnatural processes: Blurring Process (Beguš 2016)
- $A > B / X$ natural
- $B > A / X$ unnatural
 - a. A set of segments enters complementary distribution
 - b. A sound change occurs that operates on the changed/unchanged subset of those segments
 - c. Another sound change occurs that blurs the original complementary distribution

Blurring Cycle

$B > C / -X$
$B > A$
$C > B$

Blurring Chain

$B > C / X$
$C > D$
$D > A$
Origins of Tarma Quechua stop voicing

- **Blurring Chain in Tarma Quechua**

 \[
 T > S / [-nas,-#] \quad \text{p} > \phi / [-nas,-#] \\
 S > Z / __V \quad \phi > \beta / __V \\
 Z > D \quad \beta > b
 \]

- **Blurring Chain in Tarma Quechua**

<table>
<thead>
<tr>
<th></th>
<th>V__V</th>
<th>N__</th>
<th>T__</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>pirwa</td>
<td>kupa</td>
<td>wampu</td>
</tr>
<tr>
<td>2.</td>
<td>pirwa</td>
<td>kuφa</td>
<td>wampu</td>
</tr>
<tr>
<td>3.</td>
<td>pirwa</td>
<td>kuβa</td>
<td>wampu</td>
</tr>
<tr>
<td>4.</td>
<td>pirwa</td>
<td>kuba</td>
<td>wampu</td>
</tr>
</tbody>
</table>
Distribution
Origins of Tarma Quechua stop voicing

- Support from dialectal data:
 - Fricativization of voiceless stops in Cusco Quechua
 - *aptay > [haxʷtay]
 - *upyay > [uxyay]
 - Aspiration and fricativization in Imbabura Quechua
 - Proto-Quechua *paki > *phaki > Imbabura Quechua [faki]
 - Proto Quechua *qipa > *khipa > Imbabura Quechua [xipa]
ubi

Time (s) 14.71 14.81
0
5000
Frequency (Hz) 886.7 0
5000

Gašper Beguš, Aleksei Nazarov
Harvard University and University of Huddersfield
Gradient Trends against Phonetic Naturalness: The Case of Tarma Quechua
[atbi]
Outline

1 Introduction

2 Background

3 Data

4 Origins

5 Synchronic implications

6 Conclusions
Synchronic implications

- Deriving typology one of the main advantages of OT
- Harmonic Grammar (HG) with numerically weighted constraints well-suited for gradient processes (Pater 2009)
- MaxEnt: Probability distribution over candidates (Goldwater and Johnson 2003)
- Problem that HG approach faces: the derivation of unnatural processes
Synchronic implications

- OT with restricted CON: factorial typology, unnatural processes unattested (a desired prediction for final voicing)
- HG: An additional aspect of the predictive power of HG under the restricted CON hypothesis that has gone largely unnoticed in the literature:
Synchronic implications

- OT with restricted CON: factorial typology, unnatural processes unattested (a desired prediction for final voicing)
- HG: An additional aspect of the predictive power of HG under the restricted CON hypothesis that has gone largely unnoticed in the literature:
 - Natural elements in a given environment will always be more frequent than unnatural ones
Synchronic implications

- OT with restricted CON: factorial typology, unnatural processes unattested (a desired prediction for final voicing)
- HG: An additional aspect of the predictive power of HG under the restricted CON hypothesis that has gone largely unnoticed in the literature:
 - Natural elements in a given environment will always be more frequent than unnatural ones
- If we allow only natural constraints into CON, we can only derive systems with gradient phonotactic restrictions in which the natural element in a given context is more frequent than the unnatural element
Synchronic implications

- **E.g. Final Voicing**
- **Restr. Con:** *D# ✓ *T# ❌

Let us assume that all inputs have a uniform prior probability

HG: \(P(\text{/T#}) = P(\text{/D#}) = 0.5\)

If the faithfulness constraint (\(\mathcal{F}\)) Ident-IO(voi) has a positive infinite weight and the markedness constraint (\(\mathcal{M}\)) *D# has a finite weight, the phonotactic probabilities of [T#] and [D#] (\(P([T#])\) and \(P([D#])\)) are both 0.5.

If the markedness constraint is weighted finitely lower than, or even higher than the faithfulness constraint, the phonotactic probability of [T#] will be greater than that of [D#]
Synchronic implications

- With restricted CON, no weighting exists that would yield a system in which the unnatural feature value has a greater posterior probability than the natural one in a given context.

- $w(F) - w(M) = \infty$: $P(\text{nat}) = P(\text{unnat}) = 0.5$

- $w(F) - w(M) < \infty$: $P(\text{nat}) > P(\text{unnat})$
Synchronic implications

Natural Gradience Bias (NGB)

HG with restricted \text{CON} predicts that the probability of the natural feature value in a given environment is always equal or greater than the probability of the unnatural value in a given environment.
NGB correctly predicts the major typological trend with regard to gradient phonotactic restrictions: all cases reported previously indeed operate in the natural direction.

- As tacit phonotactic knowledge obtained from experiments, e.g. Albright 2009
Synchronic implications

- However, the Tarma Quechua systems of stop voicing presented in this paper suggest that HG with restricted CON undergenerates.
- The natural constraints *NT and *T[-voice] will not be able to give [NT] a higher probability than [ND], or [TD] a higher probability than [TT].
- This, in turn suggests, that CON must contain some unnatural Markedness constraints.
- Other such cases: Berawan (Beguš and Nazarov 2017).
- If we admit all constraints into CON, how to encode rarity of some processes?
Conclusions and future directions

- A case of *unnatural* gradient phonotactic restriction
- Lexical counts, phonetic analysis, signs of productivity
- Unnatural gradient phonotactic restrictions find natural origin: Blurring Chain
- Synchronic implications: NGB
- A challenge to restricted CON
- Further experimental work
- Other such cases
References

References

Blust, Robert. 2016. Austronesian against the world: where the P-map ends. Presentation at the 42nd Berkeley Linguistic Society in Berkeley, CA on February 5-6, 2016.

References

References

References

Thank you!

* We would like to thank Willem Adelaar, Adam Albright, Gaja Jarosz, Jay Jasanoff, Sasha Lubotsky, Joe Pater, and Kevin Ryan for their useful comments on various versions of this work. All mistakes are our own. This research is partially funded by Mind Brain Behavior interfaculty initiative at Harvard University.