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scaffolds should be designed to match the 
nonlinear response of the surrounding 
native tissue.[1] Further, wearable and 
flexible electronics must accommodate 
the large deformations of soft biological 
tissues and reduce the stresses induced 
on the skin by their presence.[2] Finally, 
it has been shown that reusable, rate-
independent and self-recoverable energy-
absorbing materials can be realized by 
engineering structures that display non-
linear responses characterized by sudden 
snapping-induced load drops.[3,4]

Mechanical metamaterials have 
recently emerged as an effective platform 
to engineer systems with mechanical 
behaviors that are governed by geometry 
rather than composition.[5–8] While initial 
efforts have focused on the design of met-
amaterials with negative properties in the 

linear regime,[9–12] more recently it has been shown that highly 
nonlinear responses (often accompanied by large internal rota-
tions) can be triggered by introducing into the architectures 
slender elements that are prone to elastic instabilities.[5,13] 
These nonlinear behaviors not only display very rich physics 
but can also be exploited to enable advanced functionalities, 
such as shape morphing,[14,15] energy absorption[3,16–18] and pro-
grammability.[19–21] Although it is well known that such func-
tionalities can be tuned by altering the underlying geometry, 
the identification of architectures that result in a target non-
linear response is a non-trivial task.

Robust and efficient algorithms have been established 
to guide the design of structures with target response in the 
linear regime. These include gradient based methods such 
as shape[22] and topology[23] optimization, as well as machine 
learning algorithms.[24–27] However, such approaches cannot be 
directly applied to the inverse design of nonlinear mechanical 
metamaterials. This is because the energy landscapes of the 
nonlinear systems typically display multiple minima separated 
by large energy barriers and, therefore, are very challenging 
to navigate. To efficiently explore such energy landscapes, 
metaheuristic algorithms such as evolution strategies,[28–30] 
genetic algorithms[31] and particle swarm optimization,[32] have 
been successfully used. Further, since these algorithms require 
solving many times the forward problem, recent efforts have 
focused on reducing their computational cost by coupling them 

Materials with target nonlinear mechanical response can support the design 
of innovative soft robots, wearable devices, footwear, and energy-absorbing 
systems, yet it is challenging to realize them. Here, mechanical metamate-
rials based on hinged quadrilaterals are used as a platform to realize target 
nonlinear mechanical responses. It is first shown that by changing the shape 
of the quadrilaterals, the amount of internal rotations induced by the applied 
compression can be tuned, and a wide range of mechanical responses is 
achieved. Next, a neural network is introduced that provides a computation-
ally inexpensive relationship between the parameters describing the geometry 
and the corresponding stress–strain response. Finally, it is shown that by 
combining the neural network with an evolution strategy, one can efficiently 
identify geometries resulting in a wide range of target nonlinear mechanical 
responses and design optimized energy-absorbing systems, soft robots, and 
morphing structures.

Research Article

1. Introduction

From wearable devices and energy-absorbing systems to scaf-
folds and soft robots, many applications would benefit from 
the inverse design of materials with a target nonlinear mechan-
ical response. For example, to enhance tissue regeneration, 
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with machine learning models trained to solve the forward 
problem.[33–38]

Here, we present a framework to design mechanical meta-
materials with target nonlinear response. Our starting point is a 
metamaterial based on hinged rotating squares (see Figure 1a), 
which has recently attracted significant interest as it displays 
effective negative Poisson’s ratio[39–41] and supports the propaga-
tion of solitary pulses.[42–44] We first show that changes in the 
shape of the quadrilateral units lead to a wide range of mechan-
ical responses and identify the key ingredients governing such 
behaviors. Then, we use neural networks to accurately learn 
the relationship between the geometry of the metamaterials 
and their nonlinear mechanical response. Finally, we combine 
neural networks with an evolution strategy to efficiently identify 
geometries that exhibit target nonlinear stress–strain behav-
iors. The proposed neural accelerated evolution strategy holds 
potential for a range of applications that benefit from systems 
with a target nonlinear mechanical behavior, as demonstrated 
by the design of energy absorbing systems, soft robots and 
morphing structures.

2. Our Physical Platform

We start by testing under uniaxial compression two elastomeric 
metamaterials comprising a 10 × 8 array of hinged quadrilat-
eral units flanked by two horizontal strips of solid material 
(Figure  1a). Both structures are realized by repeating a unit 
cell that consists of 2 × 2 units connected at their vertices by 
thin beam-like ligaments with width and length of 1 mm. The 
unit cell of one sample comprises four identical squares with 
center-to-center distance a  = 10 mm, while that of the other 
consists of four different irregular quadrilaterals obtained by 
randomly perturbing the position of the squares vertices (while 
maintaining a unit cell size of 2a in both horizontal and ver-
tical directions—Figure 1a and Sections S1 and S2, Supporting 
Information). In Figure  1b we show snapshots of the two 
structures at an applied compressive strain ε  =  −0.1, while in 
Figure  1c we report the stress–strain curves recorded during 
our tests. We find that, although in both samples the deforma-
tion localizes at the beam-like hinges (which are identical in 
the two samples), their mechanical responses are remarkably 
different. In the sample with square units the buckling (and 
the subsequent bending) of the beam-like ligaments triggered 
at a critical compressive strain ε ≈ −0.02 makes all squares to 
alternatively rotate in clockwise and counter-clockwise direc-
tion.[39,45,46] The shrinking associated with such collective rota-
tional motion accommodates most of the additional applied 
strain and therefore limits the amount of compression in the 
vertical ligaments, ultimately leading to a stress plateau. By 
contrast, geometric frustration prevents rotation of the units in 
the sample comprising irregular quadrilaterals. It follows that 
for the sample comprising irregular quadrilaterals the applied 
deformation is almost entirely accommodated by the axial com-
pression of the ligaments aligned along the vertical direction, 
resulting in a stiff and near-linear response.

The results of Figure  1 show that the shape of the quadri-
laterals has a profound effect on the nonlinear mechanical 
response of the resulting metamaterial (see also Movie S1, 

Supporting Information). To systematically explore such effect, 
we make use of numerical simulations. In particular, since 
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Figure 1.  a) Top row: Unit cells of two structures comprising 2 × 2 quadri
lateral units connected at their vertices by thin beam-like ligaments. The 
ligaments can be modeled using a combination of three linear springs 
with stiffness kl, ks, and kθ. Bottom row: Pictures of the corresponding 
samples in the initial undeformed configuration. b) Top row: Pictures of 
the samples under ε = −0.1 compression strain. Bottom row: Numerical 
snapshots of the samples under ε = −0.1 compression strain. The color 
here indicates the local rotation of the quadrilaterals. c) Stress–strain 
response of the samples as measured in experiments (green dashed 
lines) and predicted by the discrete model (black lines).
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our experiments indicate that under uniaxial compression the 
quadrilateral units remain rigid and the deformation localizes 
at the hinges, the nonlinear behavior of our structures can be 
described using a discrete model comprising rigid units con-
nected at their vertices by a combination of three springs[45,46] 
(see Figure 1a): (i) a linear spring with stiffness kl = 0.47 N mm−1 
to capture the longitudinal response of the hinges; (ii) a linear 
spring with stiffness ks = 0.16 N mm−1 to model their shearing; 
and (iii) a nonlinear hardening rotational spring that exert 
a torque M  = kθ(Δθ  + γΔθ3) (where Δθ is the relative rotation 
between the connected quadrilaterals, kθ  = 0.088  N mm and 
γ = −0.2) to capture their bending (see Section S3, Supporting 
Information). By imposing force equilibrium at each unit, we 
derive a system of coupled nonlinear equations that we numeri-
cally solve to obtain the response of the structure. Note that in 
this study we consider metamaterials with out-of-plane thick-
ness large enough to prevent out-of-plane deformation and, 
therefore, limit the analyses to in-plane deformation. To test 
the relevance of our discrete model, we first compare its predic-
tions to the experimental results reported in Figure 1 (see also 
Movie S1, Supporting Information). We find a very good agree-
ment between our experimental and numerical results both in 
term of stress–strain curves and deformation field, confirming 
the validity of our model.

Next, we create 7500 different unit cells by randomly 
choosing the position of the quadrilateral vertices while pre-
serving periodicity (see Figure 2a and Section  S4, Supporting 
Information) and use our discrete model to simulate the 
mechanical response of the resulting metamaterials under 
uniaxial compression. In Figure  2b we report the numeri-
cally predicted stress–strain curves for all generated architec-
tures. We find that a variety of nonlinear mechanical responses 
emerge. These include near-linear behaviors with a wide range 
of tangent moduli (see curves (i) and (ii) in Figure 2b for the 
upper and lower limits) as well as highly nonlinear behaviors 
that exhibit strain-softening and sudden load drops (see curves 
(iii) and (iv) in Figure 2b for representative examples). Further, 
our numerical results indicate that such different responses 
are accompanied by distinct deformation modes (see also 
Movie S2, Supporting Information). Focusing on the four archi-
tectures whose response is highlighted in Figure  2b, we find 
that at ε = −0.1 the rotations of the units are relatively small for 
the two structures that display near-linear responses and much 
larger for the two exhibiting nonlinear behaviors (see Figure 2c 
(top) and Movie S2, Supporting Information). Importantly, the 
connection between internal rotations and nonlinearity is not 
limited to these four architectures. As shown in Figure  2d, 
for all 7500 metamaterials there is a correlation between the 
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Figure 2.  a) Unit cells generated by randomly perturbing the position of the quadrilaterals vertices, while preserving periodicity. b) Stress–strain curves 
predicted by the discrete model for 7500 different metamaterials realized by tessellating different unit cells. Four representative stress–strain curves are 
highlighted. These include (i)-(ii) near-linear behaviors with a wide range of stiffness; (iii) stress–strain curves with an initial linear regime followed by a 
plateau; and (iv) stress–strain curves displaying sudden drops in force. The upper bound σ = E*ε is shown as a dashed black line. c) Numerical snap-
shots of the structures highlighted in (b) at ε = −0.1. The color in the top row indicates the rotation of the quadrilaterals, while the color in the bottom 
row indicates the rotation-induced shrinking. d) Average nonlinearity (err[σ,σfit,ε]) versus average rotation (〈θ[i,j]〉) for all 7500 metamaterials at different 
level of applied strain. e) Nominal stress (σ) versus average rotation (〈θ[i,j]〉) for all 7500 metamaterials at different levels of applied strain. f) Nominal 
stress (σ) versus strain accommodated by a column of vertical ligaments (ε − Δεrot) for all 7500 metamaterials at different levels of applied strain.
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average rotation of the units, 〈θ [i,j]〉 (where θ [i,j] denotes the 
rotation of the [i,j]-th unit), and the amount of nonlinearity dis-
played by the corresponding stress–strain curve. Note that the 
latter is quantified using the normalized root mean squared 
error between the stress–strain curve and its best linear fit, 
err[σ,σfit,ε], where σfit = Eε represents the best linear fit to the 
curve and 
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with the integrals being evaluated numerically. Near-linear 
responses (for which err[σ,σfit,ε] → 0) are accompanied by 
small rotations of the units, whereas large internal rotations 
lead to highly nonlinear behaviors characterized by large values 
of err[σ,σfit,ε].

Differently, we find that there is no correlation between 
〈θ[i,j]〉 and the the recorded nominal stress, σ (see Figure  2e). 
This is because small internal rotations can be amplified by 
the geometry of the quadrilaterals and result in large amount 
of shrinking along the vertical direction (see Figure 2c-ii). Such 
rotation-induced shrinking reduces the level of axial compres-
sion in the ligaments and therefore is expected to affect the 
measured nominal stress. To quantify this effect, we define the 
rotation-induced shrinking along the vertical direction for the 
[i,j]-th unit as
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where εy i j ( )top
[ , ]  and εy i j ( )b

[ , ]  denote the y-coordinate of the 
top and bottom vertex of the [i,j]-th quadrilateral at ε. The 
numerical snapshots reported in Figure  2c (bottom) confirm 
that ε∆ i j

rot
[ , ]  can be large even in structures that display small 

internal rotations (see Figure 2c-ii). As a matter of fact, there 
is a strong correlation between σ and the average rotation-
induced shrinking, ε∆ i j

rot
[ , ] . More specifically, since the 

compressive strain accommodated by a column of vertical liga-
ments is given by ε ε− ∆ i j

rot
[ , ] , we find that for all considered 

metamaterials

σ ε ε( )≈ ∗ − ∆E i j
rot
[ , ]

� (3)

where E* is the effective Young’s modulus of the metamaterial 
in the absence of rotations (see Figure 2f). Note that E* = 10kl/
(9b), where b denotes the out-of-plane thickness of the meta-
material, since our structure comprises 10 columns of vertical 
ligaments with longitudinal stiffness kl, each consisting of 9 lig-
aments arranged in series. It follows from Equation (3) that the 
stiffest response for the considered class of metamaterials can 
be achieved in the absence of rotations (i.e., for ε∆ i j

rot
[ , ]  = 0) and 

is given by σ = E*ε (see dashed line in Figure 2b). As such, our 
results indicate that by tuning the amount of rotation-induced 
shrinking upon compression we can successfully manipulate 
the stress–strain curves of the considered class of metamate-
rials. Importantly, this tuning can be accomplished by varying 
the geometry of the quadrilateral units.

3. Neural Networks

While in Figure  2 we focus on the mechanical response of 
7500 architectures, our numerically generated stress–strain 
curves enable prediction of the behavior of metamaterials real-
ized out of arbitrary unit cells. This is because such data can 
serve as offline training of a machine-learning (ML) model that 
provides a computationally inexpensive relationship between 
the parameters describing the unit cell geometry and the cor-
responding stress–strain response. To this end, we represent 
the p-th unit cell in our database as a 16-dimensional vector 
XX = v vp p p p pµ µ �[ , ,…, , ]1 1 8 8 , where α

pµ  and αvp  represent the pertur-
bations in horizontal and vertical directions applied to its α-th 
independent vertex for the p-th unit cell  (see Section  S1, Sup-
porting Information) and the corresponding stress–strain curve 
as a 100-dimensional vector σ σ σ= −p p p

�[ (0),…, ( 0.1)] , which con-
tains the stress values at 100 equally spaced strain points. Note 
that, although we simulated 7500 metamaterials, our dataset 
contains a total of N = 30 000 datapoints, since the response of 
all designs remains unaltered when they are reflected over the 
x-axis, the y-axis and in the origin (see Figure 3a). Out of the 
expanded dataset, we randomly choose Ntr = 0.8N datapoints for 
training and the remaining Ntest = 0.2N for testing.

To facilitate training of the ML model, we reduce the dimen-
sionality of the stress vectors by using principal component 
analysis (PCA).[47] In particular, we describe the stress–strain 
curve of the p-th design via its first 10 principal components, 
σ p

PC10. Note that this leads to an average reconstruction error of 

∑ σ σ −
=N p

N

p p

1
err[ , , 0.1]

tr 1

R
tr

 = 0.3 %, where σ p  denotes the true stress 

vector and σ p
R the reconstructed one from the first 10 principal 

components (Section S5, Supporting Information).
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Figure 3.  a) Our NN architecture has four hidden layers, each comprising 
200 neurons. A 16-dimensional vector pXX  is fed to the NN that is trained 
to predict the lower-dimensional representation of the corresponding 
stress vector σ PC10

p . b) Comparison between the stress–strain curves pre-
dicted by our discrete (black solid lines) and NN (dashed blue lines) 
models for four geometries that are part of the test dataset.
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To predict the lower dimensional representation of the stress 
vector, σ p

PC10 , for a given geometry, XX p , we use a neural network 
(NN) architecture with four hidden layers, each comprising 
200 neurons (see Figure 3a and Section S6, Supporting Infor-
mation). We train the NN by selecting the neuron weights and 
biases that minimize

XX∑∑β σ( )= −
= =p

N

s

s s p p sL F ( )
1 1

10

,
PC 2tr

10 � (4)

where σ p s,
PC10  is the s-th component of σ p

PC10 , XX =pF ( )   
XX XXp pF F �[ ( ),…, ( )]1 10  denote the corresponding NN predictions 

and βs is the variance explained in the s-th principal compo-
nent (Section S5, Supporting Information). Finally, to evaluate 
the accuracy of our trained NN, we reconstruct the stress–
strain response from XX pF ( )  and calculate the average relative 

error on the test dataset as ∑ σ σ −
=N p

N

p p

1
err[ , , 0.1]

test 1

NN
test

, where σ p
NN  is 

the stress vector reconstructed from XX pF ( ). We find that the 
trained NN accurately predicts the stress–strain curves associ-
ated to unseen designs, with an average relative error of 4.8%. 
As examples, in Figure  3b we focus on four designs that are 
part of the test dataset and display distinct mechanical behav-
iors. The comparison between the stress–strain curves pre-
dicted by our discrete and NN models for these four geometries 
indicates that our trained NN can capture all behaviors that are 
representative of the considered class of mechanical metama-
terials, with discrepancies that are more accentuated for the 
stress–strain curves displaying sharp drops in force. This is 
because such sharp drops are induced by the snapping of a few 

unit cells (see numerical snapshot at ε = −10 in Figure 2c-iv)—a 
phenomenon that is known to be very sensitive to geometric 
perturbations[48] and, therefore, difficult to predict.

4. Inverse Design

Our trained NN enables us to efficiently determine the mechan-
ical response of arbitrary metamaterials. However, since the 
connection between the geometry of the unit cells and the 
mechanical response of the corresponding structure is not trivial, 
identification of metamaterials with target behavior requires an 
efficient inverse design strategy. Toward this end, as shown in 
Figure 4a, we couple our trained NN with an evolution strategy 
(ES)—a type of stochastic global optimization algorithm inspired 
by the biological theory of evolution.[28] To test our approach, we 
focus on four distinct target behaviors (see Figure 4b)

σ ε
σ σ
σ ε ε

σ
ε ε

ε

= ∗
=
= ∗ +

=
∗ > −

− ∗ < −






E

E

E if
E if

0.8
( 9 )

0.8 , 0.07
0.025 , 0.07

t
(i)

t
( ii)

soft

t
( iii ) 2

t
( iv )

� (5)

where σsoft denotes the softest response within the dataset and 
"t indicates "target". Note that σ t

( i)  represents the stiffest pos-
sible response for the considered class of metamaterials (see 
Equation  (3)), whereas σ t

( ii)  describes a near-linear stress–
strain curve that is 20% softer than the softest one within the 
dataset. Further, σ t

( iii ) represents a smooth stress–strain curve 
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Figure 4.  a) Schematic representing the proposed inverse design algorithm based on a neural accelerated evolution strategy. b) The four target stress–
strain curves considered in this study. c) Evolution of σ σ −max err[ , , 0.1]t

NN
p p  during ES iterations for the four considered targets. d) Target response (red 

dashed line), top picks from dataset (black lines) and stress–strain curves predicted by our trained NN (blue lines) and our discrete model (purple 
lines) for the optimized designs. The designs that minimize σ σ −err[ , , 0.1]t

DM
p  are shown as inset. For each of these designs we also show numerical 

and experimental snapshots at ε = −0.1. The color in the numerical snapshots indicates the local rotation of the quadrilaterals.
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that display a strain-induced stress drop more accentuated 
than those found in the dataset and σ t

( iv ) is characterized by a 
sharp drop in stress at an unseen location. To identify geom-
etries leading to these target behaviors, we start by selecting 
μ  = 100 stress–strain curves from our dataset that mini-
mize σ σ −perr[ , , 0.1]t . As expected, no response in the dataset 
closely matches our four target behaviors (see black lines in 
Figure 4d)—with a minimum error between the top picks and 
the target ones equal to: (i) 11%, (ii) 25%, (iii) 13% and (iv) 12%. 
Next, in an attempt to reduce these errors, we generate λ = 49 
new candidate geometries (the children) from each of the unit 
cells associated to these solutions (the parents) by randomly 
moving their eight independent vertices within boxes with 
edge of 0.1a centred around them. Further, to better explore the 
design space, we generate 5000 completely arbitrary unit cells 
that compete with the parents and children for consideration 
in the next iteration (see Figure  S17, Supporting Information 
for a discussion on the benefits of adding these 5000 arbitrary 
unit cells). The parents, children, and arbitrary unit cells form 
a set of 10 000 geometries, whose stress–strain curves are deter-
mined using our trained NN. Out of this set, we then select the 
parents for the next iteration by choosing the μ = 100 designs 
that minimize σ σ −perr[ , , 0.1]t

NN  and we continue this muta-
tion/generation and selection process until there are μ  = 100 
designs for which σ σ − <p pmax (err[ , , 0.1]) 1%t

NN , or 50 itera-
tions are reached. It is important to note that the trained NN 
enables us to largely reduce the computation time required to 
identify the optimal designs, since it takes only 0.2 s for the 
NN to evaluate 10000 designs (whereas it takes 23.2 days for the 
the discrete model to evaluate 10000 designs).[49] In Figure  4c 
we report the evolution of σ σ −perr[ , , 0.1]t

NN  for the best per-
forming μ  = 100 designs over the course of each iteration, 
whereas in Figure  4d we show as blue lines the stress–stress 
curves predicted by our trained NN for the optimized μ = 100 
designs identified by the ES. We find that the error between 
the optimal curves and the target ones is largely reduced for 
the considered first three targets. Differently, the reduction in 
error is less significant for the fourth target response, as 10 
principal components are not enough to capture a stress–strain 
curve with a sharp drop in load (see blue lines in Figure 4d-iv). 
Although such error could be reduced by considering a larger 
number of principal components to represent the stress–strain 
curve, it is important to point out that this would not neces-
sarily translate to a better solution. This is because the trained 
NN introduces an error in the estimation of their mechanical 
responses, which becomes more accentuated for designs that 
are very different from those included in the training dataset. 
As a matter of fact, when we use the discrete model to sim-
ulate the final μ  = 100 designs identified by ES, we find an 

average error ∑ σ σ −
p

p pµ
1

err[ , , 0.1]NN  = 15% on these optimized 

designs (see purple lines in Figure 4d)—much higher than that 
obtained on the test set (4.8%). However, despite the error intro-
duced by the NN, the μ = 100 optimized designs identified by 
ES display stress–strain curves that are on average much closer 
to the target curves than the close matches from the dataset 
(black curves). More specifically, we find that the minimum 
error between σt and the stress–strain curve predicted by the 
discrete model for the μ optimized geometries, σ p

DM, is reduced 

to: (i) 1.9%, (ii) 4.7%, (iii) 6.6%, and (iv) 4.5% (the designs that 
best match the target curves are shown as thick purple curves 
in Figure 4d).

Next, we physically fabricate the optimized designs that 
closely match the target curves and report the experimentally 
recorded stress–strain curves (green dashed lines) as well as 
snapshots of the samples at ε = −0.1 in Figure 4d (see also Movie 
S3, Supporting Information). Despite the unavoidable imper-
fections introduced during fabrication and testing, the recorded 
stress–strain curves closely match the target ones. Focusing on 
the first target, we find that our optimization framework identi-
fies a geometry that prevents internal rotations under compres-
sion and, as predicted by Equation (3), results in the stiffest pos-
sible response. As for the second target, the inversely designed 
metamaterial comprises highly tilted (almost flat) elongated 
quadrilaterals that maximize the rotation-induced shrinking 
and therefore lead to a very compliant response. Differently, 
the optimized geometry for the third target consists of elon-
gated quadrilaterals that are almost aligned along the vertical 
direction. Upon compression these units gradually rotate (see 
Figure  4d-iii), so that the structure approaches the optimized 
geometry for the second target and, therefore, becomes much 
softer. Finally, the fourth optimized design comprises two rows 
of quadrilaterals that snap at the target strain, yielding a sudden 
load drop.

5. Conclusions

We have introduced a neural accelerated evolution 
strategy to identify mechanical metamaterials with target 
nonlinear response.

These optimized metamaterials provide opportunities for the 
design of a wide range of smart structures, including energy-
absorbing systems and soft robots. To investigate the energy-
absorbing performance upon impact of our inversely designed 
metamaterials, we conduct drop tests on the optimized struc-
tures reported in Figure  4. More specifically, we drop a cir-
cular acrylic disk (with mass mdisk = 100 g and diameter ddisk = 
100 mm) onto their top surface from an height of 40 cm and 
measure the rebound height after the impact. As shown in 
Figure 5a and Figure S3, Supporting Information, we find that 
after the impact the disk bounces back to a height of 22.0, 15.3, 
11.5 and 2.5 cm for the four considered structures, resulting in 
an absorption efficiency of 45%, 62%, 71% and 94%, respec-
tively (see Section  S2.C, Supporting Information for more 
details). The superior performance of the architecture opti-
mized to match σ(iv) confirms that snapping provides a simple 
yet effective mechanism to realize reusable energy-absorbing 
materials[50] and further indicate that our numerical strategy 
can be harnessed to optimize their absorption efficiency.

Additionally, while in this study we have focused on target 
nonlinear stress–strain responses, our neural accelerated evolu-
tion strategy can be readily applied to other nonlinear proper-
ties, providing a platform to facilitate the design of soft robots 
and actuators. For example, it has been shown that a soft robot 
capable of moving through a channel when actuated with a 
single input can be realized by combining two flexible struc-
tures with Poisson’s ratio of equal magnitude but opposite 

Adv. Mater. 2022, 2206238
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sign.[51] However, since mechanical metamaterials typically 
exhibit varying Poisson’s ratio in the nonlinear regime,[52,53] 
the efficiency of such robots largely varies with the width of the 
channel (Figure 5b(iv)). To overcome this limitation, we inverse 
design two architectures with constant Poisson’s ratio ν  =  ±1 
over a large range of deformations (i.e., for −0.1 < ε < 0.1) via our 
neural accelerated evolution strategy. As shown in Figure 5b(iv), 
the identified optimal structures lead to a soft robot with inch-
worm locomotion that is less affected by the width of the 
channel (see Section  S8.A, Supporting Information for more 
details). Finally, our neural accelerated evolution strategy can 
be exploited to identify structures capable of target deformation 

upon application of an external stimulus, opening avenues for 
the inverse design of metamaterial-based soft actuators. To 
demonstrate this point, we consider a structure comprising 8×2 
unit cells and assume that each quadrilateral unit expands uni-
formly under an increasing temperature (Figure  5c(i)). When 
the center-to-center distance of the units on the left boundary 
is fixed, the structures built out of the 7500 unit cells consid-
ered in this study bend into a variety of configurations upon 
heating (Figure  5c(ii)). Remarkably, we find that also in this 
case the neural network is able to learn the relation between 
the unit cell design and the deformed configuration and can be 
combined with evolution strategy to efficiently inverse design 

Adv. Mater. 2022, 2206238

Figure 5.  a) Energy absorption: Experimental images taken during the drop tests immediately before contact (left), at contact (center) and at the 
maximum height at which the disk bounces back after impact (right) for the metamaterial optimized to match σ t

(i) (top), σ t
(ii) (center) and σ t

(iv) 
(bottom). For these three structures we measure a contact time of 33, 75 and 96 ms and the height of the first bounce after the impact to be 22.0, 15.3, 
and 2.5 cm, resulting in an absorption efficiency η = 45%, 62%, and 94%, respectively. b) Inverse design of soft robots that exploit auxetic behavior.  
(i) Evolution of the effective Poisson’s ratio ν as a function of the applied strain ε predicted by the discrete model for 7500 different metamaterials 
realized by tessellating different unit cells. The neural accelerated evolution strategy is used to inverse design two architectures with constant Poisson’s 
ratio ν(ε) = ±1 for ε ∈ [−0.1,0.1]. (ii) Numerical snapshots of the soft robot realized by connecting the two inversely designed metamaterials though a 
linear actuator moving into a channel with width Wch = 0.99Nxa at time t = 0.02 s, 0.48 s, 0.52 s, and 0.98 s. The color here indicates the local rotation 
of the quadrilaterals. (iii) Relative displacement imposed by the linear actuator (black line) and displacement of the center of mass of the lower (green 
line) and upper (blue line) blocks as a function on time. (iv) Evolution of the displacement recorded at the end of each cycle, dstep (normalized by the 
actuator stroke da) as a function of Wch/(Nxa) for the initial design (yellow markers) and the optimized design (magenta markers). c) Inverse design of 
structures capable of target deformations upon heating. (i) We consider a structure comprising 8×2 unit cells and assume that each quadrilateral unit 
expands uniformly under an increasing temperature. To trigger bending, we fix the center-to-center distance of the units on the left boundary. (ii) The 
distribution of the center lines of 7500 different unit cell deigns at εth = 0.1 (top) and 0.2 (bottom). The blue dashed lines represent the target curves 
at different thermal strains. (iii) The inverse designed metamaterial is able to closely match the target center lines at εth = 0.1 and 0.2.
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architectures capable of supporting multiple target deformation 
modes (see Figure 5c(iii) for a structure that bends toward the 
left for a thermal expansion ε = 10%th  and toward the right for 
ε = 20%th —see Section S8.B, Supporting Information for more 
details).

To conclude, since the response of the inversely designed 
metamaterials is scale- and material-independent, we envisage 
that our strategy could be applied to the design of the next gen-
eration of flexible structures with target nonlinear behavior, 
ranging from large-scale energy-absorbing systems to small-
scale robotic components.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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S1. GEOMETRY

In this study we consider metamaterials comprising a 10 × 8 array of hinged quadrilateral units flanked by two
horizontal strips of solid material. All structures are realized by repeating a unit cell that consists of 2×2 quadrilateral
units connected at their vertices by thin beam-like ligaments with a width and length of 1 mm. The geometry of each
unit cell is fully described by the positions of its 12 vertices (see red dots in Fig. S1). However, because of periodicity
constraints, only the position of 8 vertices can be independently prescribed. To describe such positions for the p-th
design, we introduce uαp and vαp (α = 1, 2, · · · , 8), which denote the displacement along the x and y direction of the
α-th independent vertex of the p-th unit cell from the corresponding vertex of a square with diagonal length of a = 10
mm (highlighted with a black dot in Fig. S1). We then assemble uαp and vαp (α = 1, 2, · · · , 8) into a 16 dimensional

vector Xp = [u1p, v
1
p, · · · , u8p, v8p]> that fully describes the geometry of the p-th unit cell. In Table S2 we report the

vectors Xp for all geometries considered in the main text.

Designs u1
p v1p u2

p v2p u3
p v3p u4

p v4p u5
p v5p u6

p v6p u7
p v7p u8

p v8p
Fig. 1

(squares) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fig. 1

(irregular) 0.167 0.157 0.058 -0.095 -0.139 -0.149 0.168 0.164 0.080 0.109 -0.155 0.180 -0.091 0.087 0.118 -0.028
Fig. 2c(i) -0.088 -0.111 0.109 -0.057 -0.075 0.055 -0.128 0.339 0.103 -0.145 0.151 -0.347 0.136 0.159 0.177 0.019
Fig. 2c(ii) -0.271 -0.177 0.160 -0.134 0.450 0.013 0.002 0.011 0.450 0.023 0.056 0.038 -0.254 0.162 0.178 -0.044
Fig. 2c(iii) -0.387 0.046 -0.171 0.225 -0.450 0.096 -0.091 0.025 0.267 0.044 -0.101 -0.356 0.176 0.046 -0.016 0.450
Fig. 2c(iv) -0.152 -0.006 -0.035 -0.300 -0.047 0.054 0.113 0.407 0.144 0.110 0.026 -0.115 0.169 0.042 0.037 -0.176
Fig. 4d(i) -0.019 0.159 0.100 -0.024 -0.026 0.116 0.288 0.167 0.270 0.038 -0.086 -0.500 0.268 -0.016 0.237 -0.286
Fig. 4d(ii) 0.343 -0.152 0.033 0.026 -0.383 0.062 -0.109 -0.082 -0.297 -0.078 0.179 -0.092 0.356 0.143 -0.032 0.095
Fig. 4d(iii) 0.118 -0.023 0.057 -0.459 0.182 -0.178 0.033 0.218 -0.013 -0.102 -0.030 0.225 -0.183 -0.110 0.005 -0.384
Fig. 4d(iv) -0.273 -0.166 0.005 -0.380 0.022 -0.252 -0.321 0.202 -0.056 -0.126 0.049 -0.152 0.102 -0.183 0.078 -0.111

TABLE S1. Vectors Xp for all geometries considered in the main text.

∗ B.D. and A.Z. contributed equally.
† boleiden@mit.edu; bertoldi@seas.harvard.edu
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FIG. S1. Schematics of a unit-cell generated by randomly perturbing the position of the quadrilaterals vertices, while preserving
periodicity.



S3

S2. FABRICATION AND EXPERIMENTS

A. Fabrication

A molding approach is used to manufacture all our samples. First, we fabricated the negative mold using a 3D
printer (Connex 500 available from Objet, Ltd.) with VeroClear (product number: RGD810, Objet) material. As
shown in Fig. S2, the mold comprises: (i) a base plate with grooves; (ii) 4 side walls; and (iii) 25 pillars. The AutoCAD
files used to generate the mold are openly available at github.com/boleideng94/metamaterials-inverse-design.
To remove any caustics left behind by the 3D printing process, we clean all the components of the mold with Isopropyl
alcohol. We then assemble the mold by inserting the pillars and the side walls in the grooves of the base plate. Next,
we cast the structures using silicone rubber (Elite Double 32, Zhermack). Before replication, we spray a releasing
agent (Easy Release 200 available from Smooth-On, Inc.) onto the molds for easy separation. We place the cast
structures in a vacuum for degassing and allow them to be set at room temperature for curing for 30 min before
de-molding.

B. Compression tests

For all our compression tests, we use an Instron 5969 universal testing machine with a 500 N load cell. The
specimens were compressed using flat compression fixtures at a rate of 0.2 mm/s.

FIG. S2. Fabrication: 3D-printed molds are used to cast the metamaterials.

C. Drop tests

To investigate the energy-absorbing performance upon impact of our inversely designed metamaterials, we conduct
drop tests on the optimized structures reported in Fig. 4 of the main text. More specifically, we drop a circular
acrylic disk (with mass mdisk = 100 g and diameter ddisk = 100 mm) onto their top surface from an height h0 = 40
cm (Fig. S3-a) and guide its trajectory via a channel built out of three acrylic plates. The tests are monitored with
a high-speed camera (iPhone 11 SLO-MO) recording at 240 frames per second. From the recorded videos we then
extract the contact time, tcontact as well as the height of the first bounce after the impact, h1, from which we calculate
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the absorption efficiency as

η =
mdiskgh0 −mdiskgh1

mdiskgh0
=
h0 − h1
h0

, (S1)

where g = 9.81 m/s denotes the gravitational acceleration. As shown in Fig. 5 of the main text and Fig. S3-b, we find
that tcontact = 33, 75, 54, and 96 ms and h1= 22.0, 15.3, 11.5 and 2.5 cm for the four considered structures, resulting
in an absorption efficiency η=45%, 62%, 71% and 94%, respectively.

Front view Side view

C
a
m

e
ra

5 cm

a

bbbb

b

From

40 cm

11.5 cm

Contact time: 

54 ms

Fig. 3d(iii)

Absorption

rate: 71%

FIG. S3. Drop tests. (a) Experimental setup. (b) Experimental results for the design reported in Figure 3c(iii) of the main
text.
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S3. DISCRETE MODEL

Since our experiments indicate that under uniaxial compression the quadrilateral units remain rigid and the de-
formation localizes at the hinges, the nonlinear behavior of the considered metamaterials can be described using a
discrete model comprising rigid units connected at their vertices by springs [1, 2] (see Fig. S4).

i, j

i, j

i, j-1

i-1, j

ith row

i, j

i+1, j

j+1th

column

i+1th row

i-1th row

jth

column

j-1th

column

i, j+1

Longitudinal 

spring

Shearing

spring

Torsional

spring
a

b

Unit cell

FIG. S4. (a) Discrete model based on rigid units connected at their vertices by springs. (b) Schematic of the [i, j]-th rigid
square unit.

In our discrete model, we consider the quadrilaterals to be rigid and assign them three degrees of freedom: the
displacement in the x-direction, u, the displacement in the y-direction, v, and the rotation around the z-axis, θ. As
for the hinges, we model them using a combination of three springs (see Fig. S4a): their longitudinal response is
captured by a linear spring with stiffness kl; their shearing is captured by a linear spring with stiffness ks and their
bending is captured by a non-linear torsional spring, which obeys [2]

M = kθ(θ + γθ3), (S2)

where M is the torque exerted by the spring, kθ is the rotational stiffness and γ is a dimensionless material parameter.
Note that, to facilitate the analysis, we assume that the longitudinal and shearing springs are always parallel either
to the x or y axis (an assumption that is valid only for small global rotations of the system). Further, since all our
samples comprise ligaments of identical shape, we assume that the spring stiffnesses do not vary as a function of the
shape of the quadrilaterals.

Finally, since upon compression the edges of neighboring quadrilaterals may get in contact with each other and
such contact affects the nonlinear response of the structure, we introduce an additional nonlinear rotational spring to
capture contact with stiffness

kcont(β) =

{
k0cont, if β < β0
0, if β > β0

(S3)

where β denotes the angle between two edges of the neighboring quadrilaterals, which can be determined as a function
of the geometric parameters (see Fig. S5). Note that this nonlinear spring is activated only when the angle β is smaller

than a threshold value β0 and induce and additional moment M
[i,j]
cont, p=1 at the p-th vertex of the [i, j]-th unit. For

example, if we focus on the contact between the [i, j]-th and [i, j + 1]-th quadrilaterals, we find that

M
[i,j]
cont, p=1 = −M [i,j+1]

cont, p=3 = −(β1 − β0) kcont(β1) + (β2 − β0) kcont(β2) (S4)

where β1 and β2 denote the two angles between the edges of the two quadrilaterals (see Fig. S5).
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iy, ix

iy, ix+1

FIG. S5. Contact: a nonlinear rotational spring is introduced to capture contact.

Under the assumptions listed above, the equations of motion for the [i, j]-th quadrilateral are given by

m[i, j]ü =

4∑
p=1

F x [i, j]
p ,

m[i, j]v̈ =

4∑
p=1

F y [i, j]
p ,

J [i, j]θ̈ =

4∑
p=1

M [i, j]
p ,

(S5)

where m[i, j] and J [i, j] are the mass and moment of inertia of the [i, j]-th rigid unit. Note that in this study, since we
only consider quasi-static deformations, we assume m[i, j] = 1 g and moment of inertia J [i, j] = 1

6m
[i, j]( a√

2
)2 = 8.33

g·mm2 for all units. Moreover, F
x [i, j]
p and F

y [i, j]
p are the forces in the x-direction and the y-direction generated at

the p-th vertex of the [i, j]-th unit by the springs and M
[i, j]
p represents the corresponding moment (see Fig. S4b).

Specifically, these forces and moments are given by

F x [i, j]
p = kp ·∆l[i, j]p · êx,

F y [i, j]
p = kp ·∆l[i, j]p · êy,

M [i, j]
p = −kθ∆θ[i, j]p − r[i, j]p (θ[i, j])×

(
kp ·∆lp

[i, j]
)
· êz +M

[i,j]
cont, p,

(S6)

with

kp =

[
kl 0
0 ks

]
, for p = 1, 3, (S7)

and

kp =

[
ks 0
0 kl

]
, for p = 2, 4. (S8)

Furthermore, ∆θ
[i, j]
p is the change in angle experienced by the rotational spring connected to the p-th vertex of the

[i, j]-th rigid unit

∆θ
[i, j]
1 = θ[i, j] + θ[i, j+1],

∆θ
[i, j]
2 = θ[i, j] + θ[i+1, j],

∆θ
[i, j]
3 = θ[i, j] + θ[i, j−1],

∆θ
[i, j]
4 = θ[i, j] + θ[i−1, j].

(S9)

Moreover, r
[i, j]
p denotes the vector that connects the center of the [i, j]-th rigid unit to its p-th vertex at a specific

rotation angle θ[i, j] (see Fig. S4b)

r[i, j]p (θ[i, j]) = R(θ[i, j]) r[i, j]p (0) (S10)

where

R(θ[i, j]) =

[
cos θ[i, j] sin θ[i, j]

− sin θ[i, j] cos θ[i, j]

]
(S11)
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and r
[i, j]
p (0) is the initial value of r

[i, j]
p (θ[i, j]) at θ[i, j] = 0 and is determined by the specific shape of the [i, j]-th

quadrilateral. Note that for the considered unit cell r
[i, j]
p (0) can be expressed as

r
[i, j]
1 (0) = [

a

2
+ u8p, v

8
p], r

[i, j]
2 (0) = [u3p,

a

2
+ v3p],

r
[i, j]
3 (0) = [−a

2
+ u4p, v

4
p], r

[i, j]
4 (0) = [u1p, −

a

2
+ v1p]

r
[i, j+1]
1 (0) = [

a

2
+ u4p, v

4
p], r

[i, j+1]
2 (0) = [u7p,

a

2
+ v7p],

r
[i, j+1]
3 (0) = [−a

2
+ u8p, v

8
p], r

[i, j+1]
4 (0) = [u5p, −

a

2
+ v5p]

r
[i+1, j]
1 (0) = [

a

2
+ u6p, v

6
p], r

[i+1, j]
2 (0) = [u1p,

a

2
+ v1p],

r
[i+1, j]
3 (0) = [−a

2
+ u2p, v

2
p], r

[i+1, j]
4 (0) = [u3p, −

a

2
+ v3p]

r
[i+1, j+1]
1 (0) = [

a

2
+ u2p, v

2
p], r

[i+1, j+1]
2 (0) = [u5p,

a

2
+ v5p],

r
[i+1, j+1]
3 (0) = [−a

2
+ u6p, v

6
p], r

[i+1, j+1]
4 (0) = [u7p, −

a

2
+ v7p]

(S12)

where uαp and vαp defines as in Fig. S1.

Finally, ∆l[i, j]p is a vector whose entries provide the change in length along the x- and y- directions of the linear
springs connected to the p-th vertex,

∆l
[i, j]
1 =

(
u[i, j+1] − u[i, j]

)
êx +

(
v[i, j+1] − v[i, j]

)
êy + ∆r

[i, j+1]
3 −∆r

[i, j]
1 ,

∆l
[i, j]
2 =

(
u[i+1, j] − u[i, j]

)
êx +

(
v[i+1, j] − v[i, j]

)
êy + ∆r

[i+1, j]
4 −∆r

[i, j]
2 ,

∆l
[i, j]
3 =

(
u[i, j−1] − u[i, j]

)
êx +

(
v[i, j−1] − v[i, j]

)
êy + ∆r

[i, j−1]
1 −∆r

[i, j]
3 ,

∆l
[i, j]
4 =

(
u[i−1, j] − u[i, j]

)
êx +

(
v[i−1, j] − v[i, j]

)
êy + ∆r

[i−1, j]
2 −∆r

[i, j]
4 ,

(S13)

with

∆r[i, j]p = r[i, j]p (θ[i, j])− r[i, j]p (0). (S14)

For a structure comprising Ny rows and Nx columns of quadrilaterals, substitution of Eqs. (S6)-(S14) into Eqs.
(S6) yields a set of 3NxNy ordinary differential equations that we numerically solve using the 4th order Runge-Kutta
method (via the Matlab function ode45). Although our samples comprise a 10×8 array of hinged quadrilateral units
flanked by two horizontal strips of solid material, in all our simulations we consider an array of 10×10 quadrilaterals
and fix the degrees of freedom of those forming the top and bottom row. Specifically, at the bottom row we impose

u[1,j] = 0, v[1,j] = 0, and θ[1,j] = 0, ∀j (S15)

whereas at the top row we prescribe

u[10,j] = 0, v[10,j] = ctop t, and θ[10,j] = 0, ∀j (S16)

where ctop = 1 mm/s (note that at this slow loading rate, no significant dynamic effects are observed). Finally, to
suppress high frequency vibrations, we introduce a viscous damping term with a linear damping parameter η = 0.05
(note that for the considered slow loading rate the value of such damping coefficient does not affect the measured
stress-strain curve).

A. Estimation of kl, ks, kθ, γ, k
0
cont and β0

To connect the discrete model to our physical samples, we need to estimate kl, ks, kθ, γ, k0cont and β0. To this
end, we focus on a uniaxial compression test conducted on a sample comprising an array of squares with diagonal
a = 10 mm, connected at the vertices by thin beam-like ligaments with a width and length of 1 mm. Remarkably,
each of the parameters entering in our model control a specific feature of the stress-strain obtained for such sample
(see Fig. S6a):
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• kl controls the slope of the initial linear response;

• kθ controls the strain at which buckling occurs;

• γ controls the slope of the stress-strain curve after buckling;

• β0 controls the strain at which contact-induced stiffening kicks in;

• k0cont controls the slope of the stress-strain curve in the post-contact regime.
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FIG. S6. (a) Each of the parameters entering in our model control a specific feature of the stress-strain obtained for such
sample. Stress-strain curve for a sample comprising identical squares with center-to- center distance a = 10 mm as measured in
experiments (green dashed line) and predicted by the model (black line). (b) Comparison between experimental and numerical
snapshots at ε = −0.1 for a sample sample comprising identical squares with center-to-center distance a = 10 mm. To facilitate
the comparison, the outlines of the squares from simulation are superimposed on the experimental pictures.

We find that the experimentally obtained stress-strain curve for a sample comprising identical squares with center-
to- center distance a = 10 mm is nicely captured by the discrete model when choosing kl = 0.47 N/mm, kθ = 0.88N·m,
γ = −0.2, β0 = 0.1 rad (5.7◦) and k0cont = 0.024 N/mm. However, it is important to note that such stress-strain curve
does not allow us to estimate ks (as the shearing in the ligament for the considered structure upon compression is
negligible). To overcome this limitation, we assume that

ks
kl

=
G

E
=

1

2(1 + ν)
=

1

3
, (S17)

where E is the initial Young’s modulus of the elastomeric material, G = E/(2 + 2ν) is its initial shear modulus and
ν = 0.5 is its Poisson’s ratio. It follows from Eq. (S17) that ks = kl/3 = 0.16 N/m.

Finally, we note that, when using the values of the parameters estimated above, the discrete model not only
captured the stress-strain curve of the metamaterials based on squares (Fig. S6a) but also its deformation field
(Fig. S6b). Further, as shown in the main text, the model can be used to predict the nonlinear response of structures
realized out of arbitrary quadrilaterals.
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S4. DATASET GENERATION

The machine learning model needs to have enough training data in order to accurately predict the nonlinear response
of metamaterials realized out of arbitrary unit cells. To generate such data, we first produce metamaterial geometries
using a two-step random sampling method and then evaluate their mechanical response using our discrete model.

In this section, we first describe two different sampling approaches (direct random sampling and two-step random
sampling) and then show that the two-step sampling method leads to a more diverse dataset.

A. Direct random sampling

Constraints:

 

(1)

(2) All edges longer than    

(3) All interior angles larger than  All interior angles larger than  

Random

sampling

FIG. S7. Direct random sampling. Unit cell geometries are generated by randomly moving their eight independent vertices
within boxes with edge of 0.5a centred around them.

To generate metamaterial designs using the direct random sampling approach, we start with a unit cell comprising
four hinged squares with a diagonal length of a and randomly move its eight independent vertices within square boxes
with edges of 0.5a centered around them (see red boxes in Fig. S7). Note that, since all the vertices are bounded
in boxes that do not overlap, interpenetrations of the quadrilaterals are prevented. Further, we impose that in each
generated design (1) all interior angles are larger than 45 degrees and (2) all edges are longer than 0.2a. These
two constraints are introduced to ensure that the response of the metamaterials can be accurately captured by our
discrete model and are determined by conducting Finite Element (FE) simulations. In our FE analysis (conducted
using the commercial package Abaqus/Standard), (i) we consider two identical half rhombic units connected by a
thin beam-like ligament with width and length of 1 mm (see Fig. S8-a); (ii) we assume plane stress conditions; (iii)
we mesh the models using hybrid quadratic triangular elements (Abaqus element type: CPS8); (iv) we use nearly
incompressible Neo-Hookean model material with initial shear modulus µ = 0.4 MPa to capture the material response.
To determine the spring stiffness kl and ks we apply an horizontal displacement δl and a vertical displacement δs to
the two boundaries of our model, respectively (see insets in Figs. S8-b and S8-c). The stiffness is then calculated from
the measured reaction forces Fl and Fs (given by the sum of all reaction forces at the nodes located on one of the two
boundaries) as

kl =
Fl
2δl

, ks =
Fs
2δs

. (S18)

As for the stiffness kθ, the two rhombic units are loaded by rotating the the two boundaries of our model by an angle
∆θ. The stiffness kθ is then calculated from the resulting moment Mt as

kθ =
Mt

2∆θ
. (S19)

In Figs. S8b-d we report the numerically predicted evolution of kl, ks and kθ as a function of the internal angle of
the rhombic units. We find that the spring stiffnesses are relatively constant for large internal angles, but decrease
noticeably for internal angles smaller than 45◦. As such, by introducing the constraint all internal angle > 45◦, we
can simplify the model and keep kl, ks and kθ constant as we vary the shape of the units.

Finally, in Fig. S8-e we report the stress distribution near the thin ligament for two rhombic units with an internal
angle of 90◦ loaded by applying a vertical displacement to the two boundaries of our model (as shown in Fig. S8-c).
As expected, we find that stress concentrates near the hinge and quickly decrease in the units. More specifically, we
find that at a distance 0.2a from the hinge, the stress is approximately 15% of the maximum stress recorded in the
ligaments. As such, to minimize the coupling between the ligaments we choose all edges to be longer than 0.2a.
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FIG. S8. (a) Schematics of the model used to determine kl, ks and kθ as a function of the units’ internal angle. (b)-(d)
Numerically predicted evolution of (b) kl, (c) ks and (d) kθ as a function of the internal angle of the rhombic units. Schematics
highlighting the boundary conditions used in our FE simulations to determine the spring stiffness are shown as insets. (e)
Von Mises stress distribution near the thin ligament for two rhombic units with an internal angle of 90◦ loaded by applying a
vertical displacement to the two boundaries of our model (as shown in panel (c)).

B. two-step random sampling

Using the direct sampling method, a large number of geometries must be generated to produce highly symmetric
designs, which typically lead to extreme stress-strain curves. To identify more efficiently such highly symmetric
geometries, we implement a two-step sampling method. This algorithm consists of two steps (see Fig. S9)

• Step 1: we start with a unit cell comprising four hinged squares with diagonal length of a and randomly perturb
its vertices, while constraining it be symmetric about the x and y axes. Such constraints can be enforced by
imposing

u1p = −u5p, u3p = −u7p, v2p = −v4p, v6p = −v8p,
u2p = u4p = u6p = u8p = v1p = v3p = v5p = v7p = 0.

(S20)

Eq. (S20) reduces to four the number of vertex coordinates that can be independently prescribed. These four
coordinates are obtained by randomly assigning to u5p, u

7
p, v

4
p and v8p values in the range −0.25a, 0.25a (so

that the vertices are always within boxes with edge of 0.5a). Note that in this study we generate 250 highly
symmetric and arbitrary geometries (see blue designs in Fig. S9 for representative examples).

• Step 2: Each of the 250 highly symmetric geometries generated in Step 1 is perturbed by randomly moving
its eight independent vertices within square boxes with edges of 0.5a centered around them (see red boxes
highlighted for one design in Fig. S9). Note that each highly symmetric design is perturbed 50 times (leading
to a total of 7500 geometries) and that, to generate designs for which the deformation localize at the hinges, we
impose that each quadrilateral in the unit cell has all edges longer than 0.2a and all interior angles larger than
45◦.
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FIG. S9. Two-step random sampling. Step 1 : We randomly generate unit cells that are symmetric about the x and y axes.
Step 2 : We perturb the highly symmetric designs from Step 1 by randomly moving their eight independent vertices.

C. Comparison between two sampling methods

In Fig. S10 we report the histogram of the maximum stress upon compression numerically predicted for 7500
metamaterials generated using the direct random sampling method (blue) and two-step random sampling method
(red). We find that there is more variation in the maximum stress values for the geometries generated using the
two-step random sampling method. More specifically, we calculate a standard deviation of 2.40 for these geometries,
while for those generated using the direct sampling method we obtain a standard deviation of 1.81. As such, in this
study, we use the two-step sampling method to generate the geometries used to populate the dataset, since it leads
to more diverse data.
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FIG. S10. Histogram of the maximum stress predicted upon compression for 7500 metamaterials generated using the direct
random sampling method (blue) and two-step random sampling method (red).

S5. PRINCIPAL COMPONENT ANALYSIS

To facilitate training of the machine learning model, we reduce the dimensionality of the nonlinear measurements
by using principal component analysis (PCA) [3]. Stress-strain curve of the p-th design is represented by a 100-
dimensional vector

σp = [σp(0), · · · , σp(−0.1)]
>
, (S21)

which contains the stress values at 100 equally spaced strain points. We first assemble the stress vectors of the training
samples into a stress matrix

σ = [σ1 σ2 · · ·σNtr
]>, (S22)

and mean-center it to obtain

σ̂p,s = σp,s − σ̄s, (S23)
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where σp,s indicates the s-th component of the p-th stress vector and

σ̄s =
1

Ntr

Ntr∑
p=1

σp,s, (S24)

Ntr denoting the number of datapoints used for training. Then, we perform singular value decomposition on the
resulting covariance matrix and rewrite it as

σ̂>σ̂

Ntr − 1
= VΣ2V>, (S25)

where V is a 100 × 100 matrix with orthonormal columns (i.e. VV> = I, with I denoting the identity matrix)
that represent the principal directions. Further, Σ2 = diag(β1, · · · , β100) contains the eigenvalues βs that determine
the variance explained in each principal component. Finally, to reduce the dimensionality of the data from 100 to
n < 100, we assemble into Vn the columns of V associated to the n largest explained variances and calculate the first
n principal components of σ̂p as

σPCn
p = σ̂pVn. (S26)

Note that for this study we choose n = 10, since this leads to an average error

1

Ntr

Ntr∑
p=1

err[σp,σ
R
p ,−0.1] = 0.3%, (S27)

where σp and σRp = σPC10
p V>10 + σ̄ denote the true and reconstructed stress vectors, respectively. As a result, our

training data set consists of Ntr pairs {(Xp,σ
PC10
p )}p=1,··· ,Ntr

, where σPC10
p = [σPC10

p,1 , · · · , σPC10
p,10 ]> contains the 10

first principal components describing the stress vector associated to the p-th unit cell.

S6. NEURAL NETWORK

To predict the lower-dimensional representation of the stress vector, σPC10
p , for a given geometry, Xp, we use a

neural network (NN) architecture with four hidden layers, each comprising 200 neurons. For implementation and
training of the NN we use the PyTorch package [4]. Out of the expanded datasets comprising N = 30000 datapoints,
we randomly choose Ntr = 0.8N data points for training and the remaining Ntest = 0.2N for testing. We train the
NN by selecting the weights and biases of the neurons that minimize

L =

Ntr∑
p=1

10∑
s=1

βs
(
Fs(Xp)− σPC10

p,s

)2
, (S28)

where σPC10
p are the true values of the first 10 principal components use to represent the stress-strain curve associated

to the p-th design, F(Xp) = [F1(Xp), · · · F10(Xp)]
> denote the corresponding NN predictions and βs represents the

variance explained in each principal component. The training is performed using the following parameters

• Hidden layer dimensions: 200, 200, 200, 200

• Activation functions: ReLU for the first three layers and no activation for the last layer

• Feature scaling: PCA

• Optimization algorithm: Adam

• Learning rate: 10−4

• Batch size: 64

• Number of epochs: 100

• Dropout: None
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FIG. S11. (a) Evolution of L and (b) 〈err〉rel as a function of the number of epochs averaged over the whole training and testing
dataset. The neural network has 200x200x200 hidden layers with ReLU activation function, optimized with a 10−4 learning
rate with Adam optimizer and a 64 batch-size.

• Weight Decay: 10−3

To evaluate the accuracy of our trained NN, we then calculate the average relative error on the test dataset as

〈err〉rel =
1

Ntest

Ntest∑
p=1

err[σp,σ
NN
p ,−0.1], (S29)

where the err function is defined in Eq. (1) of the main text and σNN
p = F(Xp)V

>
10 + σ̄. In Fig. S11a we show the

evolution of L and 〈err〉rel as a function of the number of epochs. Using the training parameters reported above we
find that after 100 epochs 〈err〉rel = 3.59%.

Finally, in Table S2 we report the average relative error on the test data-set, 〈err〉rel, obtained for different com-
binations of training parameters. We find that the average relative error obtained with the hyper-parameters used
in this study cannot be largely lowered by varying the parameters. More specifically, the results indicate that (i) an
increase in the number of hidden layers results in a small reduction of 〈err〉rel; (ii) the learning rate and the batch size
have small effect on 〈err〉rel; (iii) a Sigmoid activation function worsen the accuracy of the network; (iv) the Adam
optimizer performs better than SGD. Further, to ensure that there is no overfitting, we introduce

Ol =
Ltrain

Ltest
, and Oe =

〈err〉train
〈err〉test

, (S30)

where Ltrain and Ltest are the loss of the proposed neural network calculated for the training and testing datasets
(as defined in Eq. (S28)), 〈err〉train and 〈err〉test are the average relative error calculated for the training and testing
datasets (as defined in Eq. (S29)). For a given neural network Ol and Oe can vary between zero and one. If a neural
network explains the training data extremely well, but it is not able to generalize to the testing dataset (i.e., if there
is overfitting), then Ol,Oe → 0. Differently, if the network performs similarly on both training dataset and testing
dataset, Oe,Ol → 1. In Table S2 we report Oe and Ol for all considered variants of the neural network. As expected,
we find that as we increase the number of layers or the neurons in a layer both Oe and Ol decrease - a signature
of overfitting (e.g., for a network with 4 layers with 100, 200, or 300 neurons at each layer, respectively we have
Ol = 0.78, 0.5, 0.34 and Oe = 0.99, 0.87, 0.79). For the neural network used in this study we have Ol = 0.5 and
Oe = 0.87. The fact that Oe is close to unity clearly shows that our model generalize well to the testing dataset.

S7. INVERSE DESIGN USING NEURAL NETWORK

While in this study we use a neural accelerated evolution strategy to identify geometries resulting in target nonlinear
mechanical responses, we also considered using a neural network to solve the inverse problem. More specifically, we
tested two different approaches: a direct inverse design approach via neural network and an indirect inverse design
approach via the forward neural network. In the following, we describe both approaches and show that they do
perform as well as our neural accelerated evolution strategy.
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Hidden layer dimensions Activation function Optimization Alg. Learning Rate Batch Size 〈err〉rel Ol Oe
200,200,200,200 ReLU Adam 1.00E-04 64 2.97 0.50 0.87
100,100,100,100 ReLU Adam 1.00E-04 64 3.59 0.78 0.99
300,300,300,300 ReLU Adam 1.00E-04 64 2.54 0.34 0.79

300,300,300 ReLU Adam 1.00E-04 64 2.8 0.46 0.86
200,200,200 ReLU Adam 1.00E-04 64 3.25 0.64 0.94
100,100,100 ReLU Adam 1.00E-04 64 3.8 0.84 1.00

200,200,200,200,200 ReLU Adam 1.00E-04 64 2.53 0.44 0.86
200,200,200,200 Sigmoid Adam 1.00E-04 64 20.5 1.05 1.00
200,200,200,200 ReLU SGD 1.00E-05 64 4.9 0.92 1.04
200,200,200,200 ReLU Adam 1.00E-03 64 3.41 0.52 0.91
200,200,200,200 ReLU Adam 1.00E-05 64 3.77 0.84 0.99
200,200,200,200 ReLU Adam 1.00E-04 32 3.06 0.47 0.90
200,200,200,200 ReLU Adam 1.00E-04 128 2.84 0.54 0.89

TABLE S2. Effect of different neural network hyper-parameters on the average relative error on the test dataset.

A. Direct inverse design approach via neural network

In this approach, in addition to the neural network used to provide a relationship between the unit cell geometry
and the stress-strain response, we introduce another neural network that is trained to identify a metamaterial design
leading to the desired stress-strain curve. The inverse neural network is similar to that used for the forward model
(four hidden layers of each 200 neurons, with ReLU activation function, Adam optimizer with a learning rate of 10−4,
and weight decay of 10−3) and is trained by selecting the weights and biases of the neurons that minimize

L =

Ntr∑
p=1

16∑
s=1

(
Gs(σPC10

p )−Xp,s

)2
, (S31)

where G(σPC10
p ) = [G1(σPC10

p ), · · · ,G16(σPC10
p )]> is the neural network prediction for the 16 geometric parameters that

fully describe a unit cell. Note that also in this case, out of the expanded dataset comprising N = 30000 datapoints,
we randomly choose Ntr = 0.8N datapoints for training of the inverse NN.

To test this approach, we focus on the four target stress-strain curves considered in Fig. 4 of the main text. We use
the trained inverse neural network to identify optimal geometries and then predict the stress-strain response of these
designs via our discrete model. As shown in Fig. S12, we find that the error between the stress-strain curves obtained
from the optimal designs and the target ones is much larger than that between the closest matches from the dataset
and the target ones. The poor performance of the inverse neural network can be attributed to the fact that multiple
geometries exist that lead to the same stress-strain curve (i.e. the loss function defined in Eq. (S31) is ill-posed) [5].
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FIG. S12. Direct inverse design approach via neural network. Target response (red dashed line), best match from dataset
(black lines) and optimal designs identified by the inverse NN (purple lines).

B. Indirect inverse design approach via the forward neural network

To overcome the limitation of our first approach, inspired by [5], we introduce a second neural network G (with
comprises four hidden layers of each 200 neurons, ReLU activation function, Adam optimizer with a learning rate of
10−4, and weight decay of 10−3) and train it to become the inverse of our forward neural network F . Such training
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is conducted by selecting the weights and biases of the neurons that minimize

L =

Ntr∑
p=1

16∑
s=1

(Gs(F(Xp)−Xp,s)
2
. (S32)

To test this approach, we again focus on the four target stress-strain curves considered in Fig. 4 of the main text.
We use the trained neural network G to identify optimal geometries and then predict their stress-strain response via
our discrete model. Note that we tested neural networks of different size (keeping the size of forward, F , and inverse,
G, neural networks identical). As shown in Fig. S13, we find that all considered neural networks (i.e. 100×100×100,
200×200×200 and 300×300×300) cannot identify designs better than the best pick from dataset. In table S3 we
summarize the error between the four target curve considered in Fig. 4 of the main text and the response of the
optimized designs identified using the inverse design methods employed in this study. Although the indirect inverse
design performs much better than the direct one, it still fails to identify designs that are better than the best picks
from dataset. Differently, the proposed neural accelerated evolution strategy is capable of find design that more closely
match all four target responses, proving the performance and robustness of our method.
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FIG. S13. Indirect inverse design approach via the forward neural network F and a second neural network Gs. Target responses
(red dashed line), best matches from dataset (black lines) and stress-strain curves for the optimized design identifies by the
neural network Gs (purple lines). This approach is implemented using neural networks F and Gs of different sizes: 200×200×200
(top row), 100× 100× 100 (middle row) and 300× 300× 300 (bottom row). Note that F and Gs have always identical size.
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Fig. 4d(i) Fig. 4d(ii) Fig. 4d(iii) Fig. 4d(iv)
Top pick from dataset (baseline) 8.1% 25.0% 12.3% 11.7%

Direct inverse design (200× 200× 200) 419% 72.9% 27.0% 45.8%
Indirect inverse design (100× 100× 100) 2.3% 84.1% 22.1% 28.5%
Indirect inverse design (200× 200× 200) 8.1% 25.5% 22.7% 43.4%
Indirect inverse design (300× 300× 300) 2.4% 35.9% 22.0% 26.2%

Neural accelerated evolution strategy
(200× 200× 200)

1.9% 4.7% 6.6% 4.5%

TABLE S3. Minimum error between σt and the stress-strain curve predicted by the discrete model for the optimized geometries,
σDM , for the four target curve considered in Fig. 4 of the main text using the direct inverse design methods, the indirect inverse
design method (with three different networks) and the proposed neural accelerated evolution strategy. We also report the error
for the top picks from the dataset.
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S8. INVERSE DESIGN OF SOFT ROBOTS AND ACTUATORS

While in this study we have focused on target nonlinear stress-strain responses, our strategy can be readily applied
to other non-linear properties, providing a platform to facilitate the design of soft robots and soft actuators.

A. Soft robots that exploit auxetic mechanical metamaterials

It has been shown that two flexible structures with Poisson’s ratio of equal magnitude but opposite sign can lead
a soft robot capable of moving through a channel when actuated with a single input rather than three independent
ones [6]. More specifically, this implementation of the robot consists of a linear actuator linking two passive elastic
blocks. The two blocks have width larger than that of the channel so that they grip. Further, they ideally have
identical Young’s moduli, and Poisson’s ratios of equal magnitude but opposite sign. This means that when the
actuator expands and pushes against the two blocks, the normal force exerted by the two blocks on the channel have
opposite signs. The auxetic block contracts laterally and therefore applies less normal force to the channel, whereas
the opposite is true for the other block with positive Poisson’s ratio (see Fig. S14). Thus, during the expansion phase,
the auxetic block slips forward along the channel. During the contraction phase the effect is reversed: tension causes
the auxetic’s normal force to increase, and the normal material’s to decrease. So in this phase the normal material
slips.

Linear

actuator

Material

with

Material

with
Normalized step length:

0

4

6

S
tr

o
k
e

2

0 0.5 1 1.5 2
Time t [s]

FIG. S14. A schematic of the soft robot design using auxetic mechanical metamaterials.

Here, we investigate the performance of such soft robots built using mechanical metamaterials based on hinged
quadrilaterals. We first show how we characterize the response of the considered metamaterials, then present the
numerical simulations that we conduct to characterize the performance of the robots and finally discuss the results.

a. Data generation We consider metamaterials comprising 3×3 identical unit cells and characterize their response
by solving Eq. (S5), while imposing

v[1,j] = 0, and v[6,j] = ctop t, ∀j (S33)

and leaving the lateral boundaries traction-free. Note that in all our simulations we set ctop = 1 mm/s - a loading
rate slow enough to prevent dynamic effects. An effective structural Poisson’s ratio is then calculated as

ν(ε) = −εh
ε

= − 1

εaNxNy

Ny∑
i=1

(
u[i,Nx] − u[i,1]

)
(S34)

where ε is the applied strain in vertical direction and εh denote the lateral strain. In Fig. S15a we show the numerically
predicted evolution of ν as a function of the applied strain for the 7500 metamaterials generated from the unit cells
considered in this study. We find that a variety of nonlinear responses emerge. These include (i) large positive
Poisson’s ratio (see curve (i) in Fig. S15-a); (ii) negative Poisson’s ratio (see curve (ii) in Fig. S15-a); (iii) almost
vanishing Poisson’s ratio (see curve (iii) in Fig. S15-a); (iv) Poisson’s ratio that largely varies as a function of the
applied strains (see curve (iv) in Fig. S15-a).
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b. Numerical simulations of the robots In the numerical simulations of the robot we consider two pieces of the
3×3 unit cells metamaterials described above and connect them by imposing

1

6

6∑
j=1

(
v
[1,j]
top − v

[6,j]
bottom

)
= D(t), (S35)

where D(t) describes the relative displacement imposed by the linear actuator, v
[1,j]
top denotes the vertical displacement

of the j-th unit in the bottom row for the top block and v
[6,j]
bottom is the vertical displacement of the j-th unit in the

top row for the bottom block. Note that in this study we choose

D(t) =


2dat

T
if t− (ncycle − 1)T ≤ T/2

2da −
2dat

T
if t− (ncycle − 1) > T/2

(S36)

where ncycle is an integer that denote the number of the current actuation cycle, T = 1 s denotes the period of
actuation and da represents the stroke of the actuator (see Fig. S14). Since the lateral boundaries of the two blocks
are in contact with the walls of the rigid channel, we connect all units of the left most and right most columns to
springs with stiffness ktube = 10kl. These springs introduce normal contact forces

N
[i,j]
contact = ktube u

[i,j], for j = 1 and 6 (S37)

Note that as long as ktube � kl, the specific value of ktube does not affect the normal force.
Further, the friction between the metamaterials and the walls of the channel is captured by applying the following

force to the units on leftmost and rightmost columns

f
[i,j]
friction = −µN [i,j]

contactsign

(
d v[i,j]

d t

)
, for j = 1 and 6 (S38)

where µ is the friction coefficient between the metamaterials and the wall of the channel (in this study we use µ = 0.5).
It follows that the governing equation (Eq. (S5)) become

m[i, j]ü = N
[i,j]
contact +

4∑
p=1

F x [i, j]
p ,

m[i, j]v̈ = f
[i,j]
friction +

4∑
p=1

F y [i, j]
p ,

J [i, j]θ̈ =

4∑
p=1

M [i, j]
p .

(S39)

Eq. (S39) are solved numerically together with Eq. (S35) to simulate the robot.
c. Results To begin with, we select from the database shown in Fig. S15-a two metamaterials characterized by

ν =1 and -1 in the undeformed configuration (see yellow curves in Fig. S15-b). We then simulate the response of the
robot realized by connecting these two metamaterials when placed in channels of different width Wch. As shown in
Fig. S15c, we find that the efficiency of the robot largely varies with the width of the channel (see yellow markers).
Such variation is due to the fact that the width of the channel changes the level of lateral strain experienced by the
metamaterials and this ultimately alters the effective Poisson’s ratio of the metamaterials.

To overcome this limitation and realize a robot can efficiency move through channels of different width, we use
our neural accelerated evolution strategy to identify two architectures with constant Poisson’s ratio ν = ±1 for
−0.1 < ε < 0.1. As for the case of the stress-strain curve, we first train our neural network to to learn the relation
between the unit cell design and the evolution of ν as a function of the applied deformation. To this end, we represent
ν for the p-th unit cell in our database as 199-dimensional vector

[ν(ε = −0.1), · · · , ν(ε = 0) · · · , ν(ε = 0.1)]
>
, (S40)

which contains the Poisson’s ratio at 199 equally spaced strain points ranging from ε = −0.1 to ε = 0.1. Then, we use
the same neural network architecture introduced to learn the stress-strain curves and couple it with ES to identify
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FIG. S15. (a) Effective Poisson’s ratio vs strain curves predicted by the discrete model for 7500 different metamaterials realized
by tessellating different unit cells. Four representative ν − ε curves are highlighted. These include (i) large positive Poisson’s
ratio; (ii) negative Poisson’s ratio ; (iii) almost vanishing Poisson’s ratio; (iv) Poisson’s ratio that largely varies as a function
of the applied strains. (b) Yellow lines: ν − ε curves for the two metameterials selected from our database to realize the robot.
These two metamaterials are characterized by ν = 1 and -1 at ε = 0. Red dashed lines: Target responses. Purple lines: ν − ε
curves predicted by our discrete model for the optimized designs. (c) Evolution of the displacement recorded at the end of each
cycle, dstep (normalized by the actuator stroke da) as a function of Wch/(Nxa) for the initial design (yellow markers) and the
optimized design (magenta markers).

designs with the target effective Poisson’s ratio evolution. In Fig. S15b we show the two unit cells identified by our
numerical algorithm and their corresponding nonlinear Poisson’s ratios. We find that both of them closely match the
target and have Poisson’s ratio very close to ±1 over the range of considered deformation. Finally, we simulate the
robot realized connecting these two optimized metamaterials. As shown in Fig. S15c (magenta markers), our results
indicate that the efficiency of this robot is much less affected by the width of the channel.

B. Thermally responsive soft actuators

Finally, we exploit our neural accelerated evolution strategy to identify structures capable of target deformation
upon application of an external stimulus. To demonstrate this point, we consider a metamaterial comprising 8×2 unit
cells (i.e. Nx = 6 columns and Ny = 18 rows of quadrilateral units) and assume that each quadrilateral unit expands
uniformly under an increasing temperature (see Fig. S16a).

a. Numerical simulations To simulate such structures, we assume that the r
[i, j]
p (0) defined in Eq. (S12) vary as

r
[i, j]
p,th(0) = (1 + εth) r[i, j]p (0), (S41)

where εth ∈ [0, 0.2] define the thermal expansion of the rigid unit. Additionally, in order to trigger bending defor-
mations, we fix the center-to-center distance of the units in the leftmost column by introducing springs with stiffness
kwire = 10kl between the neighboring units on the left boundary. Such springs result in additional forces,

F
[i,1]
wire,x = kwire

(
u[i+1,1] − 2u[i,1] + u[i−1,1]

)
,

F
[i,1]
wire,y = kwire

(
v[i+1,1] − 2v[i,1] + v[i−1,1]

)
,

(S42)

which are added to the governing equations (Eq. (S5)). To simulate the response of the structures upon heating, we
then solve the governing equations for increasing values of εth (we monotonically increase εth from 0 to 0.2).
b. Data generation We simulate the response of the 7500 structures realized by tessellating the 7500 unit cells

considered in this study. From each simulation we then extract the average displacement in x-direction of the i-th
row of units for increasing values of εth

< ui >
εth=

1

Nx

Nx∑
j=1

u[i,j]|εth (S43)

where u[i,j]|εth indicates the numerically predicted displacements in x-direction of the [i, j]-th unit at εth.
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FIG. S16. Inverse design of structures capable of target deformations upon heating. (a) We consider a structure comprising
8×2 unit cells and assume that each quadrilateral unit expands uniformly under an increasing temperature. To trigger bending,
we fix the center-to-center distance of the units on the left boundary. (b) The distribution of < ui >

εth> (i = 1, 2, ..., 18) for
7500 different unit cell designs at εth= 0.1 (top) and 0.2 (bottom). The blue dashed lines represent the target curves at the
two different thermal strains. (c) Our numerical strategy identifies architectures capable of supporting the target deformation
modes described by Eq. (S45).

As for the case of the stress-strain curve, we then train our neural network to to learn the relation between the
unit cell design and the deformation of the structure (described by < ui >

εth - since the displacement in y-direction
is much smaller and, therefore, can be neglected) as a function of εth. To this end, we represent the deformation for
the p-th unit cell in our database as Ny-dimensional vector[

< u1 >
εth , < u2 >

εth , · · · , ..., < uNy
>εth

]>
(S44)

c. Inverse design Here, we train the NN and couple with an evolution strategy to identify an architecture whith
target deforamtion described by

< ui >
εth=0.1
target = −0.0062i2 + 0.0494i− 0.0432,

< ui >
εth=0.2
target = 0.0247i2 − 0.0474i+ 0.0247,

(S45)

where i = 1, .., 18.
As shown in Fig. S16c, we find that also in this case our strategy can identify architectures capable of supporting

the target deformation modes described by Eq. (S45).



S21

S9. ADDITIONAL RESULTS

FIG. S17. Effect of the 5000 randomly generated samples on the performance of evolution strategy (ES). For the ES used in our
study we select λ = 49 children, µ = 100 parents and ψ = 5000 randomly generated samples within each iteration (Algorithm
1: (49+100)+5000-ES). To test the effect of the additional ψ = 5000 random designs on the performance of the algorithm, we
compare its results with those obtained considering λ = 99, µ = 100 and ψ = 0 (Algorithm 2: (49+100)-ES). Note that both
algorithms require evaluation of 10000 design at each iteration. We find that Algorithm 1 yields better results than Algorithm 2
for all four considered targets cases with the minimum error equal to (i) 1.9%, (ii) 4.7%, (iii) 6.6%, and (iv) 4.5% for Algorithm
1 and (i) 3.7%, (ii) 5.7%, (iii) 8.7%, and (iv) 4.5% for Algorithm 2. Further, when we run both algorithms 50 times on case
(iii), we found that Algorithm 1 gives an average error of 5.4%, whereas Algorithm 2 leads to an average error of 5.9%. In each
plot we show the target response (red dashed line), top picks from dataset (black lines) and stress-strain curves predicted by
our trained NN (blue lines) and our discrete model (purple lines) for the optimized designs. The best optimal designs identified
by the discrete model are highlighted by thick purple lines.
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