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Dielectric elastomers undergo large deformations in response to an electric field and
consequently have attracted significant interest as electromechanical transducers. Appli-
cations of these materials include actuators capable of converting an applied electric field
into mechanical motion and energy harvesting devices that convert mechanical energy
into electrical energy. Numerically based design tools are needed to facilitate the
development and optimization of these devices. In this paper, we report on our modeling
capability for dielectric elastomers. We present the governing equations for the electro-
mechanically coupled behavior of dielectric elastomers in a thermodynamic framework
and discuss the attendant finite-element formulation and implementation, using a
commercial finite-element code. We then utilize our simulation capability to design and
optimize complex dielectric elastomeric actuators and energy harvesting devices in
various settings.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Dielectric elastomers, or soft dielectrics, are rubbery materials that undergo large elastic deformations in response to an
applied electric field (cf. e.g. Pelrine et al., 1998; Zhang et al., 1998; Plante and Dubowsky, 2006; Hossain et al., 2012;
Tagarielli et al., 2012). These materials were first reported by Pelrine and coworkers (Pelrine et al., 1998, 2000a,b; Kornbluh
et al., 2000) and have since then garnered interest as electromechanical transducers for a wide variety of applications (Carpi
et al., 2008), such as robotics, biomedical engineering and energy harvesting. Their capacity for large, reversible
deformations distinguishes dielectric elastomers from more conventional electromechanical transducers, such as piezo-
electrics. Soft dielectrics are also comparatively lighter, more compliant and less expensive, increasing their appeal.

At a microscopic level, dielectric elastomers are electrically insulating, polymeric materials made up of long-chain
molecules, possessing charge imbalances that align, or polarize, in the presence of an electric field. Since these materials can
achieve both large mechanical deformations and electrically polarize, they are capable of converting energy between
mechanical and electrical forms. In particular, actuators that convert an applied electric field into mechanical motion have
been used in robotics, including as artificial muscles for biomimetic robots and prosthetics (Bar-Cohen, 2001; Brochu and
Pei, 2010; Carpi et al., 2005; Carpi and Smela, 2009). In contrast, soft dielectric devices that convert mechanical energy into
electrical energy are referred to as energy harvesting devices (Kornbluh et al., 2011, 2012). In these applications, mechanical
energy from motion such as human walking or ocean waves is converted to electrical energy and stored. These technologies
All rights reserved.
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have been demonstrated in practice; however, the development of rigorous design tools that may be used for optimization
in varied applications remains a challenge.

A design capability for dielectric elastomers requires (i) a finite-deformation constitutive theory for the electromecha-
nically coupled response of these materials and (ii) a robust numerical implementation of the resulting field equations.
Work on electromechanically coupled constitutive theories goes back many decades (Toupin, 1956, 1963; Maugin, 1980,
1988; Eringen and Maugin, 1990; Maugin et al., 1992; Goulbourne et al., 2005; Dorfmann and Ogden, 2005; Bustamante
et al., 2009), and in recent years the mechanics community has come to a relative agreement regarding the formulation of a
theory in a thermodynamic framework (McMeeking and Landis, 2005; McMeeking et al., 2007; Suo et al., 2008; Zhao et al.,
2007; Zhao and Suo, 2008a). However, there remains a need for numerical tools capable of predicting the large-deformation,
three-dimensional, coupled response. Several approaches have been undertaken. First, simplified finite-element computa-
tional procedures have been proposed that make geometrical assumptions, reducing the electrical problem to one
dimension (Wissler and Mazza, 2005, 2007; Zhao and Suo, 2008b; Zhou et al., 2008). These techniques are useful for
basic actuator configurations; however, fully three-dimensional procedures are needed to guide the design of more complex
devices. Recently, finite-element implementations have been reported using in-house codes both in quasi-static (Vu and
Steinmann, 2007; Vu et al., 2007) and dynamic settings (Park et al., 2012); however, these codes are not available to the
community. Given the industrial and scientific community's growing interest in dielectric elastomers, implementation of the
theory within a widely available finite-element software is a crucial step toward facilitating interactions between industry
and researchers and guiding the design of complex three-dimensional devices. Unfortunately, this task is not straightfor-
ward within commercial finite-element packages, since additional nodal degrees of freedom are required. Few efforts in this
direction have been reported, namely using FEAP (Gao et al., 2011) and Comsol (Rudykh and deBotton, 2012). However,
since FEAP is a general-purpose finite-element program, designed for research and educational use, it is not available to the
industrial community. Moreover, although Comsol is amenable to the implementation of the coupled electromechanical
theory, its difficulty in dealing with large deformations is well-known, and as such, it is not well-suited for problems
involving dielectric elastomers.

To overcome these issues, the purpose of this paper is threefold: (i) to present a concise thermodynamic development of
the three-dimensional, fully coupled theory governing the behavior of dielectric elastomers, (ii) to implement the theory in
the commercial finite-element code Abaqus/Standard (2010), taking full advantage of the capability to actively interact with
the software through user-defined subroutines, and (iii) to utilize the code to provide new insights, through simulation, into
the design and optimization of complex actuators and energy harvesting devices in various settings. Abaqus is an attractive
platform because it is a well-known code, widely available, stable, portable, and particularly suitable for analyses involving
large deformations. The novelty of the present work is in its completeness, encompassing theoretical formulation, numerical
implementation, and application to design and optimization. We expect our simulations of actuators and energy harvesting
devices to aid in improving upon the designs of these structures. Further, our Abaqus user-defined subroutines and input
files may be found online as supplementary material to be used and expanded upon by the community in further research
on dielectric elastomers.

The paper is organized as follows. In Section 2, we lay out the continuum framework used to address the
electromechanical behavior, and in Section 3, we specify specific constitutive equations for a representative dielectric
elastomer. In Section 4, we review the resulting boundary-value problem and its finite-element implementation. Finally, in
Section 5, we verify our finite-element implementation and demonstrate its application by simulating the operation of
several complex actuators and energy harvesting devices made from dielectric elastomers.

2. Continuum framework

In this section, we summarize the equations governing the nonlinear, electrostatic deformation of soft dielectrics,
following the formulations previously introduced by McMeeking and Suo and their coworkers (McMeeking and Landis,
2005; McMeeking et al., 2007; Suo et al., 2008; Zhao et al., 2007; Zhao and Suo, 2008a).

Kinematics. We consider a homogeneous body BR identified with the region of space it occupies in a fixed reference
configuration, and denote by xR an arbitrary material point of BR. A motion of BR is then a smooth one-to-one mapping
x¼ χ ðxR; tÞ with deformation gradient given by1

F¼∇χ ; ð2:1Þ
such that J ¼ det F40: The right and left and polar decompositions of F are given by F¼ RU¼ VR, where R is a rotation
(proper orthogonal tensor), while U and V are symmetric, positive-definite stretch tensors. Also, the right and left Cauchy-
Green tensors are given by C¼U2 ¼ F⊤F and B¼V2 ¼ FF⊤, respectively.

Electric potential, electric field and Faraday's law. Central to the discussion of dielectric elastomeric materials is the electric
potential φðxR; tÞ. We define the referential electric field as

ER ¼def−∇φ; ð2:2Þ
1 The symbols ∇, Div and Curl denote the gradient, divergence and curl respectively with respect to the material point xR in the reference
configuration; grad, div and curl denote these operators with respect to the point x¼ χ ðxR ; tÞ in the deformed configuration.
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so that the referential electric field obeys

CurlER ¼ 0; ð2:3Þ
which is the electrostatic form of Faraday's Law.

Likewise, we may define the spatial electric field as

E¼def−grad φ; ð2:4Þ
and thus

curlE¼ 0: ð2:5Þ
We note that the referential and spatial electric fields are related by ER ¼ F⊤E.

Equilibrium. Throughout, we denote by PR an arbitrary subregion of the reference body BR, by nR the outward unit
normal on its boundary ∂PR and by TR the standard first Piola stress tensor. Neglecting inertial effects, the balance of forces
and moments in PR are expressed referentially as

DivTR þ bR ¼ 0; TRF⊤ ¼ FT⊤
R ; ð2:6Þ

respectively, where bR is an external body force per unit reference volume. Further, the external surface traction on an
element of the surface ∂PR is given by

tRðnRÞ ¼ ½½TR��nR ; ð2:7Þ
where ½½��� is the jump operator on the boundary ∂PR, defined as the difference between the quantity inside and outside the
domain, i.e. ½½TR�� ¼ Tin

R −T
out
R on ∂PR. As is standard, the Piola stress TR is related to the standard symmetric Cauchy stress T in

the deformed configuration by TR ¼ JTF−⊤. We note that what we call the Cauchy stress here is often referred to as the total
stress in the dielectric elastomer literature; however, we see no need to distinguish between a purely mechanical stress and
an electrostatic, or Maxwell, stress.

Gauss's law. We introduce the vector field DR, which denotes the electric displacement in the reference configuration.
Neglecting electrodynamic effects, Gauss's law may be expressed referentially as

DivDR ¼ qR; ð2:8Þ
where qR is the free charge density per unit reference volume. Further, the free charge density on an element of the surface
∂PR of PR is given by

ωRðnRÞ ¼−½½DR�� � nR ; ð2:9Þ
where ½½DR�� ¼Din

R −D
out
R on ∂PR. Finally, the referential electric displacement is related to the spatial electric displacement D

in the deformed body by DR ¼ JF−1D.
Free energy imbalance. We consider a purely electromechanical theory based on a free energy imbalance that represents

the first and second laws of thermodynamics under isothermal conditions. This imbalance requires that the temporal
increase in the Helmholtz free energy of any subregion be less than or equal to the power expended externally on that
subregion. Thus, letting ψR denote the Helmholtz free energy measured per unit volume in the reference space, the free
energy imbalance takes the form

_Z
PR

ψR dvR≤
Z
∂PR

½½TR��nR|fflfflfflffl{zfflfflfflffl}
tRðnRÞ

� _χ daR þ
Z
PR

bR � _χ dvR þ
Z
∂PR

φð−½½ _DR�� � nRÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
_ωRðnRÞ

daR þ
Z
PR

φ _qR dvR; ð2:10Þ

for each subregion PR. In the last two terms, we have adopted the standard notion of external electrical power also
employed by McMeeking and Suo and their coworkers (McMeeking and Landis, 2005; McMeeking et al., 2007; Suo et al.,
2008; Zhao and Suo, 2008a). Bringing the time derivative inside the integral and using the divergence theorem on the
integrals over ∂PR reduces (2.10) toZ

PR

_ψ R dvR≤
Z
PR

ðTR : _F þ ER � _DRÞ dvR þ
Z
PR

ðDivTR þ bRÞ � _χ dvR þ
Z
PR

φð−Div _DR þ _qRÞ dvR : ð2:11Þ

Using (2.6)1 and (2.8), and since the subregion PR is arbitrary, (2.11) yields the local free energy imbalance

_ψ R−TR : _F−ER � _DR≤0: ð2:12Þ
Next, we introduce the second Piola stress

S¼defF−1TR ¼ JF−1TF−⊤; ð2:13Þ
which is symmetric since T is symmetric. As is standard the stress power may be expressed in terms of the second Piola
stress as

TR : _F ¼ 1
2
S : _C: ð2:14Þ
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Use of (2.14) in (2.12) allows us to express the free energy imbalance in an alternate convenient form as

_ψ R−
1
2
S : _C−ER � _DR≤0: ð2:15Þ

Finally, we note that since ψR is a scalar field, S and C are referential tensor fields, and ER and DR are referential vector fields,
the free energy imbalance (2.15) is invariant under a change in frame.

3. Constitutive equations

Guided by the free energy imbalance (2.15), we assume that the free energy ψR, the second Piola stress S and the
referential electric field ER are given by the following set of constitutive equations:

ψR ¼ ψ̂ RðC;DRÞ; S¼ ŜðC;DRÞ and ER ¼ ÊRðC;DRÞ: ð3:1Þ
Noting from (3.1)1 that

_ψ R ¼
∂ψ̂ R

∂C
: _C þ ∂ψ̂ R

∂DR
� _DR; ð3:2Þ

and substituting (3.2) into (2.15), we find that

∂ψ̂ R

∂C
−
1
2
Ŝ

� �
: _C þ ∂ψ̂ R

∂DR
−ÊR

� �
� _DR≤0: ð3:3Þ

This inequality is required to hold for all values of C and DR. Therefore, we are led to the thermodynamic restrictions that the
free energy determines the second Piola stress S and the referential electric field ER through the “state relations”

S¼ 2
∂ψ̂ RðC;DRÞ

∂C
and ER ¼

∂ψ̂ RðC;DRÞ
∂DR

: ð3:4Þ

With a view towards applications, we now specialize the theory by imposing additional constitutive assumptions.
Henceforth, we confine our attention to isotropic and nearly incompressible materials.

Isotropic materials. In this case, the response function ψ̂ R must also be isotropic. Thus, ψ̂ RðC;DRÞ has the representation

ψ̂ RðC;DRÞ ¼ ψ
˘

RðI1; I2; I3; I4; I5; I6Þ; ð3:5Þ
where Ii (i¼ 1;2;…;6) are the six combined principal invariants of C and DR:

I1 ¼ trðCÞ; I2 ¼ trðC2Þ; I3 ¼ trðC3Þ;
I4 ¼ ðDR � DRÞ; I5 ¼ ðDR � CDRÞ; I6 ¼ ðDR � C2DRÞ: ð3:6Þ

Nearly incompressible materials. We begin by denoting the distortional part of F by

Fdis ¼def J−1=3F; det Fdis ¼ 1: ð3:7Þ
Correspondingly, let

Cdis ¼def ðFdisÞ⊤Fdis ¼ J−2=3C; ð3:8Þ
denote the distortional (or volume preserving) right Cauchy–Green tensor. Defining the invariants

I1 ¼ trðCdisÞ and I2 ¼ trðC2
disÞ; ð3:9Þ

we consider the free energy to be a function of following revised invariant list:

I ¼ ðI1; I2; J; I4; I5; I6Þ: ð3:10Þ
Further, we assume that the free energy ~ψ RðI Þ may be written in a separable form as

~ψ RðI Þ ¼ ~ψmech
R ðI1; I2; JÞ þ ~ψ elec

R ðI4; I5; I6; JÞ; ð3:11Þ
where ~ψmech

R is the change in the free energy due to mechanical deformation and ~ψ elec
R is the contribution to the change in

the free energy due to electrical polarization.
Mechanical free energy ~ψmech

R . In order to model the stress increase due to the stretching and locking of polymer chains at
large strains, for the mechanical free energy, we adopt the phenomenological form proposed by Gent (1996),

~ψmech
R ¼ −

1
2
GIm ln 1−

I1−3
Im

 !
þ 1
2
KðJ−1Þ2; ð3:12Þ

where G and K are the ground-state shear and bulk moduli, respectively, and Im represents the upper limit of ðI1−3Þ
associated with limited chain extensibility of polymeric molecules.
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Electrical free energy ~ψ elec
R . For the electrical free energy, we adopt the form associated with the “ideal dielectric

elastomer” (cf. Zhao et al., 2007)

~ψ elec
R ¼ 1

2ϵ
J−1I5 ¼

1
2ϵ

J−1DR � CDR ; ð3:13Þ

where ϵ is the constant dielectric permittivity.
Total free energy ~ψ R, stresses and electric field. Thus the total free energy is given by

~ψ R ¼ −
1
2
GIm ln 1−

I1−3
Im

 !
þ 1
2
KðJ−1Þ2 þ 1

2ϵ
J−1DR � CDR : ð3:14Þ

Straightforward calculations give the second Piola stress as

S¼ 2
∂ ~ψ R

∂C
¼ J−2=3G 1−

I1−3
Im

 !−1

1−
1
3

tr Cdisð ÞC−1
dis

� �
þ KJðJ−1ÞC−1 þ 1

ϵ
J−1 DR⊗DR−

1
2

DR � CDRð ÞC−1
� �

: ð3:15Þ

Further, the first Piola stress is given by

TR ¼ FS¼ J−2=3G 1−
I1−3
Im

 !−1

F−
1
3
ðtr CÞF−⊤

� �
þ KJðJ−1ÞF−⊤ þ 1

ϵ
D⊗DR−

1
2
J D � Dð ÞF−⊤

� �
; ð3:16Þ

and the Cauchy stress is given by

T¼ J−1FSF⊤ ¼ J−1G 1−
I1−3
Im

 !−1

ðBdisÞ0 þ KðJ−1Þ1þ 1
ϵ

D⊗D−
1
2

D � Dð Þ1
� �

: ð3:17Þ

Furthermore, the referential electric field is given by

ER ¼
∂ ~ψ R

∂DR
¼ 1

ϵ
J−1CDR ; ð3:18Þ

and the spatial electric field is given by

E¼ F−⊤ER ¼
1
ϵ
D: ð3:19Þ

In practice, it is typically more convenient to work with the stress and electric displacement in terms of the deformation
and electric field. Inverting the relations (3.15) through (3.19), we have

S¼ J−2=3G 1−
I1−3
Im

 !−1

1−
1
3

tr Cdisð ÞC−1
dis

� �
þ KJðJ−1ÞC−1 þ ϵJ C−1ER⊗C−1ER−

1
2

ER � C−1ER

� �
C−1

� �
;

TR ¼ J−2=3G 1−
I1−3
Im

 !−1

F−
1
3
ðtrCÞF−⊤

� �
þ KJðJ−1ÞF−⊤ þ ϵJ E⊗C−1ER−

1
2

E � Eð ÞF−⊤
� �

; ð3:20Þ

T¼ J−1G 1−
I1−3
Im

 !−1

ðBdisÞ0 þ KðJ−1Þ1þ ϵ E⊗E−
1
2

E � Eð Þ1
� �

;

for the second and first Piola and Cauchy stresses, respectively, and

DR ¼ ϵJC−1ER ;

D¼ ϵE; ð3:21Þ
for the referential and spatial electric displacements.

4. Numerical solution procedure

In this section, we describe our numerical solution procedure using finite elements in Abaqus/Standard (2010). We begin
by summarizing the governing partial differential equations and boundary conditions in both the strong and weak forms.

Governing partial differential equations and boundary conditions. In our simulations, we neglect body forces and
volumetric free charge. Under this assumption, the governing partial differential equations consist of the balance of
momentum for the first Piola stress,

DivTR ¼ 0 in BR ; ð4:1Þ
with TR given by (3.20)2, and Gauss's law for the electric displacement,

DivDR ¼ 0 in BR ; ð4:2Þ
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with DR given by (3.21)1. To specify boundary conditions, we introduce the complementary subsurfaces Sχ and StR
(Sχ∪StR ¼ ∂BR, Sχ∩StR ¼∅), where displacements and surface tractions are prescribed, respectively. Thus, the mechanical
boundary conditions on ∂BR are given by

χ ¼ χ
˘ on Sχ and TRnR ¼ t

˘

R on StR ; ð4:3Þ
where χ

˘ and t
˘

R are prescribed. Similarly, we introduce another set of subsurfaces SφR
and SωR (SφR

∪SωR ¼ ∂BR, SφR
∩SωR ¼∅),

on which the electric potential and surface charge density are prescribed, respectively. The electrical boundary conditions on
∂BR are then given by

φ¼ φ
˘ on SφR

and −DR � nR ¼ ω
˘ on SωR ; ð4:4Þ

where φ
˘ and ω

˘ are prescribed.
In writing the boundary conditions (4.3)2 and (4.4)2, we have neglected the stress and electric displacement in the region

of space surrounding the body BR, thereby reducing the boundary conditions with jump conditions, (2.7) and (2.9), to those
above. This assumption is made on pragmatic grounds as it greatly simplifies the problem, eliminating the need to account
for the surrounding space. However, in the general electromechanical problem, the stress and electric displacement are
nonzero in the surroundings. For example, for the well-known case of a surrounding space comprised of a vacuum, the
Cauchy stress and electric displacement are given by

T¼ ϵ0½E⊗E−
1
2
ðE � EÞ1� and D¼ ϵ0E; ð4:5Þ

respectively, where ϵ0 is the permittivity of free space. Neglecting this contribution can lead to significant errors for general
boundary-value problems. However, in practical applications, most electromechanical transducers made from soft
dielectrics consist of a thin layer sandwiched between two flexible electrodes. In this case, the effect of the surroundings
is only felt at the edges of the electrodes, which we refer to as fringe effects. In Appendix A, we examine these fringe effects
when the surrounding space is taken into account and provide an estimate of the error introduced by neglecting the effect
of the surroundings. Our analysis clearly demonstrates that for this commonly used configuration only a very small error is
introduced by neglecting the effect of the surroundings.

The coupled set of Eqs. (4.1) and (4.2), together with (4.3) and (4.4), represents the strong form of a boundary-value
problem for the motion χ ðxR ; tÞ and the electric potential φðxR; tÞ. Then with w1 and w2 denoting two weighting (or test)
fields, the corresponding weak forms areZ

BR

TR :
∂w1

∂X

� �
dvR ¼

Z
StR

ðw1 � t
˘

RÞ daR;
Z
BR

DR � ∂w2

∂X

� �
dvR þ

Z
SωR

ðw2ω
˘
RÞ daR ¼ 0: ð4:6Þ

Finite-element discretization, element-level residuals and tangents. The body is approximated using finite elements,
BR ¼ ∪Be

R. The nodal solution variables are taken to be the displacement and the electric potential, which are interpolated
inside each element by

u¼∑uANA and φ¼∑φANA; ð4:7Þ
with the index A¼ 1;2;… denoting the nodes of the element, uA and φA nodal displacements and electric potentials, and NA

the shape functions. We employ a standard Galerkin approach, in that the weighting fields are interpolated by the same
shape functions,

w1 ¼∑wA
1N

A and w2 ¼∑wA
2N

A: ð4:8Þ
Using (4.7) and (4.8) in (4.6) yields the following element-level system of equations:Z

Be
R

TR
∂NA

∂X

 !
dvR ¼

Z
Se
tR

NAt
˘

R

� �
daR ;

Z
Be
R

DR � ∂N
A

∂X

 !
dvR þ

Z
Se
ωR

NAω
˘
R

� �
daR ¼ 0: ð4:9Þ

This system of coupled equations is solved iteratively using a Newton procedure by defining the following element-level
residuals for the displacement and electric potential:

ðRuÞA ¼ −
Z
Be
R

TR
∂NA

∂X

 !
dvR þ

Z
Se
tR

ðNAt
˘

RÞ daR ;

ðRφÞA ¼
Z
Be
R

DR � ∂N
A

∂X

 !
dvR þ

Z
Se
ωR

ðNAω
˘
RÞ daR ; ð4:10Þ
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and using the corresponding tangents

ðKuuÞAB ¼−
∂ðRuÞA
∂uB ; ðKuφÞAB ¼ −

∂ðRuÞA
∂φB ;

ðKφuÞAB ¼−
∂ðRφÞA
∂uB ; ðKφφÞAB ¼ −

∂ðRφÞA
∂φB : ð4:11Þ

Switching to index notation for ease of presentation, we have

KAB
uiuk

¼−
∂RA

ui

∂uB
k

; KAB
uiφ

¼−
∂RA

ui

∂φB ;

KAB
φuk

¼−
∂RA

φ

∂uB
k

; KAB
φφ ¼−

∂RA
φ

∂φB : ð4:12Þ

Evaluating for a case in which the surface traction and surface charge density are fixed, we have

KAB
uiuk

¼
Z
Be
R

∂NA

∂Xj

∂TR;ij

∂Fkl
∂NB

∂Xl
dvR ;

KAB
uiφ

¼
Z
Be
R

∂NA

∂Xj

∂TR;ij

∂ER;l
∂NB

∂Xl
dvR ; ð4:13Þ

KAB
φuk

¼−
Z
Be
R

∂NA

∂Xj

∂DR;j

∂Fkl
∂NB

∂Xl
dvR ;

KAB
φφ ¼−

Z
Be
R

∂NA

∂Xj

∂DR;j

∂ER;l
∂NB

∂Xl
dvR :

For completeness, we include the non-standard material tangents below:

∂Telec
R;ij

∂Fkl
¼ Jϵ −F−1li C−1

jm ER;mEk−EiF
−1
jk C−1
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1
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¼ JϵðF−1li C−1

jmER;m þ EiC
−1
jl −F−1ji C−1

lm ER;mÞ; ð4:14Þ

∂DR;j

∂Fkl
¼−JϵðF−1jk C−1

lm ER;m þ EkC
−1
jl −C−1

jmER;mF
−1
lk Þ;

∂DR;j

∂ER;l
¼ JϵC−1

jl ;

where Telec
R ¼ 2Fð∂ ~ψ elec

R =∂CÞ.
Finite-element formulation in the spatial configuration. Here we summarize the corresponding finite-element numerical

procedure formulated in the spatial configuration rather than in the reference configuration as in the previous section. In
the absence of body forces and volumetric free charge density, the governing partial differential equations, expressed in the
deformed body Bt , consist of the balance of momentum,

divT¼ 0 in Bt ; ð4:15Þ
with T given by (3.20)3, and Gauss's law,

divD¼ 0 in Bt ; ð4:16Þ
with D given by (3.21)2. The mechanical boundary conditions on ∂Bt are given by

u¼ u
˘

on Su and Tn¼ t
˘

on St; ð4:17Þ
where u

˘
and t

˘

are the prescribed displacements and spatial surface tractions, respectively, Su and St are complementary
subsurfaces of ∂Bt and n is the outward unit normal on ∂Bt . The electrical boundary conditions on ∂Bt are then given by

φ¼ φ
˘ on Sφ and −D � n¼ω

˘ on Sω; ð4:18Þ
where φ

˘ and ω
˘ are the prescribed electric potentials and spatial surface charge density, respectively, and Sφ and Sω are

another set of complementary subsurfaces of ∂Bt . The coupled set of equations (4.15) and (4.16), along with the boundary
conditions (4.17) and (4.18), represents the strong form of the spatial boundary-value problem for the displacements and the



D.L. Henann et al. / J. Mech. Phys. Solids 61 (2013) 2047–20662054
electric potential. Then with w1 and w2 denoting two weighting fields, the corresponding weak forms areZ
Bt

T :
∂w1

∂x

� �
dv¼

Z
St

ðw1 � t
˘ Þ da;Z

Bt

D � ∂w2

∂x

� �
dvþ

Z
Sω

ðw2ω
˘ Þ da¼ 0: ð4:19Þ

Using the standard Galerkin approach with shape functions NA as in the previous section, we arrive at the following
element-level residuals for the displacement and electric potential:

ðRuÞA ¼ −
Z
Be
t

T
∂NA

∂x

 !
dvþ

Z
Se
t

ðNAt
˘ Þ da;

ðRφÞA ¼
Z
Be
t

D � ∂N
A

∂x

 !
dvþ

Z
Se
ω

ðNAω
˘ Þ da: ð4:20Þ

Evaluating the corresponding tangents in the absence of surface tractions and surface charge density, we have
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Finally, the non-standard spatial tangents are
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2
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∂TR;im
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J−1FjmFln
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∂Fkn
¼−ϵðδjkEl þ Ekδjl−EjδklÞ;

J−1FjmFln
∂DR;m

∂ER;n
¼ ϵδjl: ð4:22Þ

The finite-element procedures have been implemented in Abaqus/Standard (2010) using a user-element subroutine
(UEL) and employing the spatial finite-element formulation. During an analysis, the user subroutine UEL is called for each
iteration in a given increment. The initial nodal coordinates as well as the current guesses of the nodal displacements and
electric potentials are passed into the subroutine, and the nodal residuals (4.20) and consistent tangents (4.21) are required
as outputs. We have developed four-noded isoparametric quadrilateral plane-strain and axisymmetric user-elements, as
well as an eight-noded continuum brick user-element. In order to avoid issues related to volumetric-locking, we utilize the
F-bar method of de Souza Neto et al. (1996) for fully integrated elements.2 We have made our Abaqus user-element
subroutines available online as supplementary material.

5. Numerical simulations

In this section, we demonstrate our numerical simulation capability in a variety of settings (three-dimensional, plane-
strain and axisymmetric) and in several interesting applications. We begin by verifying the numerical implementation of
each of our elements by comparing analytical expressions against single-element simulations. Then, we consider the
following list of applications:
�
 a torsional actuator,

�
 a bending actuator,

�
 a barrel-type energy harvesting device and

�
 a diaphragm-type energy harvesting device.
2 For a similar usage of the Abaqus UEL capability, see Chester and Anand (2011).



Fig. 1. (a) An undeformed cube with side length l0. (b) Homogeneous, one-dimensional actuation with λ1 ¼ λ2 ¼ λ. For the incompressible case, λ3 ¼ 1=λ2.
(c) Homogeneous, one-dimensional, plane-strain actuation with λ1 ¼ 1 and λ2 ¼ λ. For the incompressible case, λ3 ¼ 1=λ.
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5.1. Single-element verification

First, in order to verify our finite-element implementation, we demonstrate that single-element simulations of
homogeneous, one-dimensional actuation replicate analytical results.

The first case we consider is that of axisymmetric, one-dimensional actuation. This will allow us to verify our eight-noded
brick element as well as our four-noded axisymmetric element. Consider a block in the shape of a cube with side length l0 as
pictured in Fig. 1(a).3 The mechanical deformation is constrained so that the principal stretches are aligned along each edge
of the cube and so that λ1 ¼ λ2 ¼ λ, as pictured in Fig. 1(b). The electric potential is held at zero on face ABCD, and an electric
potential of φ is applied to face EFGH. All faces are traction-free, so that all components of the stress are zero.

This case was simulated both with a single eight-noded brick element and a single four-noded axisymmetric element.
We nondimensionalize our simulation results by the shear modulus G and the permittivity ϵ, and to model nearly
incompressible behavior, we take K=G¼ 1000. It is well known that, under these loading conditions, a snap-through-type,
electromechanical instability typically occurs along the direction of the applied electric field (in this case, the three
direction). It may be shown that this instability is suppressed in a Gent material for Im≲7:308. As such, we consider Im ¼ 1, 2,
3, 4, 5, 6 and 7. For comparison, we consider the analytical solution for this case of one-dimensional actuation under ideally
incompressible conditions, derived in Section B.1 (cf. (B.4)),

φ

l0

ffiffiffiffi
ϵ

G

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2λ2 þ ð1=λ4Þ−3
Im

 !−1
1
λ2

1−
1
λ6

� �vuut ; ð5:1Þ
3 A soft dielectric actuator in the shape of a cube would be subject to significant fringe effects, cf. Appendix A, and require an accounting of the
surroundings to accurately model its actuation. However, the intent of our single-element verification is to compare simulation results to homogeneous,
analytical solutions, and as such, we neglect the surroundings. One may think of the block of material as being extracted from a much larger specimen far
from any boundaries so that the deformation and electric field are homogeneous.
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Fig. 2. Normalized electric potential versus lateral stretch for (a) three-dimensional, (b) axisymmetric, and (c) plane-strain elements and different values of Im.
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where λ is the lateral stretch, defined in the preceding paragraph. In Fig. 2(a) and (b), we plot the simulated actuation
response (lateral stretch λ versus normalized electric field ðφ=l0Þ

ffiffiffiffiffiffiffiffi
ϵ=G

p
) versus (5.1) for the eight-noded brick element and

the four-noded axisymmetric element, respectively, verifying that these elements accurately reproduce the response of a
Gent material.

Finally, we consider plane-strain, one-dimensional actuation in order to verify our four-noded plane-strain element.
Beginning with the same cube of material in Fig. 1(a), we consider the plane-strain deformation shown in Fig. 1(c).
The mechanical and electrical boundary conditions are applied in the same manner as the previous case but with the
constraint λ1 ¼ 1. As before, we denote the lateral stretch λ2 ¼ λ. No electromechanical instability occurs in plane-strain, but
for the sake of consistency, we again take Im ¼ 1, 2, 3, 4, 5, 6 and 7. The analytical solution for plane-strain, one-dimensional
actuation under ideally incompressible conditions is derived in Section B.2 (cf. (B.8)),
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� �vuut : ð5:2Þ

In Fig. 2(c), we plot the simulated actuation response for the four-noded plane-strain element against (5.2), verifying the
element.

With verified elements in hand, we turn to consider several applications. Throughout, we continue to take K=G¼ 1000 to
model nearly incompressible behavior, and we leave G and ϵ unspecified and normalize our simulation results by these
parameters. It is not our interest here to consider the electromechanical, snap-through instability, and as such, we take
Im ¼ 7. We acknowledge that this value is rather low compared to real dielectric elastomeric materials.

5.2. Torsional actuator

As a demonstration of our simulation capability in a three-dimensional setting that cannot be analytically addressed, we
consider an actuator designed to produce twisting motion. To this end, we consider a thin strip of dielectric elastomer of
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thickness t0 and width w0 in a helicoid shape consisting of one full twist over a length of L0.4 Fig. 3(a) shows the undeformed
finite-element configuration, consisting of 4720 eight-noded continuum brick elements with two elements through the
thickness, for L0=w0 ¼ 5 and w0=t0 ¼ 10. We also considered cases of L0=w0 ¼ 3, 4 and 6 and w0=t0 ¼ 10, consisting of 3440,
4040 and 5400 elements, respectively.

For mechanical boundary conditions, the face EFGH is constrained to remain planar and not rotate; however, the face is
allowed to change width and thickness. Likewise, the face ABCD is constrained to remain planar and allowed to change
width and thickness, but it is also allowed to rotate about the three-axis. The electric potential degrees of freedom on the
face CDHG are held at zero, while an electric potential of φ is applied to face ABFE, as shown in Fig. 3(b). The final maximum
value of the dimensionless normalized electric potential ðφ=t0Þ

ffiffiffiffiffiffiffiffi
ϵ=G

p
is 0.5.

The deformed configuration for L0=w0 ¼ 5 is shown in Fig. 3(b). In response to the applied electric potential, the helicoid
strip reduces in thickness, while increasing in length and width. As a result the front face rotates by an angle denoted by θ.
Fig. 3(c) shows the actuation response θ in radians as a function of the normalized electric potential ðφ=t0Þ

ffiffiffiffiffiffiffiffi
ϵ=G

p
for the four

values of L0=w0, demonstrating a nonlinear, monotonic response. The nonlinear nature of the actuation response in all cases
is due to the quadratic dependence of the stress on the electric field, cf. (3.20). Further, we note that for smaller values of
L0=w0, i.e. more tightly wound helicoids, more twist is attained at the same applied electric potential. Thus, we have used
our three-dimensional simulation capability to address a torsional actuator.
5.3. Bending actuator

Next, we consider a plane-strain actuator capable of producing bending motion in response to an applied electric
potential. Specifically, we consider a bilayer, consisting of two layers of thickness t0 and length L0, as shown in Fig. 4(a). With
reference to this figure, layer FCDE is dielectric elastomer, and layer ABCF is an elastomeric substrate, which we take to be a
Gent material with shear modulus Gsub and Im ¼ 7. The finite-element mesh, shown in Fig. 4(a), consists of 1000 four-noded
quadrilateral plane-strain elements. We set L0=t0 ¼ 20 and take Gsub=G¼ 1.

On side AFE, we set the horizontal displacement to be zero, u1 ¼ 0, and pin the node F. The nodes along the side BCD are
constrained to remain linear but may reduce in thickness so that the resulting deformation is pure bending. The electric
potential along side FC is held at zero, while an electric potential of φ is applied to side ED, as shown in Fig. 4(b). The final
maximum value of the normalized electric potential ðφ=t0Þ

ffiffiffiffiffiffiffiffi
ϵ=G

p
is again 0.5.

The deformed configuration is shown in Fig. 4(b). The applied electric potential causes the top layer to reduce thickness
and expand length, while the bottom layer resists the increase in length. The result is that the bilayer takes on a curvature κ,
or equivalently goes through an angle of bending L0κ. Fig. 4(c) shows the bending angle L0κ in radians as a function of the
normalized electric potential, and again a nonlinear, monotonic response is observed.

Finally, we examine the effect of the ratio of the shear modulus of the substrate Gsub to that of the dielectric elastomer G.
Fig. 4(d) shows the bending angle L0κ as a function of the ratio Gsub=G for several values of the normalized electric potential,
ðφ=t0Þ

ffiffiffiffiffiffiffiffi
ϵ=G

p
¼ 0:3, 0.4 and 0.5. It is evident that the actuation response is maximized for Gsub=G≈1. When the substrate is

significantly stiffer than the dielectric elastomer, Gsub=Gc1, the actuation of the dielectric elastomer cannot significantly move
the substrate. For the case of a compliant substrate, Gsub=G{1, the actuation of the dielectric elastomer causes the substrate to
reduce thickness and increase length rather than bend. Thus, when Gsub and G are approximately equal maximal actuation may
be attained. This exercise demonstrates the use of our plane-strain simulation capability to design a bending actuator.
5.4. Barrel-type energy harvesting device

To this point, we have considered actuators, i.e. devices that convert electrical work into mechanical motion. Next, we
turn our attention to energy harvesting devices. Energy harvesting devices are designed to convert mechanical work into
electrical energy, while undergoing a repeated cycle. Here, we consider an energy harvesting device in a barrel shape.
Energy harvesting devices of this type have been used to harvest energy from wave motion to power buoys (Kornbluh et al.,
2011). We consider a barrel shape with inner radius R0, thickness t0 and length L0 and take R0=t0 ¼ 20 and L0=t0 ¼ 40.
Employing an axisymmetric simplification, the initial finite-element mesh is shown in Fig. 5(a), consisting of 1000 four-
noded quadrilateral axisymmetric elements with five elements through the thickness.

Throughout the cycle, the nodes along side AB are constrained to u2 ¼ 0 and node A is pinned. The nodes along side CD
are constrained to have the same displacement in the two-direction, while u1 ¼ 0 is set for node D. The mechanical part of
the cycle is conducted in force-control with a force F applied in the two-direction on the side CD. The side AD is set to
ground with an electric potential of zero, and side BC is constrained such that all nodes along that side have the same
electric potential. The electrical part of the cycle is conducted in charge-control with a total charge −Q applied to the side
BC. The control parameters F and Q are then prescribed to complete a cycle. The dependent variables throughout the cycle
are the displacement of the face CD in the two-direction δ and the electric potential on face BC φ.

The cycle is prescribed as follows:
4 For a similar type of actuator, see Carpi et al. (2005).
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State 1:
 A prestretch is imparted by applying a force F low to the face CD, and no charge is applied to face BC so that the
electric potential difference through thickness is zero, cf. Fig. 5(b).
State 2:
 The force is ramped to its maximum value Fhigh while the circuit remains open so that the charge stays fixed at zero,
cf. Fig. 5(c).
State 3:
 The force is fixed at Fhigh while a charge of Qhigh is applied. As a result the barrel reduces in thickness, and the
displacement of the face CD δ increases, cf. Fig. 5(d).
State 4:
 The force is reduced to F low while the circuit is left open so that the charge Qhigh remains fixed. Reducing the force
causes δ to decrease and the thickness of the barrel to increase, thereby moving the charge farther apart. Moving
the charge apart increases the electric potential difference across the thickness φ, cf. Fig. 5(e).
State 1:
 To complete the cycle, the charge is removed so that the electric potential difference through thickness returns to
zero, while the force is fixed at F low, cf. Fig. 5(b).



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

10−1 100 101
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. Schematic of the (a) undeformed and (b) deformed configurations for a plane-strain bending actuator. (c) Bend angle in radians versus normalized
electric potential for Gsub=G¼ 1. (d) Bend angle versus the shear modulus ratio Gsub=G for three values of the normalized electric potential.

D.L. Henann et al. / J. Mech. Phys. Solids 61 (2013) 2047–2066 2059
In summary, the steps 1–2 and 3–4 represent mechanical loading without charge and unloading under charge, respectively.
Steps 2–3 and 4–1 represent charging and uncharging under fixed load, respectively.

To analyze this cycle, we employ two sets of dimensionless work conjugate variables: a mechanical set, consisting of a
normalized force F=ð2πR0t0GÞ and a normalized displacement δ=L0, and an electrical set, consisting of a normalized electric
potential ðφ=t0Þ

ffiffiffiffiffiffiffiffi
ϵ=G

p
and a normalized charge Q=ð2πR0L0

ffiffiffiffiffiffi
Gϵ

p
Þ. We take Fhigh=ð2πR0t0GÞ ¼ 2:05, F low=Fhigh ¼ 0:5, and

Qhigh=ð2πR0L0
ffiffiffiffiffiffi
Gϵ

p
Þ¼ 0:8492. The mechanical and electrical variables are plotted against each other in Fig. 5(f) and (g),

respectively. The four states are labeled on each diagram. The force-displacement cycle is traversed in a clockwise manner,
indicating that mechanical work is expended over the cycle. Conversely, the electric potential-charge diagram is traversed
counterclockwise, indicating that electrical energy is harvested. Of importance is the step 3–4, which involves mechanical
unloading at fixed charge. It is this step that raises the electric potential and allows electrical energy to be harvested.
We may determine the amount of energy transformed from mechanical work to electrical energy per cycle, denoted by W,
by considering the area enclosed by each loop. Since we have considered an “ideal” dielectric elastomer, which exhibits no
dissipation through viscoelastic behavior or dielectric relaxation, all of the mechanical work is transformed into electrical
energy (i.e. the system has an efficiency of unity) and hence the areas enclosed by both loops are equal. From Fig. 5(f) and
(g), we determine the amount of energy transformed to be W ¼ 0:0618ð2πR0L0t0GÞ.
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The effect of process loading parameters F low, Fhigh, and Qhigh on the transformed energy per cycle W may be examined
with our simulation capability. Fig. 6 summarizes the results of a parametric study. The normalized energy transformed per
cycle W=ð2πR0L0t0GÞ is plotted as a function of the maximum force Fhigh=ð2πR0t0GÞ for maximum charge Qhigh=

ð2πR0L0
ffiffiffiffiffiffi
Gϵ

p
Þ¼ 0:6;0:8;1:0 and force ratios (a) F low=Fhigh ¼ 0:25 and (b) F low=Fhigh ¼ 0:5. Each marker represents the result

of an individual simulation and the lines are introduced to guide the eye. We observe that higher amounts of energy are
transformed for higher maximum charge and lower force ratios. (Note the different vertical axis scale bars in Fig. 6(a) and
(b)). We also observe that the transformed energy first increases then decreases with increasing maximum force, regardless
of the maximum charge or force ratio. The decrease in energy transformed for higher values of Fhigh is due to the onset of
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limited chain extensibility effects (or chain-locking), governed by the material parameter Im in the Gent model used here.
That is to say, prior to chain-locking, increasing Fhigh leads to an increase in W, but increasing Fhigh during chain-locking
causes a decrease in W. The value of Fhigh corresponding to maximum transformed energy will therefore depend upon Im in
addition to the observed dependence on force ratio and relative insensitivity to Qhigh. Thus, this example clearly shows that
our simulation capability may be used to effectively guide the design and optimization of these devices. As a final comment,
we note that, by including material dissipation arising due to viscoelasticity and dielectric relaxation, the efficiency of
energy transformation may be investigated.
5.5. Diaphragm-type energy harvesting device

Finally, we consider a second energy harvesting device in the shape of a thin disk with radius R0 and thickness t0 that acts
as a diaphragm, against which a pressure may be imposed. Energy harvesting devices of this type have been placed in the
heels of boots to harvest energy from walking motion to power portable electronic devices (Kornbluh et al., 2011). We take
R0=t0 ¼ 20 and again make an axisymmetric simplification. The initial finite-element mesh is shown in Fig. 7(a), consisting
of 500 four-noded quadrilateral axisymmetric elements with five elements through the thickness.

The nodes along side AB are set to have u1 ¼ 0, and the nodes along side CD are set to u1 ¼ u2 ¼ 0. The mechanical part of
the cycle is conducted in pressure control with a live pressure load P applied to side AC. The side AC is also set to ground
with an electric potential of zero, and side BD is constrained such that all nodes along that side have the same electric
potential. The electrical part of the cycle is again conducted in charge-control with a total charge −Q applied to the side BD.
The control parameters P and Q are then prescribed to complete a cycle. The dependent variables throughout the cycle are
the volume displaced by the motion of the diaphragm V and the electric potential on face BD φ.

The cycle is prescribed as follows:
State 1:
 A prestretch is imparted by applying a pressure Plow to the face AC, and no charge is applied to face BD so that the
electric potential difference through thickness is zero, cf. Fig. 7(b).
State 2:
 The pressure is ramped to its maximum value Phigh while the circuit remains open so that the charge stays fixed at
zero, cf. Fig. 7(c).
State 3:
 The pressure is fixed at Phigh while a charge of Qhigh is applied. As a result the diaphragm reduces in thickness, and
the volume displaced by the diaphragm V increases, cf. Fig. 7(d).
State 4:
 The pressure is reduced to Plow while the circuit is left open so that the charge Qhigh remains fixed. Reducing the
pressure causes V to decrease and the thickness of the diaphragm to increase, thereby moving the charge farther
apart. Moving the charge apart increases the electric potential difference across the thickness φ, cf. Fig. 7(e).
State 1:
 To complete the cycle, the charge is removed so that the electric potential difference through thickness returns to
zero, while the pressure is fixed at Plow, cf. Fig. 7(b).
In summary, the steps 1–2 and 3–4 represent mechanical loading without charge and unloading under charge, respectively.
Steps 2–3 and 4–1 represent charging and uncharging under fixed load, respectively.

To analyze this cycle, we employ two sets of dimensionless work conjugate variables: a mechanical set, consisting of a
normalized pressure P=G and a normalized volume V=ðπR2

0t0Þ, and an electrical set, consisting of a normalized electric
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Fig. 7. (a) Initial axisymmetric finite-element mesh for a diaphragm-type energy harvesting device. (b)–(e) The deformed configuration for the four states
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potential ðφ=t0Þ
ffiffiffiffiffiffiffiffi
ϵ=G

p
and a normalized charge Q=ðπR2

0

ffiffiffiffiffiffi
Gϵ

p
Þ. We take Phigh=G¼ 0:04, Plow=Phigh ¼ 0:25, and Qhigh=ðπR2

0

ffiffiffiffiffiffi
Gϵ

p
Þ¼

0:7712. The mechanical and electrical variables are plotted against each other in Fig. 7(f) and (g), respectively. The four states
are labeled on each diagram. The pressure–volume cycle is traversed in a clockwise manner, indicating that mechanical
work is expended over the cycle. Conversely, the electric potential–charge diagram is traversed counterclockwise, indicating
that electrical energy is harvested. Of importance again is the step 3–4, which involves mechanical unloading at fixed
charge. It is this step that raises the electric potential and allows electrical energy to be harvested. From Fig. 7(f) and (g), we
determine the amount of energy transformed to be W ¼ 0:0530GðπR2

0t0Þ:
Finally, the effect of the process loading parameters Plow, Phigh, and Qhigh on the transformed energy per cycle is

summarized in Fig. 8. The normalized energy transformed per cycle W=ðπR2
0t0GÞ is plotted as a function of the maximum

pressure Phigh=G for maximum charge Qhigh=ðπR2
0

ffiffiffiffiffiffi
Gϵ

p
Þ¼ 0:5;0:75;1:0 and pressure ratios (a) Plow=Phigh ¼ 0:25 and (b)
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Þ for pressure

ratios (a) Plow=Phigh ¼ 0:25 and (b) Plow=Phigh ¼ 0:5 for the diaphragm-type energy harvesting device.
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Plow=Phigh ¼ 0:5. Again, we observe that higher amounts of energy are transformed for higher maximum charge and lower
pressure ratios. (Note the different vertical axis scale bars in Fig. 8(a) and (b)). In this case for the maximum pressure range
considered, the transformed energy increases monotonically with increasing Phigh. A optimal maximum pressure, arising
due to chain-locking, analogous to that observed in the barrel-type device, is possible, but greater values of Phigh were not
considered due to mesh distortion.

6. Concluding remarks

In this work, we have formulated a constitutive theory for dielectric elastomers from a thermodynamic viewpoint and have
proposed a robust finite-element formulation for the resulting field equations. We have implemented a family of finite elements,
including an eight-noded continuum brick, a four-noded axisymmetric element and a four-noded plane-strain element, in the
commercial finite-element program Abaqus/Standard by writing user-element subroutines (UELs), and the elements have been
verified against analytical results for one-dimensional actuation. We have demonstrated our finite-element capability in each
setting: a three-dimensional torsional actuator, a plane-strain bilayer bending actuator and two axisymmetric energy harvesting
devices, and shown that we can address design challenges that would be impossible analytically. The user-element subroutines as
well as representative Abaqus input files for each application are available online as supplementary material.

This work opens the door for further simulation-based study of complex dielectric elastomeric structures and serves as
platform for studying dielectric-elastomer-based composites (Zhang et al., 2002; deBotton et al., 2007; Bertoldi and Gei,
2011; Ponte Castañeda and Siboni, 2012), dissipative effects (Zhao et al., 2011), and instabilities such as wrinkling and
creasing of thin, constrained layers (Huang, 2005; Dorfmann and Ogden, 2010; Wang et al., 2011a,b). In particular, interest
has grown in structured dielectric elastomers with properties that may be tuned by the application of an electric field (Gei
et al., 2011; Shmuel and deBotton, 2012). For example, certain microstructures exhibit band gaps for elastic waves. These
band gaps are ranges of frequencies at which elastic waves cannot propagate and may be manipulated by the application of
an electric field. The present work will enable the study of complex microstructures made from dielectric elastomers with
tunable properties, which would otherwise be intractable to address analytically.
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Appendix A. Fringe effects

In this appendix, we examine the effect of the surrounding space on a thin dielectric elastomeric layer sandwiched
between two electrodes. This configuration is often used in applications, and it is also investigated in this work, cf. Sections
5.2–5.5. As a representative example, we consider a thin disk of dielectric elastomer with initial radius R0 and thickness t0,
such that t0{R0, subjected to an electric potential difference of φ across the thickness. From straightforward scaling
considerations, we can infer that the electric fields in the dielectric elastomer and the surroundings away from the edges of
the electrodes scale as φ=t0 and φ=R0, respectively. Furthermore, from (4.5), we infer that the stress and electric
displacement in the surroundings scale as ϵsurrðφ=R0Þ2 and ϵsurrφ=R0, respectively, where ϵsurr is the permittivity of the



Fig. 9. (a) Initial axisymmetric finite-element mesh for a thin disk of dielectric elastomer and its surroundings. (b) Close-up of the edge of the disk for
ðφ=t0Þ

ffiffiffiffiffiffiffiffi
ϵ=G

p
¼ 0:5 and three permittivity ratios, ϵsurr=ϵ¼ 0:03;0:1;0:3.
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surroundings. Similarly, the electrostatic stress and electric displacement in the dielectric elastomer away from the
boundaries scales as ϵðφ=t0Þ2 and ϵφ=t0, respectively. Thus, the ratios of the electrostatic stress and electric displacement in
the surroundings to that in the dielectric elastomer are ðϵsurr=ϵÞðt0=R0Þ2 and ðϵsurr=ϵÞðt0=R0Þ, respectively. When these
quantities are small, which is true for the thin dielectric structures considered in Sections 5.2–5.5, neglecting the
surroundings has virtually no effect for regions away from the boundaries of the electrodes. However, near the edges of
the electrodes, the surroundings can still have an effect, referred to as fringe effects.

Here, we estimate the error introduced by neglecting the surroundings by simulating a dielectric elastomeric actuator in the
geometry described above along with its surroundings. The initial axisymmetric finite-element configuration for a disk with
R0=t0 ¼ 5 and its surroundings is shown in Fig. 9(a) with the dielectric elastomer denoted by the region ACDB. The nodes along side
AB are set to have u1 ¼ 0, and the nodes along the symmetry plane AC are set to u2 ¼ 0. The side AC is also set to ground with an
electric potential of zero, and side BD is constrained such that all nodes along that side have the same electric potential. With this
configuration, we are able to solve equilibrium and Gauss's law in the expanded domain. The shear modulus of the surroundings is
taken to be six orders of magnitude less than that of the elastomer to approximate a fluid or void, and we consider three
permittivity ratios, ϵsurr=ϵ¼ 0:03;0:1;0:3. As expected, the actuation response in the interior of the disk for all three cases is
indistinguishable from the homogeneous case, cf. (B.4), but a deviation from this response arises near the edge. The edge of the disk
at ðφ=t0Þ

ffiffiffiffiffiffiffiffi
ϵ=G

p
¼ 0:5 is shown in Fig. 9(b) for all three permittivity ratios. For the smallest ratio, the effect is minimal, and as the

permittivity of the surroundings is increased relative to that of the elastomer, the effect is increased. From these simulations, we
estimate that the error in the calculated displacements introduced by ignoring these effects is no greater than 10% and typically
much less for the loading conditions and material properties considered and is localized to a small region ∼t0 from the edge.

Appendix B. Analytical solutions

Here we derive analytical expressions for the applied electric potential versus deformation for one-dimensional
actuation of a dielectric elastomer comprised of a Gent material. We assume incompressibility for our analytical
computations and then compare the resulting expressions to our simulations for the nearly incompressible case. We
consider two versions of one-dimensional actuation: axisymmetric and plane-strain.

B.1. Axisymmetric actuation

We begin with the case of axisymmetric, one-dimensional actuation. We consider a cube of material with side length l0
in the initial configuration, pictured in Fig. 1(a). The displacements of the cube are constrained to be homogeneous with
principal stretches λ1 ¼ λ2 ¼ λ41 and λ3 ¼ 1=λ2, such that the motion is constant volume, J¼1, cf. Fig. 1(b). Moreover, the
electric potential on face ABCD is held at zero, while the electric potential on face EFGH is ramped to a value of φ. Under the
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assumption of incompressibility, the expression for the Cauchy stress (3.20)3 becomes

T¼ G 1−
ðtrBÞ−3

Im

� �−1

Bþ ϵE⊗E−p1; ðB:1Þ

where p is an indeterminate pressure determined by the boundary conditions.
Under the aforementioned set of assumptions, we have

½B� ¼
λ2 0 0
0 λ2 0
0 0 1=λ4

2
64

3
75 and ½E� ¼

0
0

λ2 φ
l0

� �
2
664

3
775: ðB:2Þ

Since the Cauchy stress is zero in all components, we have

G 1−
2λ2 þ ð1=λ4Þ−3

Im

 !−1

λ2−p¼ 0;

G 1−
2λ2 þ ð1=λ4Þ−3

Im

 !−1
1
λ4

� �
þ ϵλ4

φ

l0

� �2

−p¼ 0: ðB:3Þ

Eliminating p in (B.3) and rearranging, we arrive at the following expression:

φ

l0

ffiffiffiffi
ϵ

G

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2λ2 þ ð1=λ4Þ−3
Im

 !−1
1
λ2

1−
1
λ6

� �vuut : ðB:4Þ

We note that for the Neo–Hookean case, where Im-∞, (B.4) becomes

φ

l0

ffiffiffiffi
ϵ

G

r
¼ 1

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1
λ6

� �s
: ðB:5Þ
B.2. Plane-strain

For the case of incompressible, plane-strain, one-dimensional actuation, we consider a deformation with principal
stretches λ1 ¼ 1, λ2 ¼ λ41 and λ3 ¼ 1=λ, cf. Fig. 1(c), such that

½B� ¼
1 0 0
0 λ2 0
0 0 1=λ2

2
64

3
75 and ½E� ¼

0
0

λ φ
l0

� �
2
664

3
775: ðB:6Þ

Next, applying the condition that the normal components of the Cauchy stress in the two- and three-directions are zero, we
have

G 1−
λ2 þ ð1=λ2Þ−2

Im

 !−1

λ2−p¼ 0;

G 1−
λ2 þ ð1=λ2Þ−2

Im

 !−1
1
λ2

� �
þ ϵλ2

φ

l0

� �2

−p¼ 0: ðB:7Þ

Eliminating p in (B.7) and rearranging, we obtain the following expression relating the lateral stretch λ to the dimensionless
electric potential:

φ

l0

ffiffiffiffi
ϵ

G

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

λ2 þ ð1=λ2Þ−2
Im

 !−1

1−
1
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� �vuut : ðB:8Þ

Finally, in the Neo–Hookean case, when Im-∞, we have

φ

l0

ffiffiffiffi
ϵ

G

r
¼
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1
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Appendix C. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org.10.1016/j.jmps.
2013.05.003.
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