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Fig. 2. Returns for pound sterling/US dollar: (a)-(c), simulations against iteration; (d)-(f), histograms of
marginal distribution; (g)-(i), corresponding correlograms for simulation.

Table 3. Returns for the pound sterling/US dollar: summaries of
Fig. 2. The standard error of simulation computed using BM = 1000;
correlations are in italics; computer time: 322 seconds on a P5/133

Mean

(j>\y 0-9802
an\y 01431
P\y 0-6589

value for K, but it seems likely that this size will be different for different aspects of the
problem and, in any case, our results suggest extensive robustness of the efficiency gains,
with large efficiency gains for blocks between 50 and 500.

Monte Carlo SE

0-000734
0-00254
00100

Covariance and

0000105
-0000198

0000273

Correlation

-0-689
0000787

-0000452

of posterior

0-294
-0178

000823

4. CLASSICAL ESTIMATION

4-1. An importance sampler
So far this paper has focused on Bayesian estimation of the parameters which index

the models. We now turn our attention to classical inference. Our suggestion is to construct
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664 NEIL SHEPHARD AND MICHAEL K. PITT

the likelihood via the use of importance sampling (Ripley, 1987, pp. 122-3) drawing
samples from the Gaussian approximation to the smoothing density we developed in § 3.
There is no use of stochastic knots, nor of acceptance/rejection sampling. We write this
density as f(u | y; \p), using the disturbances rather than the states, and then use the
manipulation

The estimator of this integral takes on the form

where uJ~f(u\y; ip)~. Crucially, this estimator is differentiate in \J/ thanks to the
Gaussianity of the smoothing density. If f{u\y; if/) =f(u\y; ip) then this estimate is exact
even if Af = 1. Further, it is straightforward to exploit antithetic variables (Ripley, 1987,
pp. 129-32) for this problem by simply switching the signs on the K, in the simulation
smoother (A-l).

4-2. Technical issues
The estimate (4-1) involves simulating from f(u \ y; ip)~ and evaluating f(uJ\y; \j/)~,f(uj; i//)

and f(y\uJ; ij/). The simulation is straightforward using the simulation smoother, while
f(uJ; ij/) and f(y\uJ; \p) are trivial to evaluate. The term f(uJ \ y; i/̂ )~can be found using the
smoothing density (de Jong & Shephard, 1995).

PROPOSITION 1. Define Xj=f(uJ\y, >/')//(«•'Iy, iA)~, where uJ~f(uJ\y, \J/)~. Then Xj is,
conditional on y, independent and identically distributed with the moments

E(Xj\y)=l, vax(Xj\y, tfr)=

We define f(y, ^ =f(y\uJ; ij,)f(uJ; Mf(«J\y, <A)" so that

f(y, W=

Consequently the estimator f(y; if/)M is unbiased with variance o2{y;

For classical inference it is the log-likelihood which is the focus of attention. Our esti-
mator of this log/(y, i[/)M has the property

The implication of this is that

and so the estimator of log/(y; i/̂ )M is biased to O(M~l). As the o2{y, ip) depends on the
parameters of the model, this causes an 0{M~l) bias in the estimators of the parameters
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Analysis of non-Gaussian time series 665

of the model. The magnitude of this bias will depend on the merit of the importance
sampling device. However, importantly, it is likely that cr^y; ip) = O(ri). This means that,
as the sample size increases, the importance sampling bias will become larger unless M
increases at a rate larger than n. This is unfortunate.

The bias is proportional to cr^y; ifr), which can be unbiasedly estimated by

M-ljt

and hence

i°g/(} ;; <A)M H / {/(y> IAV —
ZM M — 1 j = 1

gives an unbiased estimator to 0(M~2). Of course this does not mean that the resulting
estimator of ty is superior, for the addition of this term may sufficiently increase the
variance of the estimator of the log-likelihood so as to compensate for the reduction in bias.

5. CONCLUSIONS

This paper uses simulation to provide a likelihood basis for non-Gaussian extensions
of state space models. We argue that the development of Taylor expansion-based multi-
move simulation smoothing algorithms can deliver reliable methods.

The methods have five basic advantages, (i) They integrate the role of the Kalman filter
and simulation smoother into the analysis of non-Gaussian models, thereby exploiting
the structure of the model to improve the speed of the methods, (ii) They exploit the
Taylor expansion which has been previously used in various approximate methods sug-
gested in the literature, (iii) They approximate only log/(yt|0,) and so, as the dimension
of the state increases, the computational efficiency of the method should not diminish
significantly, (iv) They extend to many multivariate cases by using a multivariate Taylor
expansion of log/ to deliver a multivariate approximating version of the model (31).
(v) They allow the transition equation (1-2) to become non-Gaussian by Taylor expanding
the transition density log/(a,+1|ar). Then the Metropolis rejection rate will additionally
depend on the accuracy of the approximation to transition density.

Although there have been very significant recent advances in signal extraction of non-
Gaussian processes, there is much work to be carried out in this area. We have not
provided any model checking devices for our fitted models. In principle this is straightfor-
ward if based on one-step-ahead prediction densities. Some progress has recently been
made in rinding methods for computing these densities (Gordon, Salmond & Smith, 1993;
Muller, 1991; West, 1993).
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666 N E I L SHEPHARD AND MICHAEL K. PITT

APPENDIX

Some algorithms
This appendix details Gaussian filtering and smoothing. The Gaussian state space puts

y^xJ + Z.Ot + GtU,, U,~NID(0,J),

We assume that G',H, = 0 and write the nonzero rows of H, as Mr. The Kalman filter (de Jong,
1989) computes at\t-x = E(a,\ Y,-x, P) and Pt\,-i, containing the mean squared errors of <x,| Yt-lt P,

«r+iu = Wtp + 7JatU_1 + K,vt, P,+1|, = TJP.i.-tL,' + HtH't v, = yt-ZtatU^ -x,p,

Ft = Z,P,u^Z', + GtG't, Kt = 7tPAt_,Z'tF;\ L,= Tt-KtZt.

The filter yields forecast errors vt, their mean squared errors Ft and the Gaussian log-likelihood

l°g/(yi> • • •. y*) = const - - £ log |F,| - - £ v'tFr1Vf

The simulation smoother (de Jong & Shephard, 1995) samples from a\Yn, p. Setting rH = 0 and
Nn = 0, for t = n,..., 1, we have

Ct = M,M't - M,H',NtH,M't, K, ~ N{0, C,),

r,_! = Z'.Fr'v, + L,rt - L.'N.H.M.'C,"1^, (A-l)

L',NlH,M',C;lMtH'tNtLt.

Then we can add MtH',rt + K, to the corresponding zero rows so that we simulate from the whole
H,u, vector, written ^,. The end condition f\0 is calculated by

Co =-Pi|o--Pi IOWO^IO, KO~N(0,CO), rlo = Pmr0 + K0. (A-2)

The a vector is simulated via the forward recursion, starting with OQ = 0,

,al + f), (t = 0 , . . . , n - l ) . (A-3)

The moment smoother (de Jong, 1989; Koopman 1993) computes a,,,, = £(a,| Yn, P). With
rn = 0 it runs backwards:

rt_1 = Z'tF;1v, + ^ , (t = n , . . . , l ) . (A-4)

The M,H',rt completes, as above, i\t allowing a recursion of the form (A-3) for the conditional
expectations.
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