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Abstract

A broad empirical literature uses �event study� research designs for treatment e�ect estimation, a setting

in which all units in the panel receive treatment but at random times. We make four novel points about

identi�cation and estimation of causal e�ects in this setting and show their practical relevance. First, we show

that in the presence of unit and time �xed e�ects, it is impossible to identify the linear component of the path

of pre-trends and dynamic treatment e�ects. Second, we propose graphical and statistical tests for pre-trends.

Third, we consider commonly-used �static� regressions, with a treatment dummy instead of a full set of leads

and lags around the treatment event, and we show that OLS does not recover a reasonable weighted average

of the treatment e�ects: long-run e�ects are weighted negatively, and we introduce di�erent estimators robust

to this issue. Fourth, we show that equivalent problems of under-identi�cation and negative weighting arise

in di�erence-in-di�erences settings when the control group is allowed to be on a di�erent time trend or in the

presence of unit-speci�c time trends.

We show the practical relevance of these issues in a series of examples from the existing literature. We

focus on the estimation of the marginal propensity to consume out of tax rebates: according to our preferred

speci�cation, the marginal propensity to consume is much lower than (about half of) the main estimates in the

literature.

The main message for practitioners is that because of identi�cation issues and negative weighting in event

study designs, results from common speci�cations are likely to seem non-robust. These problems can be alleviated

in a principled way by using parametric and semi-parametric estimators and tests.

∗We thank Alberto Abadie, Isaiah Andrews, Raj Chetty, Itzik Fadlon, Ed Glaeser, Peter Hull, Guido Imbens, Larry Katz, Jack
Liebersohn and Jann Spiess for thoughtful conversations and comments. We are grateful to Jonathan Parker for his support in accessing
and working with the data. The results in the empirical part of this paper are calculated based on data from The Nielsen Company
(U.S.) LLC and provided by the Marketing Data Center and the University of Chicago Booth School of Business. The latest version of
the paper is available here.
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1 Introduction

A broad empirical literature in labor economics, public �nance, �nance and empirical macroeconomics uses event

study research designs for treatment e�ect estimation, a setting in which all units in the panel receive treatment

but at random times. We make a series of novel points about identi�cation and estimation of causal e�ects in such

a setting, which are closely related to the well-known age-cohort-time problem. We then establish the practical

relevance of these points in light of the existing literature and in a speci�c application, estimating the impulse

response function of consumption expenditures to tax rebate receipt.

We �rst show that in the presence of unit and time �xed e�ects, it is impossible to identify the linear component

of the path of pre-trends and dynamic treatment e�ects. Identi�cation of the dynamic causal e�ects only up to

a linear trend is particularly problematic because researchers usually want to test for the absence of pre-trends

prior to the event and to document changes in the outcome variable after treatment in a non-parametric way.

Intuitively, the path of pre-trends and dynamic treatment e�ects is identi�ed only up to a linear trend because,

�within a treatment unit�, one cannot disentangle the passing of absolute time from the passing of time relative to

the treatment event. We show formally that the collinearity problem that arises in this setting is e�ectively the

same as the age-cohort-time problem that others have studied.

We then propose two approaches to address this underidenti�cation issue. Our �rst strategy is to restrict the pre-

trends in the fully dynamic speci�cation, while keeping unit �xed e�ects. Our second strategy consists in replacing

unit �xed e�ects with unit random e�ects. We develop statistical tests for the validity of both approaches, as well

as a graphical test for the �rst approach.

Next, we turn to estimation of the average treatment e�ect, with a particular focus on speci�cations that are

meant to average all dynamic treatment e�ects post treatment. We show that the speci�cation that is commonly

used in the literature estimates an average of treatment e�ects that severely overweighs short-run e�ects and weighs

long-run e�ects negatively. This issue can be serious, such that the estimated average treatment e�ect can be

outside of the convex hull of the true dynamic treatment e�ects. To address the problem, we provide alternative

parametric and semi-parametric estimation techniques, which always average dynamic e�ects in a convex way.

Intuitively, the short-run bias originates from a peculiar type of extrapolation implicitly performed by the OLS.

Recall that a di�erence-in-di�erences estimator is meant to use the outcome gap between some units A and B in

an early period s before they receive treatment for constructing counterfactuals for period t when B is treated but

A is not. However, OLS regression con�ates the situations where neither unit is treated at time s, or both are�A

and B have the same treatment status in both cases, misleadingly opening room for comparison. Speci�cally, if

causal e�ects exhibit dynamics, the di�erence between post-treatment outcomes of B versus A re�ects the wedge

between long- and short-run e�ects, since B was treated earlier. This di�erence is subtracted from an analogous one

for period t, thereby creating a short-run bias.

We demonstrate that the problem is particularly severe in event studies with no control group. While a control

group partially alleviates the problem, expanding the set of good comparisons, it has to be quite large for the

problem to disappear, and the short-time bias is present even then.

Beyond these core results, we show that OLS su�ers from similar weighting problems in two related but di�erent

designs. It happens in classical di�-in-di�s if the control group is allowed to be on a separate time trend�an approach

that applied studies sometimes take when they are not certain of the quality of their control group. It also applies

to regressions that include unit-speci�c time trends. In both cases, the problem arises even if the control group is

very large.

Finally, we establish the empirical relevance of these various points by describing a series of recent and in�uential

papers in the literature that run precisely the speci�cations whose undesirable properties we point out in this

paper. Moreover, we use extended data following Broda and Parker (2014) to estimate the impulse response

2



function of consumption expenditures to tax rebate receipt, using the random timing of tax rebate receipt across

households. In this application, we �nd that underidenti�cation can lead to seemingly unstable results when it is

not properly handled. We also �nd that the marginal propensity to consume estimated by the canonical regression

has a strong short-run bias (upwards) due to the weighting issues. At the same time, semi-parametric speci�cations

demonstrate that long-run e�ects are very di�cult to identify in this type of natural experiment without undesirable

extrapolation.

Although our paper is aimed primarily for the applied reader, it contributes to three micro-econometric liter-

atures. Imbens (2015) notes that �possibly [...] because of lack of compelling evidence that simple methods (for

example, ordinary least squares regression) are not adequate, few of the estimators proposed in the recent literature

have been widely adopted�. We view our paper as providing such evidence for di�erence-in-di�erence settings with

di�erential event timing. Imbens's paper and Sloczynski (2016) are similar in spirit. The seminal paper by Angrist

(1998), which argues in the other direction, provides a useful benchmark to highlight our points. We also speak

to the literature that noted, more informally and for speci�c applications, some problems with event studies and

unit-speci�c trends, such as Wolfers (2006), Fadlon and Nielsen (2015) and particularly Meer and West (2015).

Finally, in developing our semi-parametric estimator, we contribute to the large literature including Hirano et al.

(2003) and Abadie (2005).

The remainder of this paper is organized as follows. In Section 2, we describe our setting, the key speci�cations

we study, and how they are consistent with a causal model. Section 3 presents the underidenti�cation problem and

our solutions, while Section 4 describes the negative weighting issue and how to address it. Section 5 considers a

variety of extensions. Finally, Section 6 relates our points to the existing literature and presents the estimation of

the marginal propensity to consume out of tax rebates as an application.

2 Setup

2.1 Data-generating Process

Consider a panel of i = 1, . . . , N units in which the outcome Yit is observed for t = 1, . . . , T periods (�calendar

time�), or possibly for a subset thereof. In our main setting, every unit receives treatment in some period Ei within

the sample and stays treated forever.1 Units with the same treatment period are referred to as a cohort. Let

Kit = t − Ei denote the �relative time��the number of periods relative to the event. The indicator variable for

being treated can therefore be written as Dit = 1 {t ≥ Ei} = 1 {Kit ≥ 0}.
Empirical papers using this event study setup often pursue some of the following three goals. They �rst estimate

whether the treatment has an e�ect on average. Second, they test for pre-trends to lend credibility to the research

design. Finally, they may study in more depth the dynamics of the causal e�ect. With these goals in mind, we

choose a class of data-generating processes which is very �exible on the dynamics but abstracts away from a variety

of other speci�cation issues:2

Yit = α̃i + β̃t +

∞∑
k=−∞

γ̃k1 {Kit = k}+ ε̃it. (1)

Here {γ̃k} for k < 0 correspond to pre-trends, and for k ≥ 0�to dynamic e�ects k periods relative to the event.3

The average e�ect is
∑∞
k=0 ωkγ̃k for some weighting scheme {ωk}, but researchers rarely specify it based on their

1We consider settings with a control group in Section 5.1.1.
2We allow for more general models in the Extensions section, such as heterogeneity of treatment e�ects across units. All of our

results also directly extend to adding time-varying controls.
3By k = ±∞ we mean the largest number possible given the sample.
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economic question and instead rely on the regression to do something reasonable. Tildes indicate the parameters of

the �true model�, re�ecting the data generating process, and later on we express the estimands of commonly-used

regression speci�cation in terms of these parameters.4 α̃i and β̃t are unit and period �xed e�ects, respectively, and

ε̃it is random noise. We call equation (1) the fully dynamic speci�cation.

This formulation is consistent with a causal model in which each unit i for each period t has a set of potential

outcomes Y
(k)
it for each integer k, only one of which is realized. Treatment e�ects, expressed relative to one of them,

e.g. Y
(−1)
it , are homogenous across units and calendar time periods, and depend only on k: Y

(k)
it − Y

(−1)
it = γ̃k.

5

Furthermore, Y
(−1)
it = α̃i + β̃t + ε̃it, which is a standard assumption necessary for the validity of di�erence-in-

di�erence approaches (Angrist and Pischke, 2008, p. 156). Together these assumptions deliver equation (1).

If the event is unpredictable, it is not known whether the current period corresponds to Kit = −1,−2, or any

other negative number. As a consequence, Y
(−1)
it = Y

(−2)
it = . . . , so γ̃k = 0 for all k < 0. In that sense, random

timing of the event implies that there cannot be any pre-trends.6 Equation 1 reduces to the following speci�cation,

which we call semi-dynamic and take to be true if the empirical design is valid:

Yit = α̃i + β̃t +

∞∑
k=0

γ̃k1 {Kit = k}+ ε̃it. (2)

2.2 Current Practice

In the current practice, it is prevalent to estimate models similar to (1) and (2) using OLS with two-way (unit

and period) �xed e�ects. Di�erent papers impose di�erent restrictions on (1), but the following speci�cation covers

most of them:

Yit = αi + βt +

B−1∑
k=−A

γk1 {Kit = k}+ γB+1 {Kit ≥ B}+ εit, (3)

where A ≥ 0 leads of treatment are included, together with B ≥ 0 terms for speci�c short-run e�ects and a single

last coe�cient γB+ for all longer-run e�ects.7 Note the absence of tildes: unless A = 0 and B = ∞, this equation

does not coincide with the true model (2). We will study where its coe�cients converge to in large samples as

functions of the true parameters. We will occasionally use hats to mark �nite-sample objects.

The simplest and perhaps the most prevalent regression is (3) with A = B = 0, i.e.

Yit = αi + βt + γ0+Dit + εit. (4)

We refer to this speci�cation as static or, following Allegretto et al. (2013), canonical, and will discuss it at great

length later in the paper. Compared to the fully dynamic one, it imposes no pre-trends and constant treatment

e�ects for all k. The other extreme is, of course, A = B =∞, which is just the fully dynamic speci�cation with no

restrictions.

Often regressions are run using all available data, but sometimes the sample is balanced around the event

time: only observations with Kit ∈ [k, k̄], k < 0 ≤ k̄, are included and only for units which are observed for all

corresponding periods. We discuss pros and cons of this approach later on.

4The notation for these estimands does not use tildes.
5Note that one cannot hope to estimate treatment e�ects relative to the situation in which the event never happens, simply because

this circumstance is not observed in the data. Picking k = −1 as the omitted category is an innocent and standard normalization.
6In some settings anticipation of the event is possible but limited to a �xed number of A periods. In that case γ̃k = 0 for k < −A,

and any k < −A can be chosen as the omitted category.
7One term, e.g. γ−11 {kit = −1}, can be omitted as a normalization.
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3 Underidenti�cation of the Fully Dynamic Speci�cation

3.1 Problem

In this section, we show that the fully dynamic speci�cation, given by equation (1), su�ers from a fundamental

underidenti�cation problem. The goal of such a speci�cation is to recover the dynamic path of causal e�ects

{γ̃k}∞k=−∞. We show that a linear trend in this path is not identi�ed. One can start from any set of points

estimates {γk}∞k=−∞, add a linear trend (in k) and adjust the sets of point estimates for the year �xed e�ects βt and

the unit �xed e�ects αi to keep the same predicted value. Identi�cation of the dynamic causal e�ects {γ̃k}∞k=−∞ up

to a linear trend is particularly problematic because researchers usually want to test for the absence of �pre-trends�

prior to the event,8 and more generally are hoping to document changes in the outcome variable after treatment in

a non-parametric way.9 In this section, we �rst illustrate the underidenti�cation issue graphically to gain intuition.

We then show mathematically where it stems from.

The intuition for why the fully dynamic speci�cation is underidenti�ed can easily be grasped with a simple

example. We intentionally make it extreme, to isolate the fundamental problem from any additional e�ects or

noise, which exist on top of it in real data; the mechanism is completely general. Consider Fig. 1, which plots the

outcomes for a simulated dataset, which covers two cohorts. One is treated early at t = 2 (solid line), and the other

one later at t = 4 (dashed line). Both groups are observed for all periods t = 1, . . . , 7, and the outcomes exhibit

linear growth with the same slope of one, albeit starting from di�erent levels. There are two interpretations of what

could cause such dynamics. On one hand, treatment could have no impact on the outcome, in which case the level

di�erence corresponds to the cohort e�ect and trends are just a common feature of the environment, formalized

by the time �xed e�ects. On the other hand, one could note that the outcome equals the number of periods since

treated for both groups and all time periods: at the moment of treatment the outcome equals zero, it is negative

before and positive after. So a possible interpretation is that the outcome is entirely driven by causal e�ects of

treatment and anticipation of treatment. Note that in the former case, the solid line is a vertical shift up (a level

shift) from the dashed line, while in the latter case it is a horizontal shift to the left that is due to the di�erential

timing. With straight lines, these are observationally equivalent. One cannot hope to distinguish between dynamic

causal e�ects and a combination of cohort e�ects with time trends, or more generally, of unit and time e�ects.

8In contrast, underidenti�cation of the set of point estimates {γ̃k}∞k=−∞ up to a constant, which is a well-known fact, is not
problematic because it does not in itself prevent the study of dynamic e�ects and pre-trends.

9Alternatively, researchers could focus on testing for speci�c changes in the outcome variable after treatment that are invariant up
to a linear transformation of the path of the dynamic causal e�ects {γk}∞k=−∞, i.e. they are identi�ed. A change in the slope of the
outcome variables or a sudden jump in the outcome variable after treatment are examples of parametric speci�cations that could be
tested despite the underidenti�cation problem.
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Figure 1: Underidenti�cation of Fully Dynamic Speci�cation

We can now turn to a formal investigation of these issues. Observe that for any constant h, the following two

representations are equivalent:

Ŷit ≡ αi + βt +

∞∑
k=−∞

γk1 {Kit = k}

= (αi + h · Ei) + (βt − h · t) +

∞∑
k=−∞

(γk + h · k)1 {Kit = k} (5)

because by de�nition t− Ei = Kit. As a result, the dynamic causal e�ects {γk + h · k} �t the data just as well as

the original {γk} path, although these two sets of coe�cients paint vastly di�erent pictures about the causal e�ects.

To gain further intuition about the nature of the underidenti�cation, we show that the empirical model above

nests a speci�cation with collinear terms. Speci�cally, replace the set of unit �xed e�ects {αi} with a linear predictor
in initial treatment period λ+αEi (i.e. the outcomes of di�erent �cohorts� of units experiencing the event at di�erent

times are allowed to di�er in a linear way), the set of year �xed e�ects {βt} with a time trend βt, and the set of

fully dynamic causal e�ects {γk} with a trend in relative time γKit. The fundamental underidenti�cation problem

described above can be seen immediately in the following regression:

Yit = λ+ αEi + βt+ γKit + uit

given that t − Ei = Kit. In other words, the presence of a linear term in the initial treatment period is necessary

for the identi�cation problem to arise. Unit �xed e�ects subsume such e�ects. In the presence of a control group,

cohort �xed e�ects or unit �xed e�ects do not cause any identi�cation problem because the control group pins down

the year e�ects. The problem is e�ectively the same as the (well-known) age-cohort-time problem in the regression

Yit = αEi︸︷︷︸
Cohort FE

+ βt︸︷︷︸
Time FE

+ γt−Ei︸ ︷︷ ︸
Age FE

+uit,

where Ei is the date of birth.

We want to stress that typically, but not always, only a linear component of the {γk} path is not identi�ed.10

10There are some exception to these rules, e.g. when treatment is staggered but happens at periodic intervals.
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It is not possible to reproduce a nonlinear {γk} path perfectly with unit and period �xed e�ects. The reason is

that by de�nition, such a path is a nonlinear function of γ(t − Ei), and it cannot be represented as a sum of any

functions α(Ei) and β(t).11

In sum, the linear trend in the dynamic schedule of causal e�ects {γ̃k}∞k=−∞ is not identi�ed, because one

cannot disentangle the e�ects of passing of absolute time t and relative time k when there is no control group and

in presence of unit �xed e�ects. More speci�cally, unit �xed e�ects create an identi�cation problem because they

subsume �linear cohort e�ects� (i.e. linear predictors of the form λ + αEi). The calendar year (t) is equal to the

year in which the event happens for unit i (Ei) plus the �relative time� (Kit): there is a perfect linear relationship

between these e�ects and it is therefore impossible to observe independent variation in these variables.

3.2 Solutions

3.2.1 Overview

As we explained above, calendar time, relative time, and a linear term in the initial treatment period cannot

be included together in the regression. To avoid this, additional restrictions on the statistical model have to be

imposed. Dropping unit �xed e�ects is an immediate �x, with the advantage of being very easy to implement, but

it su�ers from two important drawbacks: it requires strengthening the identi�cation assumption, and it reduces

power. Although dropping unit �xed e�ects may be a reasonable approach in some settings, we develop two other

approaches that address underidenti�cation and do not su�er from these drawbacks. Our �rst strategy is to restrict

the pre-trends in the fully dynamic speci�cation, while keeping unit �xed e�ects, and we show how to test this

restriction. Our second strategy is to replace unit �xed e�ects with unit random e�ects, which is also testable.

Both of these strategies can be justi�ed by reasonable assumptions about the nature of the variation in the timing

of the event across units. The restriction of pre-trends is justi�ed when the event is unpredictable conditional on

unit characteristics, while the random e�ects model is warranted when the timing of the event is randomly assigned

across units.12 Consider two examples to clarify this distinction. When the e�ect of health shocks on income

is of interest (e.g. Dobkin et al., 2015), it is plausible that low-income individuals may be less healthy and get

hospitalized earlier on average. Yet, conditional on permanent income level, individuals may not be able to predict

when the health shock will happen. In contrast, in the case of tax rebates studied by Parker et al. (2013), people

could know when they are getting the rebate. However, the date was assigned based on the last two digits of the

Social Security Number, so it was uncorrelated with any relevant individual characteristics.

The following subsections develop each of these approaches and discuss two related issues: the role of unit �xed

e�ects in balanced samples, and the possibility of adding a control group as a solution to the identi�cation problem.

3.2.2 Restricting Pre-Trends

We begin with the situation where event timing is supposed to be randomly assigned conditionally on the �xed

e�ect α̃i, and unpredictable. The former assumption justi�es the use of di�erence-in-di�erences type approaches.

And latter one means that the outcome cannot be adjusted based on anticipation of the event, so there can be no

pre-trends, γ̃k = 0 for k < 0. This assumption can be tested statistically and graphically, and then imposed for

e�cient estimation of causal e�ects. We discuss these issues in order.

Under the no pre-trends null hypothesis, the true model is semi-dynamic, which has no identi�cation issues. The

alternative allows for the fully dynamic speci�cation, which is only set identi�ed. Despite this, the F-test works and

can be implemented in the following straightforward way. Start from the fully dynamic regression and drop any

11To see why this is the case, imagine that t and Ei are continuous and take a cross-partial derivative ∂2γ(t − Ei)/∂t∂Ei =
−γ′′(t− Ei) 6= 0, whenever γ is nonlinear. In contrast, α(Ei) + β(t) always has zero cross-partial.

12These two senses of �randomness� of the event timing appear to have been con�ated in the existing literature.
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two terms corresponding to k1, k2 < 0. This is the minimum number of restrictions for point identi�cation, to pin

down a constant and a linear term in Kit. Then use the F-test on the pre-trends remaining in the model.13 The

F-test compares the residual sums of squares under the restricted and unrestricted speci�cations, where the former

is always semi-dynamic, and the latter is fully dynamic with two restrictions. Precisely due to underidenti�cation,

the fully dynamic speci�cation with two restrictions is e�ectively unrestricted and its �t is identical for any k1 and

k2, so the F-statistic will be invariant to k1 and k2 even in �nite samples.

This test has power only against non-linear pre-trends. Indeed, nothing in the data can point to a linear pre-

trend�that is the essence of underidenti�cation. However, if the empirical design is actually �awed, i.e. event

timing is correlated with unobservables, there is no reason for pre-trends to be exactly linear, and the test will

detect them.

While we are not aware of any empirical papers implementing this F-test, a common way to check for pre-trends

is to plot the path of γ̂k before and after treatment. Sometimes this is called the event study approach. It originates

from the standard di�erence-in-di�erences setup, where only an additive constant in γ̃k is not identi�ed, and it is

irrelevant for visual inspection; γ̂−1 is typically set to zero. In contrast, in the staggered design two restrictions

have to be made. Di�erent choices of the two restrictions, γ̂k1 = γ̂k2 = 0, will matter a lot for the whole picture:

the whole path of estimated γ̂k gets rotated by adding ĥ · k for some constant ĥ. If there are no pre-trends in

the data-generating process, ĥ asymptotically converges to zero for any k1 and k2 as the number of units grows.

However, in �nite samples di�erence may be large, particularly in longer panels, since ĥ is multiplied by k.

So how does one pick the two omitted categories? While choosing k1 = −1 and k2 = −2 might seem natural, we

propose setting the omitted categories far apart. Under the null hypothesis, this greatly reduces standard errors for

most individual coe�cients on the graph. To understand why, imagine that a line on a plane is drawn through two

points with �xed x-coordinates x1 6= x2, but stochastic y-coordinates, for simplicity with mean zero. The position

of the line will be much more stable when x1 and x2 are far from each other. This is true both for the slope of

the line (the analog of ĥ) and its value at a typical x (the analog of the γ̂k). The fully-dynamic speci�cation with

two restriction e�ectively draws a line and evaluates all dynamic e�ects relative to it. When k1 is far from k2, e.g.

k1 = −1 and k2 close to the most negative value of K in the sample, it will be much less likely that a linear pre-trend

(although perhaps statistically insigni�cant) will be visible. Remember that linear pre-trends are never possible to

detect in the data, so choosing k2 = −2 would only reduce the usefulness of the graph, distracting attention from

nonlinearities in the pre-trends.

Even if the two restrictions are chosen well, this graph should only be used to evaluate pre-trends; it does not

estimate the treatment e�ects e�ciently. Once the researcher is comfortable with the assumption of no pre-trends,

all γk, k < 0, should be set to zero. The semi-dynamic speci�cation should be estimated and its coe�cients plotted

to provide a graphical illustration of the dynamics of causal e�ects.14

3.2.3 Unit Random E�ects

We now consider a second sense in which the timing of the event is random: the treatment period Ei is independent

of the relevant unit characteristics�in our model (1), the time-invariant unit intercept α̃i. In such a setting, the

estimation can be carried out without unit �xed e�ects, which are no longer necessary for the research design.

Dropping unit �xed e�ects immediately addresses the underidenti�cation problem.15 However, doing so reduces

e�ciency: instead, we propose to carry out estimation in a random e�ects model. In addition to increasing e�ciency,

another advantage of using a random e�ects model is that we can test the hypothesis that the treatment period is

13Both the restricted and unrestricted speci�cations are identi�ed now, so standard results about the F-test behavior apply.
14Note that in case there is truly a linear trend in the set of {γ̃k}∞−∞, then the results from the fully dynamic speci�cation can be

interpreted as a test for any change relative to this linear trend around the time of the event.
15Recall that unit �xed e�ects create an identi�cation problem because they subsume �linear cohort e�ects�
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independent of the unit �xed e�ects. As in the case of the no pre-trends assumption, the random e�ects assumption

can be tested against some, although not all, alternatives, and then imposed to regain identi�cation.

When we discussed underidenti�cation of the fully dynamic speci�cation, we emphasized that for any path of

{γk}, identical �t of the model can be produced with the path {γk + h · k}. But the same result holds for the unit

�xed e�ects: {αi − h · Ei} and {αi} �t the data equally well, as long as other coe�cients in the model are adjusted

appropriately (see equation (5)). As a consequence, it is impossible to test whether α̃i is uncorrelated with Ei�the

estimates can always be made uncorrelated by choosing h. 16

Yet, independence is testable; consider the following simple F-test. The restricted speci�cation allows for

arbitrary time and causal e�ects, but no cohort (or unit) e�ects. The unrestricted one is

Yit =
∑
e

αe1 {Ei = e}+ βt +

∞∑
k=−∞

γk1 {Kit = k}+ noise.

It is almost equivalent to the fully dynamic speci�cation, except that cohort e�ects are included instead of unit

e�ects. As in the F-test of Section 3.2.2, two normalizations are required, but this time two arbitrary cohort terms

αe1 {Ei = e} should be dropped.17 A joint restriction αe ≡ 0 is then tested, but because of underidenti�cation, the

test is only powerful against nonlinear functions E [αi | Ei].
When the researcher is comfortable to impose the independence assumption, they should use the random e�ects

estimator as their preferred one for the full path of {γ̃k}. Remember that in general, the setup does not imply there

are no pre-trends. If the units' outcomes can adjust to the randomized, yet known in advance event timing, the

pre-trends are part of the treatment e�ect.

3.2.4 Related Issues

Using a Balanced Sample: As previously discussed, without unit �xed e�ects there is no underidenti�cation

problem, but in some settings the research design requires the inclusion of unit �xed e�ects, for instance if treatment

is unpredictable only conditional on some time-invariant characteristics. In such settings, a potential easy �x for

the underidenti�cation problem would be to drop �xed e�ects and balance the sample around the initial treatment

period (i.e. restrict the sample such that each unit appears for the same number of periods before and after the

initial treatment period). Indeed, there is a view that unit �xed e�ects are essentially irrelevant in event studies

on a balanced panel.

The intuition underlying this view is that balancing the sample addresses one key issue that is handled by unit

�xed e�ect in unbalanced panels: the changing composition of the sample. Omitting unit �xed e�ects when working

with an unbalanced panel may be a big assumption because of selection into treatment. For instance, units that are

treated earlier in the sample may be di�erent from other units and because the sample is unbalanced they spend a

bigger share of the sample under treated status. Therefore, in the absence of unit �xed e�ect one would worry that

the estimated coe�cient on the treatment dummy may partly re�ect selection.

In fact, balancing the sample does not help address such selection e�ects. We show in Appendix D that omitting

unit �xed e�ects when working with balanced panels is just as worrisome as when working with unbalanced panels

(for the purpose of dealing with selection e�ects). A balanced panel appears to solve the �selection issue� that is

salient in the case of unbalanced panels because each unit gets treated for the same number of years during the

panel. However, in practice year �xed e�ects absorb all of the variation for years at the beginning (where all units

are untreated) or end (where all units are treated) of the sample. For this reason, the point estimate we obtain for

16An example of a conceptually di�erent moment restriction which could be tested but would not provide much intuition is
Cov

(
α2
i , Ei

)
= 0.

17The unrestricted speci�cation can be estimated by OLS or random e�ects�the results will be identical.
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the treatment e�ect by running a regression in a balanced sample is exactly the same as the one obtained by running

the same regression in this balanced sample further restricted to years in the middle of the sample (which means we

are e�ectively running a regression on an unbalanced panel). Appendix D discusses this more formally and shows

that endogenous selection e�ects in the data generating process a�ects the consistency of the point estimate in the

same way under balanced and unbalanced panels.

Adding a Control Group: A number of empirical papers using random timing research designs start with a

sample which includes units that are never treated, or could conceivably collect such a sample. Therefore, it would

be possible to include a control group of units that never experience treatment in the estimation sample. In many

instances, it is di�cult to construct a control group that plausibly provides valid counterfactuals for the treatment

group. But assuming that such a control group is available, then including it in the estimation sample solves the

underidenti�cation problem because the control group can be used to estimate the year e�ects independently of the

causal e�ect of treatment. However, the strategy of adding a control group has two important limitations. First,

if the control group is small relative to the treatment group, important �nite-sample issues can arise. Second, one

cannot allow the control group to be on its own time trend, otherwise the underidenti�cation problem is left intact.

We discuss both of these issues in greater depth in Section 5.

4 Negative Weighting in Canonical Regression

4.1 Problem

In this section we show that fundamental underidenti�cation discussed above creates problems for more restricted

speci�cations. Our �agship case will be the canonical regression (4), but the argument extends to all speci�cations

with two-way �xed e�ects, which do not allow for �exible dynamic treatment e�ects. We show that these regressions

estimate an average of treatment e�ects that severely overweighs short-run e�ects and weighs long-run e�ects

negatively. That is, if programs P1 and P2 have similar short-run e�ects but P1 is uniformly more e�cient in the

long-run, the canonical regression will show that P1 has lower average e�ect.

Assume that the design is valid in the sense that there are no pre-trends, so the true model is semi-dynamic (2).

People often summarize treatment e�ects by the γ coe�cient from the canonical regression,

Yit = αi + βt + γDit + εit.

This speci�cation is valid under a restriction that γ̃k are equal for all k ≥ 0, i.e. that treatment leads to an

immediate and permanent jump in the outcome variable and no further e�ects. This restriction should not hold in

most applications, in our view. Quite often treatment e�ects are growing or decaying over time, may kick in with

a delay, etc. However, there is a perception that γ should estimate average treatment e�ects with some reasonable

weights. While true in some other contexts (e.g. Angrist 1998), we show that this logic does not apply to the

canonical regression estimand-�the weights are not even necessarily positive.18

The �rst step in the argument is that γ is some weighted average of {γ̃k} with weights which can be easily

estimated from the data and solely depend on the grid�the distribution of treatment periods Ei and sample

selection.

Lemma 1. The canonical regression OLS estimand can be expressed as a weighted average of dynamic treatment

18Imbens (2015) is one of the few papers that shows negative weighting by OLS, in a di�erent context.
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e�ects,

γ =

∞∑
k=0

ωkγ̃k

with weights ωk that sum up to one and equal the coe�cients for Dit from in the following regressions:

1 {Kit = k} = FEi + FEt + ωkDit + noise, k ≥ 0. (6)

where FEi denotes unit �xed e�ects and FEt time �xed e�ects.

To gain intuition for this lemma, note the following: by linearity of OLS, one can recover the coe�cient for Dit in

the canonical regression with Yit as the outcome by instead running two canonical regressions with subcomponents

of Yit as the outcome variable and then summing up the coe�cients on Dit obtained in each of these regressions.19

Consider �rst running a canonical regression with
(
α̃i + β̃t + ε̃it

)
as the outcome (one could do this in theory if the

true parameters of the model were known), and then another canonical regression with
∑∞
k=0 γ̃k1 {Kit = k} as the

outcome, and �nally sum up the coe�cients for Dit obtained in each of these two regressions to recover γ. The �rst

regression will load on the �xed e�ects and not on Dit, so γ comes solely from the second regression. By the same

logic, one further notes that γ can be recovered by running a series of canonical regressions with γ̃k1 {Kit = k} as
the outcomes (repeating for all k ≥ 0) and summing up the coe�cients. Since γ̃k is a multiplicative constant in

γ̃k1 {Kit = k}, each of these canonical regressions generates coe�cients for Dit that can be written γ̃k · ωk, for ωk
determined by speci�cation (6). Importantly, the only variables required by (6) are the unit identi�er, calendar

time, and relative time�what we call the grid.20

Now the question is whether these ωk weights are �reasonable� in some sense, and our answer is strongly negative.

The canonical regression estimand su�ers from a severe short-run bias, and weights long-run e�ects negatively.

Although a general characterization of ωk does not seem feasible, we demonstrate our result and intuitions for it in

four ways. First, we show that the short-run bias originates from a peculiar type of extrapolation performed by the

OLS when treatment timing is heterogenous across units. Second, we connect negative weighting to the propensity

score regression to show why long-run e�ects are more likely to be negatively weighted. Third, we solve for an

approximation of the weights in the general case, where the short-run bias always arises. Finally, we get a striking

closed-form solution for ωk in a simpli�ed special case.

4.1.1 Intuition: Forbidden Extrapolations

In a nutshell, the intuition for the short-run bias is related to �forbidden extrapolations� performed by OLS, where

post-treatment periods are used to provide counterfactuals for the earlier ones, rather than the other way round.21

As a benchmark with no bias, we �rst remind the reader how classical di�-in-di� estimators perform extrapo-

lations using double-di�erences. Consider the simplest setting which involves two groups of homogenous units, A

19To be explicit, if Y = A+B, then the speci�cations

Y = βYX + ε

A = βAX + η

B = βBX + ζ

yield

βY =
Cov(Y,X)

V ar(X)
=
Cov(A,X) + Cov(B,X)

V ar(X)
= βA + βB .

The result holds for multivariate X.
20To show that weights always add up to one, imagine that γ̃k = γ̃ 6= 0 for all k ≥ 0. The canonical regression is then correctly

speci�ed and provides consistent estimate γ = γ̃. But γ =
∑

k≥0 ωkγ̃, so
∑

k≥0 ωk = 1. Since weights do not depend on the true
outcomes, this result holds generally.

21This intuition derives from Meer and West (2015, Sec. 2.1). We are very grateful to Jonathan Meer for pointing us at their insightful
paper.
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Table 1: Treatment Status in the Minimal Examples

Panel A Panel B

Period \ Group A B
0 0 0
1 0 1

Period \ Group A B
0 0 0
1 0 1
2 1 1

(control) and B (treatment), and two time periods 0 and 1. Units in A are never treated, and units in B receive

treatment at t = 1. Table 1A illustrates how the treatment status depends on the group and period. Then in the

canonical regression

yit = αi + βt + γDit + noise,

the estimate of the treatment e�ect, γ, is determined by a double di�erence

γclassic = (yB1 − yA1)− (yB0 − yA0) .

The di�erence between period-0 outcomes is extrapolated to period 1 to serve as a no-treatment counterfactual. It

is permitted by the conventional parallel trends assumption, so we call it an �admissible extrapolation�.

We now proceed to the case of a staggered treatment di�-in-di�, where a di�erent type of a double-di�erence also

provides information on treatment e�ects. Extend the previous example by adding period 2 when unit A also gets

treated (see Table 1B). Then under the canonical speci�cation, the di�erence yB2 − yA2 identi�es the permanent

level di�erence between A and B, αB − αA, in the same way as yB0 − yA0 does. As a result,

γstaggered = (yB1 − yA1)− (yB2 − yA2)

is also a valid estimator of the treatment e�ects, provided they are homogenous.

This double-di�erence becomes problematic when short- and long-run e�ects di�er. Indeed, yB1 and yA2 both

re�ect the immediate causal e�ect, denote it γS , whereas yB2 re�ects the long-run e�ect γL, and the remaining

outcome observations are pre-treatment. It is then evident that γclassic = γS and γstaggered = 2γS − γL. Instead of

estimating the average, the second number puts double weight on the short-run e�ect and a negative weight on the

long-run one (in earlier notation, ω0 = 2 and ω1 = −1). We call that a forbidden extrapolation.

A typical panel, like the one from our three-period example, will lend itself for both admissible and forbidden

extrapolations, and both types will be used by OLS for maximal e�ciency under treatment e�ect homogeneity. But

robustness to treatment e�ect dynamics is, in our view, more important for empiricists than e�ciency, so forbidden

extrapolations should not be used.

4.1.2 Formal Results

We now turn to a more formal discussion of how weights ωk are determined and when they can be negative. We

show in Appendix C that the weighting scheme implicitly used by OLS is proportionate to the residuals in the

linear propensity score regression. That is, suppose treatment indicator Dit is regressed on all other right-hand side

variables�unit and period �xed e�ects in our case. Then observations it which have �tted values above Dit (and

hence negative residuals) will have a negative weight in the original canonical regression�larger Yit produces smaller

γ. Although Dit is a dummy variable, the linear probability model can easily generate �tted values D̂it > Dit = 1

for some post-treatment observations. The outcome variable Yit contains treatment e�ects for these observations,

and those will be weighted negatively.
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Which observations could su�er from this problem? As once-treated units stay treated forever, the probability

of being treated increases over time, so time �xed e�ects in the probability score regression should be increasing

in t. Similarly, units that are treated earlier (with small Ei) are treated for a larger fraction of the periods.

Therefore, �tted values will be particularly large for observations corresponding to early treated units at the end

of the sample�precisely those which identify long-run treatment e�ects. They will be negatively weighted, or at

least underweighted, by the canonical regression.

This argument also implies that negative weighting will not happen in models without individual �xed e�ects,

such as

Yit = FEt + γDit + noise.

Fitted values from the simple propensity score regression of Dit on all calendar time dummies are fractions of

treated units in each year, which always lie between zero and one. This result is consistent with Angrist (1998)

who show that when the regression is saturated, i.e. solely includes dummies for all levels of a single categorical

variable, OLS weights treatment e�ects by the variance of treatment conditional on the controls (see also Angrist

and Pischke, 2008, sec. 3.3.1). Such variance is of course non-negative.

Appendix B.2 provides another treatment of the problem. Instead of solving for ωk, we look at the weighting

scheme implied by a simpli�ed speci�cation that is nested in the canonical speci�cation. More precisely, unit and

time �xed e�ects are replaced by corresponding linear terms (we used this trick in discussing the underidenti�cation

problem as well). We show in Proposition 2 that values of k that are larger than average (among treated observations)

are always underweighted relative to their sample weights.

4.1.3 Example of Negative Weighting

Now we consider a very simple grid that may approximate the structures of the data in some applications.

Proposition 1. Suppose there are T ≥ 2 time periods, Ei is distributed uniformly among them, and for each unit

i, the outcome is observed for all periods. Then,

ωk =
(T − k) (T − 2k − 1)

T (T 2 − 1) /6
, k = 0, . . . , T − 1.

Strikingly, ωk < 0 for k > (T − 1) /2.22

Figure 2 illustrates this proposition by plotting the weights ωk for T = 20. For comparison, it also shows the

fraction sk of observations with each k in the post-treatment sample, which could be a possible de�nition of a

reasonable weighting scheme. It is clear that short-run e�ects are severely overweighted, whereas long-run e�ects

enter negatively. That means that a program that produces uniformly larger e�ects may look worse in the canonical

regression.

22All proofs are given in Appendix B.1.
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Figure 2: Weights in Canonical Regressions

When treatment e�ects have strong dynamics, there will be a wide discrepancy between the sample size-weighted

average treatment e�ects and the canonical regression estimand. Figure 3 shows two examples of this. Panel A

corresponds to the case treatment permanently changes the slope (growth rate) rather than the level of the outcome,

i.e. γ̃k = k+ 1 for k ≥ 0. Canonical regression completely misses the e�ects, estimating γ to be zero! The following

corollary formalizes the result:

Corollary 1. Suppose the assumptions of Proposition 1 hold. Then, when treatment changes the slope of the

outcome's growth, i.e. γ̃k = ϕ(k + 1) for k ≥ 0 and some constant ϕ, then the canonical regression OLS estimand

γ = 0, regardless of ϕ and the panel length T .

The canonical regression coe�cient in this case lies outside of the convex hull of the e�ects at each time horizon.

We show later that this is not just a theoretical possibility but happens in applications. Although negative weights

in Figure 2 are not very large, they are multiplied by the large treatment e�ects at longer horizons in this example.

Figure 3: Biases of Canonical Regressions

A: Treatment A�ects the Slope B: Temporary E�ects

Panel B of Figure 3 considers a situation when treatment e�ects are temporary, and the outcome gradually (in

seven periods) reverts back to the original trajectory. Canonical regression will produce a large coe�cient close to

the largest, very short-run e�ect, and does not characterize the average well.
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The weighting problem extends to more �exible speci�cations with two-way �xed e�ects. Consider for example,

a �capped� speci�cation

Yit = αi + βt +

B−1∑
k=0

γk1 {Kit = k}+ γB+1 {Kit ≥ B}+ εit.

If treatment e�ects after Kit = B are not constant, as assumed by this speci�cation, this will make the estimate

of γB+ unreliable. But also, through the wrong choice of individual and time �xed e�ects, short-run e�ects will be

biased. Figure 8 provides an illustration for B = 6 when the true e�ects are growing linearly, as in Figure 3A. The

long-run e�ect is outside of the convex hull of the true e�ects for k ≥ 6, and short-run e�ects are downward biased.

4.2 Solutions

Unlike with the underidenti�cation issue, the solution for the weighting problem is quite straightforward. Re-

searchers should never run regressions which impose any restrictions on the dynamics of treatment e�ects post-

treatment. They should estimate them �exibly and average the coe�cients manually with some weights (e.g. pro-

portionately to the sample size). When pre-trends can be assumed away, that amounts to �tting the semi-dynamic

regression (2). If some anticipation e�ects are possible, a more general speci�cation (3) should be employed with

the number of leads A re�ecting the horizon of anticipation. Here A <∞ is required for identi�cation, and B =∞
is necessary to avoid weighting problems.

Another solution is to �nd a valid control group that never experiences treatment, yet faces the same time e�ects

β̃t. The control group helps identify the time e�ects, alleviating the problem. Importantly, the control group should

not be allowed to be on a separate time trend (see Section 5.1.1).

Note, however, that if the control group is small relative to the treatment group, it would not help. For the

problem to disappear, time e�ects should be identi�ed solely from the control group. Figure 9 shows, in the context

of Proposition 1, how weights ωk vary with the fraction of units (and, equivalently, observations) in the control

group. Having a 10% control group does almost nothing, and even with equally sized groups, the weighting scheme

is still quite far from sk. Running a �exible speci�cation and averaging the e�ects manually seems worthwhile even

in presence of a control group.23

Although this approach solves the problem when the only type of treatment e�ect heterogeneity is across the

time horizon, averaging of the e�ects across individuals or calendar times, that is implied by the semi-dynamic

speci�cation, may not be perfect. We return to this problem in Extensions, proposing a matching procedure that

works more generally.

5 Extensions

It should by now be clear to the reader that both problems�underidenti�cation and negative weighting�stem from

the ability of two-way �xed e�ects to recover the relative time variable Kit in our staggered design without the

control group. Here we demonstrate that equivalent problems may arise in a variety of di�erent empirical designs.

We also extend our setting to the case with more general treatment e�ect heterogeneity and show that OLS for

the semi-dynamic speci�cation has undesirable extrapolation properties. We propose a matching scheme robust to

this type of heterogeneity.

23A lazy man's alternative is to �boost� the control group: use weighted OLS where all control group observations are weighted by
a very large number, e.g. 1,000 times more than the treatment group. This may increase standard errors but from the identi�cation
point of view, it is equivalent to having a very large control group. This weighted OLS can be viewed as a two-stage procedure: time
e�ects are �rst identi�ed from a regression Yit = αi + βt + noise on the control group only, and then used in the canonical regression
for the treatment group.
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5.1 Related Problems in Other Empirical Designs

5.1.1 Di�erence-in-di�erences with Group-speci�c Time Trend

Consider �rst the standard di�erence-in-di�erence setup where all units in the treatment group (Gi = 1) are

treated in same period E, whereas control group units (Gi = 0) are never treated. The treatment indicator is

Dit = Postt ·Gi, where Postt = 1 {t ≥ E}. While the plain vanilla event study speci�cation

Yit = αi + βt +

∞∑
k=−∞

γk1 {t− E = k} ·Gi + noise

does not su�er from any identi�cation problems, sometimes researchers are not con�dent in the quality of their

control group and would like to include a group-speci�c trend,

Yit = αi + βt + µt ·Gi +

∞∑
k=−∞

γk1 {t− E = k} ·Gi + noise.

Because E is the same for all units, the group-speci�c time trend is collinear with (t− E)Gi in presence of individual

�xed e�ects.

As a consequence, restricted speci�cations, such as

Yit = αi + βt + µt ·Gi + γDit + noise, (7)

su�er from negative weighting of dynamic e�ects, regardless of the relative size of the control group. Figure 10

illustrates this point for the case when there are t = 1, . . . , 20 periods, and treatment happens in the middle, E = 11.

One can replace individual �xed e�ects with group-speci�c intercepts in (7),

Yit = βt + (α+ µt) ·Gi + γDit + noise,

or include unit-speci�c trends instead,

Yit = αi + βt + µi · t+ γDit + noise.

All of these speci�cations are a�ected by the same problem.24

As we mentioned in the previous sections, the issues equally arise in staggered designs with a control group if

either group- or unit-speci�c time trend is included. Indeed, the relative time in the treatment group, (t− Ei)Gi,
can be recovered from αi + µt ·Gi.

5.1.2 Unit-Speci�c Trends without Control Group

Return now to the staggered design without a control group. When the empirical strategy is not perfectly convincing,

it is sometimes recommended to check robustness to including unit-speci�c (e.g., state-speci�c) time trends:

Yit = αi + βt + µi · t+

∞∑
k=−∞

γk1 {Kit = k}+ noise.

24In all of these cases, semi-dynamic speci�cations, e.g. Yit = αi + βt + µt ·Gi +
∑∞

k=0 γk1 {t− E = k} ·Gi + noise, are �ne. In this
regression µ is estimated only using non-treated observations, while in restricted speci�cations treatment e�ects in�uence the estimate
of µ, biasing γ.
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Without the control group, this creates an additional problem. Not only a linear term Kit can now be recovered

by �xed e�ects, but also a quadratic term (Kit)
2
. Indeed,

(Kit)
2

= (Ei)
2

+ t2 − 2Eit.

These three components are nested by αi, βt, and µi ·t, respectively. As a result, the fully dynamic path of treatment

e�ects is identi�ed only up to a quadratic polynomial. Three restrictions instead of two must be imposed to regain

identi�cation, and the F -test described above is only powerful against pre-trends which have more complicated

shape.

Correspondingly, weighting in the canonical-type regression

Yit = αi + βt + µi · t+ γDit + noise

becomes even worse than before.25

Given our results in the previous subsection and here, we do not recommend including unit-speci�c time trends

in any di�erence-in-di�erence or event study speci�cations (except for the case discussed in footnote 24).

5.2 Treatment E�ect Heterogeneity

Throughout the paper, we imposed a strong assumption that the fully dynamic speci�cation characterizes the true

data generating process. Treatment e�ects are required to depend only on the time relative to treatment, Kit,

but otherwise are homogenous across units and calendar time periods. Formally, we de�ne treatment e�ects in

terms of potential outcomes as τitk = Y
(k)
it − Y

(−1)
it , and the fully dynamic speci�cation requires τitk ≡ γk. Such

homogeneity, particularly across time periods, is very restrictive and di�cult to reconcile with economic models�we

provide an example related to the optimal choice of consumption and saving under the permanent income hypothesis

in Appendix E.

What is the estimand of the semi-dynamic regression when heterogeneity is allowed for? To understand this,

we again invoke the result on OLS as a weighting estimator, which weights each observation by the residual from

the linear propensity score regression (see Appendix C). The propensity score regression behind γk, k ≥ 0, in the

semi-dynamic speci�cation is the following one:

1 {Kit = k} = FEi + FEt +

∞∑
l=0
l 6=k

ρkl1 {Kit = l}+ noise. (8)

An observation is weighted negatively in two cases: if Kit = k and the �tted value in (8) is above one, or if Kit 6= 0

and the �tted value is any positive number. While we did not observe the former situation in simulations, the latter

was quite prevalent among treated observations. The semi-dynamic estimand γk is a positively-weighted average

of observations with Kit = k, minus a weighted average of control observations� plus additional terms for treated

observations with Kit = l 6= k which have both positive and negative weights summing up to zero.

The intuition for having these additional terms is that the semi-dynamic speci�cation imposes τitk ≡ γk, allowing
for substantial extrapolation. For instance, γ1 can be estimated by comparing units treated at Ei = 1 and 2, both

observed at periods t = 1 and 3. Alternatively, it can be estimated from units treated at Ei = 5 and 6 observed

at t = 5 and 7. The di�erence between the resulting estimates is consistent for zero when the semi-dynamic

speci�cation is true, so an estimator for γ0 can add or subtract this di�erence multiplied by any constant. Such

extrapolation can improve e�ciency, but also makes OLS non-robust to heterogeneity.

25Illustrative simulations are available from the authors upon request.
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Severe extrapolation is inevitable in some cases. Suppose for example that treatment happens to all units

between periods tF and tF + 3, but we want to estimate γ7�the e�ect of being treated seven periods ago compared

to not having been treated yet. There is no direct di�erence-in-di�erences quasi-experiment that would help for

this task, because in calendar periods where some unit has been treated for 7 periods, all units have already been

treated.

However, for k smaller than the range of treatment periods, γ̃k can be estimated without extrapolation. As

long as individual heterogeneity is captured by unit �xed e�ects, as we have always assumed, one can �nd periods

t′ < t, as well as units i and j treated at Ei < Ej and observed in these periods, which satisfy t′ < Ei < t < Ej

and t = Ei + k. That is, unit i has been treated at t for k periods, but not treated yet at t′, whereas unit j has not

been treated in either period. When there are no pre-trends, j provides a valid counterfactual to i.

The simplest way to estimate treatment e�ects without extrapolation is to run the semi-dynamic regression

Yit = αi + βt + γkDit + noise (9)

for each k ≥ 0 separately on the subsample of the data which includes observations with Kit = k, as well as the

entire control group Kit < 0. This regression cannot su�er from extrapolation of treated observations because the

only type of treatment e�ects the is present in the estimation sample here is γk. We will use this strategy in the

application in Section 6.2.

Another approach is matching. For each treated observation (i, t) there are multiple t′ and potentially many

units j that i can be matched with, subject to the rules discussed above. For e�ciency reasons, all of them should

be used with some weights wit,jt′ , and the resulting matching estimator can be written as

γ̂k =

∑
i,t

(
Yit − Y CFit

)
1 {Kit = k}∑

i,t 1 {Kit = k}

where Y CFit =
∑
j,t′ wit,jt′ · (Yit′ − Yjt′ + Yjt) is the counterfactual outcome and

∑
j,t′ wit,jt′ = 1.

Importantly, γ̂k constructed in this way weights treated observations positively, in fact equally, to obtain the

average treatment e�ect on the treated. This matching estimator can be rewritten as a weighting estimator, which

extends Hirano et al. (2003) (on regressions with controls) and Abadie (2005) (on di�erence-in-di�erences with a

single pre-period) to our event study design.

The only paper known to us which uses a similar estimator is Fadlon and Nielsen (2015), except that they

require Ej = Ei + 5 and t′ = Ei − 2. That reduces e�ciency without relaxing any assumptions.26

6 Empirical Relevance

6.1 A Common Issue

A variety of papers su�er from the identi�cation problems described above. Indeed, these papers use speci�cations

analogous to those described in Sections 3, 4 and 5 as their main speci�cations. Prominent examples include Di

Maggio et al. (2014), Hoynes and Schanzenbach (2012), Hoynes et al. (2016) and Duggan et al. (2016).

Di Maggio et al. (2014) investigate how indebted households' consumption and saving decisions are a�ected by

anticipated changes in monthly interest payments. They study borrowers with adjustable rate mortgages featuring

an automatic reset of the interest rate after �ve years, which is used for identi�cation because the reset occurs at

26Fadlon and Nielsen (2015) test the identi�cation assumptions by comparing 5-year pre-trends of treated observations and their
counterfactuals. In our notation this is a test for γ̃−1 − γ̃−6 = · · · = γ̃−5 − γ̃−10, a hypothesis weaker than the linearity of pre-trends
discussed in Section 3.2.2.
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di�erent points in time across households. They run the following speci�cation:

Yi,t,d,τ =

4∑
θ=−4

βτ1 {τ = θ}+ β51 {τ ≥ 5}+ λi + ηg,t + ΓXi,t + εi,t,τ

where i denotes the household, g the county, t the month or quarter and τ the quarter since the interest rate

adjustment. Therefore, Di Maggio et al. (2014) regain identi�cation by imposing that all causal e�ects βθ should

be equal for τ ≥ 5, and that all causal e�ects should be equal to 0 for τ ≤ −4. These linear restrictions do solve

the underidenti�cation problem, but their validity is not tested and our proposal is to instead run a semi-dynamic

speci�cation after testing that the linear restriction on the pretrend is consistent with the data.

Hoynes and Schanzenbach (2012) study the work incentive e�ects of the Food Stamp Program, using staggered

introduction of the program across counties in the 1960s and 1970s to estimate the impact of the program on the

extensive and intensive margins of labor supply, earnings, and family cash income. They estimate the following

model:

yict = α+ δFSPct +Xitβ + σCB60c · t+ γREISct + ηc + λt + µst + εict

where i indexes family, c the county, t the year, and FSPct is an indicator variable equal to one if there is a

Food Stamp Program in county c at time t, Xit are time-varying family characteristics, CB60c are 1960 county

characteristics (interacted with linear time), REISct are county-level per-capita income transfer, ηc and λt are

county- and year-�xed e�ects and µst are state-speci�c linear time trends. This exactly corresponds to the canonical

regression we described in Section 2 and it therefore su�ers from the issues discussed in Section 4. Using the same

research design, Hoynes et al. (2016) study the e�ect of the Food Stamp Program on adult health and economic

outcomes for individuals who where exposed to the introduction of the program in utero or during childhood. They

run almost exactly the same speci�cation as described above, which su�ers from the issues that are inherent to the

canonical regression.

Duggan et al. (2016) exploit variation in the timing of patent decisions to estimate the causal e�ect of a patent

on the price of a molecule as well as on quantities sold and on the number of pharmaceutical �rms operating in the

market. In various speci�cations, the authors use a control group of molecules but allow this control group to be

on a di�erent time trend compared to the control group, which we showed in Section 5 creates identi�cation and

weighting problems that are identical to those in the setting without a control group. For instance, they run:

Ymt = αm + δt + λ · t · I{EverPatent}m + δt · I{Post95Launch}m
+η1 · I{HasPatent}m + η2 · I{HasPatent}mt · I{Post95Launch}m + εmt

with obvious notation.

More broadly, our points are relevant for a large set of papers that use some of the speci�cations we caution

against in some of their sections, either as main speci�cations or as robustness checks. Examples include Grogger

(1995), Glaeser and Mare (2001), Bertrand and Mullainathan (2003), Reber (2005), Papaioannou and Siourounis

(2008), and Dobkin et al. (2015). Our points are also relevant for the literature using the AKM model, because this

model requires to separately identify age e�ects, cohort e�ects and time e�ects (see for instance Card et al. 2016).

In the rest of this section, we carry out analyses in the spirit of Parker et al. (2013), extending their data and

estimating the impulse response function of consumption expenditures to tax rebate receipt. The results illustrate

the quantitative relevance of our points about underidenti�cation in the fully dynamic speci�cation and negative

weighting in estimation of the average treatment e�ect in the canonical regression. In ongoing work, we examine

the importance of our points for the literatures on the impact of unilateral divorce laws and compulsory school
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reforms.

6.2 Estimating the Impulse Response Function of Nondurable Consumption Spend-

ing to Tax Rebate Receipt

The marginal propensity to consume out of tax rebates is a crucial parameter for economic policy. The Economic

Stimulus Act of 2008 consisted primarily of a 100 billion dollar program that sent tax rebates to approximately 130

million US tax �lers. Whether this stimulus was e�ective at boosting the economy and counteracting the Great

Recession depends on the extent to which these tax cuts directly changed household spending, as well as on any

subsequent multiplier or price e�ects a�ecting aggregate demand.

Using event study designs, a recent literature provides estimates of the marginal propensity to consume out of

tax rebates. In particular, Parker et al. (2013) and Broda and Parker (2014) estimate the change in household

spending on nondurables using a natural experiment provided by the structure of the 2008 tax cut. The tax cuts

varied across households in amount, method of disbursement, and timing. Typically, single individuals received

between $300 and $600, while couples received between $600 and $1,200; moreover, households received $300 per

child who quali�ed for the child tax credit. Within each disbursement method, the timing of tax rebate receipt was

determined by the �nal two digits of the recipient's Social Security number (SSN), and these digits are e�ectively

randomly assigned across households. The causal e�ect of the receipt of the payments on household spending is

estimated by comparing the spending of households that received payments in a given period to the spending of

households that received payments in other periods. This kind of random variation requires precisely the type of

estimators studied in this paper. Note that such variation can only be used to estimate the change in household

spending on nondurable directly caused by the receipt of the tax rebates and inherently ignores general equilibrium

e�ects (e.g. Keynesian multipliers and price e�ects).

We estimate the performance of various estimators at estimating the impulse response function of nondurable

consumption to tax rebate receipt using the same data as Broda and Parker (2014). Both Parker et al. (2013) and

Broda and Parker (2014) examine the response of nondurable consumption to tax rebate receipt. While Parker et

al. (2013) estimate the causal e�ect of tax rebate receipt on nondurable consumption using quarterly consumption

data from the Consumer Expenditure Survey, Broda and Parker (2014) use more detailed data from the Nielsen

Homescan Consumer Panel. The Nielsen dataset has the advantage of tracking transactions at a much higher (daily)

frequency, which is why we choose it as our main dataset. The Nielsen data covers approximately 15% of overall

households expenditures and includes the following product categories: food, alcohol, beauty and health products,

household supplies, and general merchandise. The analysis using the same CEX data as in Parker et al. (2013) is

available from the authors upon request.

This setting is ideal for our purposes for two reasons: �rst, the source of variation � the �nal two digits of the

recipient's Social Security Number � is well understood and is truly as good as random; second, precise estimation

of the average marginal propensity to consume out of tax rebates as well as its dynamics is crucial for �scal policy.

In the remainder of this section, we use the variation in the week in which households received tax rebates to

estimate the impulse response function of consumption to tax rebate receipt. We run speci�cations analogous to

those described in Section 2, with weekly nondurable consumption as the outcome and households as the unit of

treatment. We use a balanced sample of households and observe 16 weeks prior to the tax rebate and 22 weeks

after. We run the fully dynamic speci�cation and semi-dynamic speci�cations using this data, with household �xed

e�ects.27

The analysis delivers four conclusions that show the relevance of the points developed in the previous sections:

27We have also checked that we are able to replicate the results of Broda and Parker (2014), using their speci�cations. The results
are available upon request.
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1. underidenti�cation can lead to seemingly unstable and confusing results when it is not properly handled; 2.

our proposed solutions to address underidenti�cation work well (namely: using a semi-dynamic speci�cation after

running a F-test for non-linear pretrends, and/or using a semi-parametric speci�cation); 3. canonical regressions

yield misleading results and are another source of seeming instability and inconsistency of results; 4. semi-parametric

speci�cations that leave no room for extrapolation show that long-run e�ects are very di�cult to identify in this

type of natural experiment.

Overall, our main message for practitioners is twofold. First, we show that because of identi�cation and negative

weighting issues in event study designs, researchers are likely to produce results that appear to be unstable and/or

inconsistent with each other. These issues can be avoided in a principled way by using the estimators and tests

introduced in this paper. Second, our application illustrates that long-run e�ects are likely to be di�cult to identify

in event study research designs. Researchers should be mindful of estimators introducing extrapolation, which

are likely to be unstable. We recommend that they emphasize the types of e�ects that can be identi�ed in the

semi-parametric estimators we introduce, which are likely to be the short-run e�ects, as in the application below.

The �rst �nding from the analysis of the consumption response to tax rebate receipt, using the data from Broda

and Parker (2014), is that the underidenti�cation problem can lead to completely di�erent estimated paths for

pre-trends and treatment e�ects, in line with the discussion in Section 3.1. Panel A of Figure 4 shows the dynamic

path of pre-trends and treatment e�ects, plotting the regression coe�cients on all leads and lags in speci�cation

(1), where the parameters are estimated after dropping leads 1 and 2. The estimated coe�cients exhibit a strong

upward trend. Intuitively, dropping leads that are close to each other is likely to generate strong trends because of

noise in �nite sample.

In contrast, Panel B of Figure 4 shows that when dropping the very �rst and very last leads, the pattern of

consumption during the event study window is much more stable. There is no discernible pre-trend, and weekly

consumption jumps exactly at the time of tax rebate receipt for about �ve weeks, before reverting to its usual level.

Note that the set of coe�cients shown in Panels A and B of Figure 4 are identical up to a rotation (or linear trend).

The additional noise introduced by the omission of leads 1 and 2 in Panel A is re�ected in larger standard errors.

Researchers that are not attentive to under-identi�cation run the risk of obtaining seemingly unstable results across

speci�cations, depending on which set of leads (or lags) of the treatment indicator they (or their statistical software)

drops. In a balanced sample, dropping the very �rst and very last leads of the treatment indicator is a sensible

approach because it will reduce noise. Next, we discuss a principled approach to addressing underidenti�cation: �rst

testing for statistical signi�cance of non-linear pretrends with a F-test, then running the semi-dynamic speci�cation.
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Figure 4: Under-identi�cation in Fully Dynamic Speci�cations
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Panel B: Dropping Leads 1 and 16
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The second �nding is that our proposed solution to handle underidenti�cation problem works well in this

application. We proceed in two steps. To begin with, we show that we cannot reject that there is truly no (nonlinear)

pre-trend before the tax receipt: the p-value for the F-test of the hypothesis that all lags of the treatment indicators

are equal to zero is 0.13. We also note that Panel B of Figure 4 provides a graphical test for (nonlinear) pretrends:

all leads are statistically indistinguishable from zero, are very stable and relatively precisely estimated zeroes.28

This makes us con�dent that the variation used to estimate the causal e�ect of tax rebate receipt on consumption

is as good as random and provides a justi�cation for running the semi-dynamic speci�cations, which sets all leads

equal to zero.

Our preferred estimates of the path of dynamic causal e�ects are obtained after imposing the restriction that

all leads of the treatment indicator are equal to zero. The results are shown in Panel A of Figure 5 and show that

the receipt of a tax rebate leads to an increase in nondurable consumption immediately after the tax rebate receipt.

28The value-added of this graphical test relative to the F-test described is that we can show that the results are not driven by noise:
we are dealing with precisely estimated zeroes.
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The standard errors are smaller in Panel A of Figure 5 compared with Panel B of Figure 4, because the formed

imposes the restriction that all lags of the treatment indicator, which increases e�ciency when this restriction is

true. Note that the point estimates for the lags of the treatment indicators appear to exhibit a downward trend in

both Panel A of Figure 5 and Panel B of Figure 4, which seems surprising since one would expect the treatment

to go to zero a few weeks or months after the receipt of the tax rebate (instead of becoming negative). We discuss

below how this pattern results from extrapolation and can be addressed using the semi-parametric specifciations

introduced in Section 5.2.

Figure 5: Semi-Dynamic and Canonical Speci�cations

Panel A: Results for Semi-Dynamics and Canonical Speci�cations
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Third, we �nd that summarizing the treatment e�ect with a canonical regression would be very misleading,

because of the negative weighting problems described in Section 4. Panel B of Figure 5 shows the weights given

to the various dynamic causal e�ects by the canonical regression, many of which are negative. Moreover, the �rst

lags of the treatment indicator get very large weights in the canonical regression. The causal e�ect of tax rebate

receipt is a short-run increase in consumption, with no e�ect on weekly spending after �ve to eight weeks, as shown

in Panel B of Figure 4 and in Panel A of Figure 5.
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Given that the treatment e�ect is declining over time, the weights used in the canonical regression yield an

upward biased estimate of the �average� (with sample weights) treatment e�ect. The point estimate for the average

treatment e�ect in the canonical regression is $7.85 (with a standard error of 1.004). Interpreting this coe�cient

as the average treatment e�ect over 20 weeks would suggest that, during this period, households spent about 25%

of their rebate amount on nondurable consumption alone (as covered in the Nielsen data, which account for about

15% of overall consumption). Assuming that the consumption response is similar in other consumption categories,

this estimate would imply a marginal propensity to consume out of tax rebates of over 100% over 20 weeks, which

is extremely large. In fact, as shown in Panel A of Figure 5, the point estimate from the canonical regression is

almost outside of the convex hull of the dynamic treatment e�ects in the semi-dynamic speci�cation. These patterns

are in line with the theory presented in Section 4.1 and should not cause worry about the validity of the research

design�but they show that the results from the canonical regression must be interpreted with caution.

Fourth, we �nd that long-run e�ects are very di�cult to identify in this setting. Panel B of Figure 4 and Panel

A of Figure 5 exhibit downward trend in the point estimates on the lags of the treatment indicator. Such trend

can be due to extrapolation in parametric speci�cations and is more likely to occur in smaller samples. As �rst

evidence for this, Panel A of Figure 6 provides bootstrapped distributions of the estimate of γ̂20 by the semi-dynamic

speci�cation, using subsamples of various sizes. The distribution is extremely noisy for the samples that are 10%

of the actual data, but also with the actual sample size. This large volatility is due to the spurious trends in

coe�cients. To see that directly, we estimate parameter µ from the regression

Yit = αi + βt +

10∑
k=0

γk1 {Kit = k}+ µ (Kit − 10) · 1 {Kit > 10} .

This parameter measures the slope of the impulse response function after 10 weeks since treatment. Economic intu-

ition suggests that behavior should stabilize there, so µ ≈ 0. Panel B of Figure 6 shows bootstrapped distributions

of µ̂, and a typical value is around -$1; that is, each week after the tenth one the causal e�ect is estimated to fall

by $1. This is implausible given that the e�ect is close to zero after several weeks, and it cannot be substantially

negative, based on the economic intuition. With the 10% sample size, there is also a large tail where µ̂ is positive,

so that the marginal propensity to consumer steadily grows after ten weeks since the rebate.
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Figure 6: Bootstrap Results
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A more direct test for our claim that extrapolation is behind the spurious trend is to use the semi-parametric

estimator (9) introduced in Section 5.2. Recall that these estimators do not leave room for extrapolation within the

treatment group. Figure 7 presents the results. In contrast with the parametric speci�cations discussed above, there

is no longer a downward trend in the point estimates of the lags of the treatment indicator. Instead, consumption

increases for only three weeks after the receipt of the tax rebate, and then reverts to its usual value.

In the semi-parametric speci�cation, it is not possible to study causal e�ects beyond seven weeks after the

receipt of the tax rebate. This application illustrates the more general point that long-run e�ects are likely to be

di�cult to identify in event study research designs with a limited range of treatment dates and no control group,

and that researchers should be mindful of estimators introducing extrapolation, which are likely to be unstable. We

recommend to emphasize short-run e�ects that can be identi�ed by the semi-parametric estimator.
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Figure 7: Results from Semi-Parametric Speci�cation
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7 Conclusion

Di�erence-in-di�erence estimators are some of the most prevalent tools in economics for estimating causal e�ects of

treatments. While the classical design compares two groups of units before and after a single date when one of them

gets treated, researchers also frequently work with panels where di�erent units are treated at di�erent moments.

For instance, in broadly used event studies all units in a panel eventually get treated, but some earlier than others.

This paper showed that because of underidenti�cation issues and negative weighting in event study designs, results

from common speci�cations are likely to seem non-robust. These problems can be alleviated in a principled way by

using parametric and semi-parametric estimators and tests.

Two approaches were introduced to address the underidenti�cation issue. The �rst is to restrict the pre-trends

in the fully dynamic speci�cation, while keeping unit �xed e�ects. The second consists in replacing unit �xed e�ects

with unit random e�ects. Statistical and graphical tests were developed to prove the validity of these approaches.

The paper also showed that the canonical estimator does not provide a reasonable average of treatment e�ects along

an important dimension---the time since �rst treatment---although other methods can. Speci�cally, the canonical

estimator has a severe short-term bias and in many cases weights long-term e�ects negatively. To address the

problem, alternative parametric and semi-parametric estimation techniques were introduced, which always average

dynamic e�ects in a convex way. The parametric approach amounts to estimating the dynamic regression that

includes dummies for all lags of treatment and then manually averaging its coe�cients, whereas the semi-parametric

one is a new weighting estimator in the spirit of Hirano et al. (2003).

The practical relevance of this problem was established in light of the existing literature and in a speci�c

application about the estimation of the marginal propensity to consume out of tax rebates.

References

Abadie, Alberto, �Semiparametric Di�erence-in-Di�erence Estimators,� Review of Economic Studies, 2005, 72,

1�19.

, Alexis Diamond, and Jens Hainmueller, �Comparative Politics and the Synthetic Control Method,� Amer-

ican Journal of Political Science, 2015, 59 (2), 495�510.

26



Allegretto, Sylvia, Arindrajit Dube, Michael Reich, and Ben Zipperer, �Credible Research Designs for

Minimum Wage Studies,� IZA Discussion Papers, 2013, 7638 (7638).

Angrist, Joshua, �Estimating the labor market impact of voluntary military service using social security data on

military applicants,� Econometrica, 1998, 66 (2), 249�288.

Angrist, Joshua D. and JS Pischke, Mostly harmless econometrics: An empiricist's companion, Princeton

University Press, 2008.

Bertrand, Marianne and Sendhil Mullainathan, �Enjoying the Quiet Life? Corporate Governance and Man-

agerial Preferences,� Journal of Political Economy, 2003, 111 (5), 1043�1075.

Broda, Christian and Jonathan A. Parker, �The economic stimulus payments of 2008 and the aggregate

demand for consumption,� Journal of Monetary Economics, 2014, 68 (S), S20�S36.

Card, David, Ana Rute Cardoso, and Patrick Kline, �Bargaining, Sorting, and the Gender Wage Gap:

Quantifying the Impact of Firms on the Relative Pay of Women,� The Quarterly Journal of Economics, 2016,

131 (2), 633�686.

Di Maggio, Marco, Amir Kermani, and Rodney Ramcharan, �Monetary Policy Pass-Through: Household

Consumption and Voluntary Deleveraging,� Working Paper, 2014.

Dobkin, Carlos, Amy Finkelstein, Raymond Kluender, and Matthew J Notowidigdo, �The Economic

Consequences of Hospital Admissions,� 2015.

Duggan, Mark, Craig Garthwaite, and Aparajita Goyal, �The Market Impacts of Pharmaceutical Product

Patents in Developing Countries: Evidence from India,� American Economic Review, 2016, 106 (1), 99�135.

Fadlon, Itzik and Torben Heien Nielsen, �Household Responses to Severe Health Shocks and the Design of

Social Insurance,� 2015.

Glaeser, Edward L. and David C. Mare, �Cities and Skills,� Journal of Labor Economics, 2001, 19 (2), 316�342.

Grogger, Je�rey, �The E�ect of Arrests on the Employment and Earnings of Young Men,� The Quarterly Journal

of Economics, 1995, 110 (1), 51�71.

Hirano, Keisuke, Guido W. Imbens, and Geert Ridder, �E�cient Estimation of Average Treatment E�ects

Using the Estimated Propensity Score,� Econometrica, 2003, 71 (4), 1161�1189.

Hoynes, Hilary W, Diane Whitmore Schanzenbach, and Douglas Almond, �Long Run Impacts of Child-

hood Access to the Safety Net,� American Economic Review, 2016, 106 (4), 903�934.

Hoynes, Hilary Williamson and Diane Whitmore Schanzenbach, �Work incentives and the Food Stamp

Program,� Journal of Public Economics, 2012, 96 (1-2), 151�162.

Imbens, Guido W., �Matching methods in practice: Three examples,� Journal of Human Resources, 2015, 50

(2), 373�419.

Meer, Jonathan and Jeremy West, �E�ects of the Minimum Wage on Employment Dynamics,� Journal of

Human Resources, 2015.

Papaioannou, Elias and Gregorios Siourounis, �Democratisation and growth,� Economic Journal, 2008, 118

(532), 1520�1551.

27



Parker, Jonathan A., Nicholas S. Souleles, David S. Johnson, and Robert McClelland, �Consumer

Spending and the Economic Stimulus Payments of 2008,� American Economic Review, 2013, 103 (6), 2530�2553.

Reber, Sarah J, �Court-Ordered Desegregation : Successes and Failures Integrating American Schools since Brown

versus Board of Education,� The Journal of Human Resources, 2005, 40 (3), 559�590.

Sloczynski, Tymon, �A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares

Estimands,� 2016.

Wolfers, Justin, �Did Unilateral Divorce Laws Raise Divorce Rates? A Reconciliation and New Results,� American

Economic Review, 2006, pp. 1802�1820.

A Additional Figures and Tables

Figure 8: Biases in the Capped Regression

Figure 9: Canonical Weights with Control Group

28



Figure 10: Weights in Di�-in-Di� Speci�cations

Notes: �Classical� refers to speci�cation Yit = αi + βt + γDit. The speci�cation with group-speci�c trends is given
by (7).

B Additional Results and Proofs

B.1 Proofs

Proof of Proposition 1. In the case where Ei takes all values 1, . . . , T with equal probabilities, the OLS estimand

is the same as in the case where there is exactly one observation per each t and Ei, and there no noise, ε̃it = 0. We

consider such dataset with T 2 observations and index units such that Ei = i.

To compute ωk, we apply the general result from Appendix C. OLS estimation of the canonical regression

produces the estimate

γ =
∑
i,t

ωityit

where ωit is proportionate to the residual in the regression of Dit on unit and time �xed e�ects. The square structure

of the data allows us to compute this residual in a very simple way:

ωit ∝ Dit −
1

T

∑
i′

Di′t −
1

T

∑
t′

Dit′ +
1

T 2

∑
i′,t′

Di′t′ .

For a treated observation with t− i = k ≥ 0,

ωit ∝ 1− t

T
− T − (i− 1)

T
+
T (T + 1) /2

T 2

=
T − 2k − 1

2T

∝ T − 2k − 1.

Since ωk is the coe�cient in the regression of 1 {Kit = k} on Dit with two-way �xed e�ects,

ωk =
∑
i,t

ωit1 {Kit = k}

∝ (T − k) (T − 2k − 1)
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because there are T − k observations satisfying i− t = k. Given
∑T−1
k=0 ωk = 1, this implies

ωk =
(T − k) (T − 2k − 1)∑T−1
k=0 (T − k) (T − 2k − 1)

.

It is a matter of simple algebra to simplify the denominator. Denote ak = (T − k) (T − 2k − 1). Then,

ak + aT−1−k = (T − k) (T − 2k − 1)− (k − 1) (T − 2k − 1)

= (T − 2k − 1)
2
.

Therefore,

T−1∑
k=0

ak =
1

2

(
T−1∑
k=0

ak +

T−1∑
k=0

aT−1−k

)

=
1

2

T−1∑
k=0

(T − 2k − 1)
2
.

If T is odd,

T−1∑
k=0

ak =
1

2
· 2 ·

(T−1)/2∑
k=0

(2k)
2

= 4 ·
T−1
2 · T+1

2 · T
6

=
(T − 1)T (T + 1)

6
.

If T is even,

T−1∑
k=0

ak =
1

2
· 2 ·

 T∑
k=0

k2 −
T/2∑
k=0

(2k)
2


=
T (T + 1) (2T + 1)

6
− 4 ·

T
2 ·

T+2
2 · (T + 1)

6

=
(T − 1)T (T + 1)

6
,

so the same expression holds all T .

Proof of Corollary 1. It is straightforward to verify that weights from Proposition 1 satisfy

(k + 1)ωk = −(l + 1)ωl

whenever k + l = T − 1. Using this fact and Proposition 1, we can write

γ =

T−1∑
k=0

(k + 1)ωk =
1

2

(
T−1∑
k=0

(k + 1)ωk +

T−1∑
l=0

(l + 1)ωl

)
= 0.
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B.2 Weights in a Simpli�ed Speci�cation

Recall that two-way �xed e�ects can reproduce a linear trend in the relative time Kit, which is at the core of the

underidenti�cation problem. Consider the following regression that is nested within the canonical one:29

Yit = µ+ hKit + γRDit + εit. (10)

As in Lemma 1, γR =
∑
k≥0 ω

R
k γ̃k with weights that can be estimated from a series of regressions

1 {Kit = k} = µ+ hRkKit + ωRk 1 {Kit ≥ 0}+ noise, k ≥ 0. (11)

This regression (11) is de�ned solely in terms of a single variable Kit. Figure 11 illustrates it in the context of

Proposition 1 for two values of k: small (k = 3� T = 20) and large (k = 12). Speci�cation (11) �ts the left-hand

side variable with two parallel lines of any location and slope, and ωRk is the shift between them. When k is large,

this shift can be negative (see panel B). Moreover, short-run e�ects are always overweighted, as formalized by the

following proposition:30

Figure 11: Estimation of Speci�cation (11)

A: For Small k = 3 B: For Large k = 12

Proposition 2. The weight schedule implied by regression (10) is always short-run biased. That is, ωRestrictedk /sk is

decreasing in k. It is greater than 1 if and only if k is smaller than the average Kit post-treatment, i.e. k <
∑∞
l=0 lsl.

Proof. Our approach is similar to the one from the proof of Proposition 1. Consider regression

1 {K ≥ 0} = µ1 + h1K (12)

with weights mK , measuring sample shares of each K. Because 1 {K > 0} and K are co-monotone, the slope is

positive, ĥ1 > 0. Moreover, the intercept satis�es µ̂1 ≤ 1. Indeed, if µ̂1 > 1, estimated residuals are non-positive

for all K ≥ 0. But in that case a marginal rotation of the regression line that makes it �atter while keeping the

x-intercept constant will reduce squared errors for all K, and hence the total as well.

The general result of Appendix C implies that each treated observation in (10) is weighted in proportion to the

29To get it, plug in αi = −hEi and βt = µ+ ht.
30It should be primarily viewed as providing intuition because ωk 6= ωR

k in general.
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residual from (12), i.e. 1− µ̂1 − ĥ1K, and the total weight

ωRk =
mk

(
1− µ̂1 − ĥ1k

)
∑
k≥0mk

(
1− µ̂1 − ĥ1k

) .
Since sk = mk/m+ for m+ =

∑
k≥0mk, we can rewrite

ωRk
sk

=
1− µ̂1 − ĥ1k∑

l≥0 sl

(
1− µ̂1 − ĥ1l

) .
The denominator, which is the average residual from (12) corresponding to K ≥ 0, must be positive. It is then

clear that ωRk /sk is falling in k and is greater than one if and only if

1− µ̂1 − ĥ1k >
∑
l≥0

sl

(
1− µ̂1 − ĥ1l

)
,

i.e. k <
∑∞
l=0 lsl.

C Negative Weighting

The derivation below illustrates why in regressions with non-saturated controls OLS may assign �negative weights�

to treated observations, although one wishes to have positive weights for treated observations and negative weights

for control observations. We start from a simple setup with treatment indicator D and control variables X.

Y = βD + αX + ε

By the Frisch-Waugh-Lovell theorem,

Y − f ′X = β (D − π′X) + ε∗

where f ′X and π′X are linear projections of Y and D on X, respectively. The latter is the propensity score

estimated using the linear probability model. Then,

β =
Cov(Y − f ′X,D − π′X)

V ar(D − π′X)

We can write this as a sum of Yis multiplied by weights, or using the population notation,

β = E [(Y − f ′X)(D − π′X)]
1

V ar(D − π′X)
= E [Y · ω(D,X)] , for ω(D,X) =

D − π′X
V ar(D − π′X)

,

where the second equality uses the fact that f ′X is a linear function of X, hence must be uncorrelated with

(D − π′X). It is clear that the OLS-implied weights are proportionate to the residual in the propensity score

regression.

It is straightforward to show that E [ω ·D] = 1 and E [ω · (1−D)] = −1. That is, β is an average of the outcomes

in the treatment group minus an average of outcomes in the control group, with weights adding up to one in both

cases. In the standard Rubin causal model, one can write Y = Y0 + τD, where Y0 is the no-treatment potential
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outcome, and τ is the (heterogenous) treatment e�ect. Therefore, OLS estimates

β = E [Y0 · ω] + E [τ · (ω ·D)] .

The �rst term (with the weights adding up to zero) represents selection bias, and the second one�the average of

treatment e�ects. Even if selection is not a problem, the second term is problematic when ω < 0, i.e. π′X > D = 1.

This can never happen in a saturated regression, but is very likely for at least some observations in regressions with

continuous controls or multiple sets of �xed e�ects.

As simple as the result is, we are unaware of any other paper showing it. Abadie et al. (2015) note for the

setting with one treated and many untreated observations that the untreated ones can be weighted negatively.

However, they do not connect this to the propensity score regression or, since they do not allow for multiple treated

observations, to the averaging of treatment e�ects.

In the setting discussed in Section 4, X is a set of individual and time dummies. Then, people who are

treated earlier in the sample have more observations with treated status D = 1. Also, there are also more treated

observations in the later periods because treatment status doesn't revert to 0. Therefore, the largest treated values

are for the long-run treatment e�ects (high Kit) and we can get negative weights. These weights just depend on

the �grid��the distribution of calendar time t and initial treatment periods Ei in the sample�because there is no

other variable in the propensity score regression.

This result is particularly worrisome if the treatment e�ect is dynamic because large treatment e�ects in the

long run get assigned a weight of the wrong sign. Because of this, the γ estimated in the canonical regression could

be outside of the convex hull of the true treatment e�ects γ̃k. For instance if the treatment e�ect is positive and

growing over time, the estimated γ could be negative although we were hoping it would be a weighted average of

γ̃k (we show in Section 6 that this in fact happens in several important empirical applications).

D Unbalanced vs. Balanced Panels and Individual Fixed E�ects

As discussed in Section 3.2.3, one approach to regain identi�cation is to do away with unit �xed e�ects and hope

that this does not pose a threat to identi�cation. In this section, we clarify the nature of the potential threats

to identi�cation when excluding unit �xed e�ects for both unbalanced and balanced panels. For this section,

assume throughout that there are no year e�ects to simplify the analysis (also note that since we are considering

speci�cations without individual �xed e�ects, the other concerns with the canonical regression discussed in 4 do not

apply). We believe there is a conventional wisdom in applied work that omitting unit �xed e�ects when working

with unbalanced panels is a big assumption because of selection into treatment, while omitting unit �xed e�ects in

the case of balanced panels is much less problematic. We discuss below why the two settings in fact pose similar

issues (as in the rest of this note, the discussion considers setting without a control group of units that never

experience treatment).

Unbalanced panels. It is well understood that when panels are unbalanced, if there is a correlation between

the time of treatment and the unit �xed e�ects (in our notation, Cov(αi, Ei) 6= 0), then including individual

�xed e�ects is key. Such a correlation could result from intuitive patterns of endogenous selection into treatment.

Consider for instance a setting where i) treatment has a positive and constant e�ect, ii) unit �xed e�ects αi re�ect

the bargaining power of the unit, which allows for better outcomes Yit in general and also for earlier selection into

treatment (e.g. Cov(αi, Ei) < 0). In this setting, running a regression of the form Yit = βt + γTit + uit (without

unit �xed e�ects) yields an upwardly biased estimate of the true constant treatment e�ect. Intuitively, Tit conveys

information about the �type� of the unit: units with higher individual �xed e�ects are treated earlier in the sample,
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i.e. for a longer period of time in the sample, and the estimated treatment e�ect coe�cient partly captures these

higher �xed e�ects. In simulated data, this can be checked by running a regression of the form Tit = λαi+uit,which

yields λ < 0. Balanced panel may at �rst glance appear to be impervious to this issue.

Balanced panels. By construction, in a balanced sample each unit gets treated for the same number of

periods of the observed sample. Therefore, in simulated data with the same data generating process as discussed

for unbalanced panels, running a regression of the form Tit = λαi + uit yields λ ≈ 0. Is it su�cient to restrict the

sample to a balanced panel to address the concerns resulting from endogenous selection into treatment discussed

in the case of unbalanced panels? And if not, why not and what is the link with unbalanced panels? We have

veri�ed in simulations that balancing the sample does not solve the problem, and here we provide intuition for why

selection into treatment correlated with individual �xed e�ects in fact poses exactly the same problem in balanced

and unbalanced panels. The intuition can be best seen based on the following �gure:

Figure 12: Share of Treated Units and Unit Fixed E�ects over Time in Balanced Sample
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Figure 12 is based on a simulation with Cov(αi, Ei) < 0 (�better� units get treated earlier in calendar time),

where the sample used for regressions is restricted such that each unit is observed for k years before the �rst year of

treatment, as well as during the year of treatment and for k−1 years after. In other words, each unit is observed for

k years under treated status and for k years under untreated status (in our simulation, k = 7). Figure 12 illustrates

two points. First, in the �rst k years of the balanced sample none of the units are treated, and in the last k years

of the sample all units are treated. This means that the year �xed e�ects for years that are early and late in the

sample will apply to a homogeneous group of units, which are all either treated or untreated - in other words, they

will absorb the treatment e�ect in those years. This means that identi�cation of the treatment e�ect coe�cient will

come entirely from observations in the interval of time between those cuto� dates (i.e. with t such that k < t < T̄−k,
which in our simulation amounts to 6 years, with a total number of years given by T̄ = 20). Second, there are

composition e�ects over the years in terms of the unit �xed e�ects: units that show up earlier in the sample tend

to have higher �xed e�ects (because Cov(αi, Ei) < 0). The composition of unit �xed e�ects is stable in a balanced

sample for years t such that k ≤ t ≤ T̄ − k, which in our simulation amount to 8 years. Intuitively, a balanced

sample appears to solve the �selection issue� discussed in the setting of unbalanced samples because each unit gets

treated for the same number of years during the sample: however, in practice year �xed e�ects absorb all of the

variation for years t that are not such that k < t < T̄ − k (i.e. that are at the beginning or end of the sample). For

this reason, the point estimate we obtain for the treatment e�ect by running Yit = βt + γTit + uit in the balanced

sample is exactly the same as the one we obtain by running the same speci�cation in the balanced sample further
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restricted to t such that k < t < T̄ −k (the middle of the sample).31 In this restricted sample (which is unbalanced !)

we have Cov(αi, Ei) < 0.32 Intuitively, once we eliminate the observations that are at the very beginning and the

very end of the sample, we are left with a sample where units with higher �xed e�ects spend a bigger share of the

sample under treated status.33 This shows that endogenous selection e�ects in the data generating process a�ects

the consistency of the point estimate in the same way under balanced and unbalanced panels.

Another way to summarize the intuition is as follows: the idea of irrelevance of unit �xed e�ects in balanced

panel is coming from the observation that Tit is orthogonal to the unit dummies in the balanced sample. This holds

unconditionally but fails conditionally on the time dummies, which are always included in these regressions. This

failure is obvious: if ones �xes t, the dependence between Tit (equivalently, Ei) and the true unit �xed e�ects is

precisely the problem we were hoping to address - and it exists even restricting the sample to individuals observed

at t in the balanced sample.

E An Economic Model: the Permanent Income Hypothesis

To see how restrictive the assumption of homogenous treatment e�ects across cohorts and time is, we consider the

simplest setting where event timing is fully random and unpredictable. All units (for simplicity, let us think of them

as people for now) have the same prior belief about when the event may happen, and they update it over time using

the Bayes rule. If a person does not receive treatment at the beginning of period t, this may be a minor shock if

she thinks she is likely to get it next period, or a large shock if the expected date of the event moves far into the

future, and behavior will respond accordingly. Only under very speci�c prior distributions can the treatment e�ect

be independent of t.

For a speci�c example, consider an agent who lives for t = 1, . . . , T periods and is expecting to get a permanent

raise of R from her baseline wage normalized to zero. The raise will happen at the beginning of a random period

drawn from some distribution, and she does not get any information until the date of the raise. Her consumption

follows the permanent income hypothesis, and there is no discounting. What is the e�ect of getting a raise on

consumption at impact, τit0? If she gets the raise at time t, she is certain that the permanent income per period is

R. If the event does not happen at t, it equals R ·E [T − Ei + 1 | Ei > t] / (T − t+ 1). The treatment e�ect equals

the di�erence between the two:

τito = R · E [Ei − t | Ei > t]

T − t+ 1
.

It is independent of t only if Ei is uniformly distributed across periods.

31We have veri�ed in simulation that the point estimate and standard errors for the treatment e�ect are indeed exactly the same in
the balanced sample and the balanced sample with the further restriction that k < t < T̄ − k.

32We have veri�ed this in the simulation by running Tit = λαi + uit in the balanced sample restricted to t such that k < t < T − k,
which indeed yields λ < 0

33For instance, the units that were treated at the earliest possible time, i.e. with Ti = k+ 1, are now treated in 100% of observations.
Before further restricting the balanced sample, they were (by de�nition!) treated in 50% of observations. Conversely, the units that
were treated at the latest possible time, i.e. with Ti = T̄ − k− 1, appear as treated in 1

T̄−2k
% of observation, or 16.66% of observations

in our simulation.
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