GENDER STRATIFICATION IN CONTEMPORARY URBAN JAPAN*

MARY C. BRINTON
The University of Chicago

Japanese women participate in the labor force at rates similar to women in Western industrial nations, but gender stratification patterns are sharper. Women in Japan are less apt to work as employees, a tendency that increases with age. Likewise, female employees tend to shift from larger to smaller firms across the life cycle, whereas male employees do not. These aggregate patterns imply that Japanese women are seldom placed in career-track positions in large firms early in their careers. Analyses on labor market entry data from the 1984 “Survey on Work Patterns” substantiate this view. Although Japanese men and women enter large firms at equivalent rates upon leaving school, 22 percent of men and only 7 percent of women enter career ladders. The majority of women enter large firms as clerical workers, three-quarters of whom are in low-level “assistant clerical” positions. Causal processes governing entrance to large firms and career tracks are examined in the paper, with particular attention to the relative returns to different levels and types of education for Japanese men and women.

INTRODUCTION

In recent years, Western social scientists have produced many historical and sociological studies of Japanese industrial relations. This body of research has contributed to a greater understanding of the origins and functioning of the Japanese “permanent employment system.” But these studies have focused almost exclusively on the small proportion of the labor force actually covered by permanent employment policies: male full-time workers in large firms.

The rate of female labor force participation in Japan roughly parallels that of Western industrial nations, yet the role played by women in the economy remains largely uninvestigated. Researchers routinely cite the low status of women in the Japanese workplace (Clark 1979; Cole 1979; Rohlen 1974) and link it inferentially to the permanent employment system. The permanent employment system refers to the internal labor market structure of the large firms in the economy, where workers are hired directly upon graduation from school and move up career ladders through principles of seniority and merit.¹ Observers of the Japanese economy allege that women do not have access to these career ladders, and case studies of work organizations support this view. But organizational case studies leave a number of questions unresolved.

First, we do not know what proportions of women enter large firms. Second, we have no estimates of the number of women who gain access to career ladders in these firms. Thus it is unclear whether Japanese women are excluded from the large-firm sector of the economy or, alternatively, participate heavily in this sector but are in non-career-track roles. Third, we do not know the extent to which exclusion from career ladders is based on human capital considerations (e.g., sex differences in education and ability) or on

---

¹ The terms career ladder and career track are used synonymously throughout the paper to indicate a systematic progression of hierarchically ranked jobs in one firm. This term is used in preference over internal labor market, which has a somewhat broader meaning. See Althauser and Kalleberg (1981) and Osterman (1984) for discussions of internal labor markets and career ladders.

other considerations such as discriminatory hiring and job assignment practices.

This paper investigates these questions. Since little has been written about Japanese women’s status in the economy, I first use aggregate data to give an overview of gender stratification patterns in Japan and other industrial economies. I also examine the divergence in men’s and women’s work patterns in Japan across the life cycle. Attitudinal data and ethnographic information illuminate processes of sex discrimination in Japanese recruitment and hiring. In the second half of the paper I present a microlevel analysis of labor market entry using data from the “Survey on Work Patterns” for two cohorts of urban Japanese men and women. I estimate the relative proportions of men and women who enter large firms upon leaving school and the proportions who enter career-track positions. Finally, I examine the variables governing these processes for men and women, to assess whether the returns to family background, ability, education, and other characteristics differ for the sexes.

JAPANESE WOMEN’S PARTICIPATION IN THE ECONOMY

As shown in Table 1, Japanese women exhibit a labor force participation rate similar to that of women in Western industrial nations. With 49 percent of adult females in the labor force, Japan stands between the high rates of North America and Scandinavia and the somewhat lower rates of Western Europe. However, an examination of the relative patterns of men’s and women’s participation in the economy shows Japan to be an outlier among industrial economies.

Among industrial economies, Japanese women make up the lowest proportion (36 percent) of paid workers relative to men. In Table 2 I show how the sexes are distributed by employment status (employee, self-employed, and family enterprise worker) in various industrial economies. Compared to other nations, Japan displays the largest gap between the proportions of men and women who work as employees. The sex distribution of the self-employed is fairly even in Japan; but 20 percent of women work as family enterprise workers as opposed to only 3 percent of men. In short, the comparatively low rate (67 percent) at which Japanese women work as employees in complemented by the high rate of unpaid family enterprise workers in small family-run businesses or farms. Even in the nonagricultural population, Japanese women exhibit a much higher rate of family enterprise employment than women in other countries. Although Japanese men exhibit a somewhat higher rate of such employment than men in other nations, the magnitude of the difference in much lower than for women.

As shown in Figure 1, the proportion of the Japanese female labor force who work as employees is highest at young ages (20–24) and declines monotonically except for a slight increase in the age-group 40–44, when women’s childcare responsibilities typically decrease. In short, even among working women, the proportion of paid employees decreases sharply with marriage and childbearing in the late 20s and early 30s and does not again approach the earlier level. Although not shown here, data for 1970, 1975, and 1980 indicate that this is largely an age rather than a cohort effect. While the proportion of employed women in each age-group who work as employees has increased over time, the shape of the curve remains the same: large numbers of women move from employee to nonemployee status after age 25. These data may reflect conflict between women’s family responsibilities and the demands of paid

<table>
<thead>
<tr>
<th>AMERICAN SOCIOLOGICAL REVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Table 1. Female Labor Force Participation Rate in Industrial Economies</strong></td>
</tr>
<tr>
<td><strong>Country</strong></td>
</tr>
<tr>
<td>Japan</td>
</tr>
<tr>
<td>United States</td>
</tr>
<tr>
<td>Canada</td>
</tr>
<tr>
<td>West Germany (1984)</td>
</tr>
<tr>
<td>England (1984)</td>
</tr>
<tr>
<td>France (1984)</td>
</tr>
<tr>
<td>Norway</td>
</tr>
<tr>
<td>Sweden</td>
</tr>
<tr>
<td>Denmark</td>
</tr>
<tr>
<td>Australia</td>
</tr>
</tbody>
</table>

Notes: (a) All figures are for 1985, except where indicated.

(b) Figures are calculated as (total number of women in the labor force/total female population age 15 and above) × 100, with the following exceptions: For England, the denominator is the total female population (thus rendering the figure relatively low); for Norway and Sweden, the denominator is the total female population age 16 and above.

(c) Countries in Tables 1–3 were chosen on the basis of geographical representation and comparability of data.

female employees are slightly underrepresented in the smallest firms and overrepresented in the largest ones. But men’s and women’s representation in firms of different sizes changes dramatically in the older age-groups. By age 45–49, women’s participation rate in small firms in one and a half times that of men. Men’s participation rate in small firms remains extremely stable across age-groups. Conversely, women age 45–49 participate in large firms at a rate approximately three-fifths that of men (and also three-fifths the rate for 20–24 year-old

Table 3. Distribution of Female and Male Employees across Firms of Different Sizes, by Age-Group (1985)

<table>
<thead>
<tr>
<th>Firm Size</th>
<th>Tiny (1-9)</th>
<th>Small (10-99)</th>
<th>Medium (100-999)</th>
<th>Large (1000+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–24</td>
<td>13.8</td>
<td>28.4</td>
<td>24.9</td>
<td>33.0</td>
</tr>
<tr>
<td>(15.4)</td>
<td>(29.7)</td>
<td>(23.6)</td>
<td>(31.3)</td>
<td></td>
</tr>
<tr>
<td>25–29</td>
<td>17.4</td>
<td>26.9</td>
<td>19.3</td>
<td>36.7</td>
</tr>
<tr>
<td>(14.4)</td>
<td>(27.0)</td>
<td>(22.2)</td>
<td>(36.3)</td>
<td></td>
</tr>
<tr>
<td>30–34</td>
<td>23.0</td>
<td>30.3</td>
<td>17.1</td>
<td>30.3</td>
</tr>
<tr>
<td>(15.8)</td>
<td>(27.5)</td>
<td>(20.6)</td>
<td>(35.8)</td>
<td></td>
</tr>
<tr>
<td>35–39</td>
<td>25.0</td>
<td>34.3</td>
<td>17.2</td>
<td>23.0</td>
</tr>
<tr>
<td>(15.9)</td>
<td>(27.0)</td>
<td>(20.4)</td>
<td>(36.5)</td>
<td></td>
</tr>
<tr>
<td>40–44</td>
<td>24.0</td>
<td>36.5</td>
<td>18.3</td>
<td>21.2</td>
</tr>
<tr>
<td>(15.3)</td>
<td>(27.5)</td>
<td>(19.8)</td>
<td>(37.1)</td>
<td></td>
</tr>
<tr>
<td>45–49</td>
<td>22.4</td>
<td>38.8</td>
<td>19.1</td>
<td>20.2</td>
</tr>
<tr>
<td>(14.9)</td>
<td>(30.0)</td>
<td>(19.5)</td>
<td>(35.6)</td>
<td></td>
</tr>
<tr>
<td>50–54</td>
<td>21.7</td>
<td>38.5</td>
<td>18.2</td>
<td>21.7</td>
</tr>
<tr>
<td>(15.5)</td>
<td>(30.6)</td>
<td>(18.8)</td>
<td>(34.7)</td>
<td></td>
</tr>
<tr>
<td>55–64</td>
<td>28.2</td>
<td>39.7</td>
<td>13.7</td>
<td>18.3</td>
</tr>
<tr>
<td>(17.6)</td>
<td>(34.9)</td>
<td>(19.6)</td>
<td>(28.1)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Upper figures represent proportion of employed women in each age-group who work for firms of varying sizes; figures in parentheses represent proportions of men.

Source: Office of the Prime Minister, Japan (1985).
That large two reversed two women). Men age 45–49 are represented in large firms at a slightly higher rate than men age 20–24.

These trends could be produced either by an age (life cycle) effect or by a cohort effect. That is, the data could be indicating that employed women move out of large firms and into small firms later in life (an age effect), or that older employed women are overrepresented in small firms because they started out in small firms (a cohort effect). In order to assess these two explanations, similar tables were constructed for 1972 (the first year such data are available), 1975, and 1980. The same age pattern also appeared in these former periods: women employees began to work in large firms at a rate somewhat higher than men, but the firm size pattern by sex reversed at older ages. This suggests a life cycle interpretation whereby women employees leave the large firms they initially entered, either dropping out of the labor force or shifting to smaller firms. Whichever of these two courses they pursue, it is clear that women are not moving up in career ladders in the internal labor markets of large firms.

Managerial and wage data support this view of limited female participation in career ladders. International comparability of both occupational and wage data is limited, but a few illustrative figures may be given. The ratio of Japanese female to male employees in managerial ranks is only 13 percent, compared to 68 percent in the United States, 63 percent in Canada, and 41 percent in West Germany (International Labor Organization 1986). The overall female/male wage ratio for full-time workers in 1983 ranged in Western industrial nations from a low of 66.5 (weekly rate) in the United States to highs in the 84–89 percent range (hourly) in France and Northern Europe. Wages in Japan are typically reported as monthly rates, and the female/male ratio in 1983 was 55.5, substantially lower than in any other industrial country (Japanese Ministry of Labor 1987).

Attitude survey data and ethnographic data supplement these aggregate labor force figures. A national opinion poll of 3000 people conducted by the Yomiuri newspaper in Japan in April 1984 indicated a widespread perception of sex discrimination in Japanese workplaces: 80 percent of respondents believed that women are treated in a "disadvantageous" way in regard to hiring, and 84 percent felt that this situation also applies to job rotation and promotion.

Young Japanese women and their parents take note of the restrictive recruitment policies for women. Especially marked is the perception of low returns to university-educated women in the labor market. People interviewed during my fieldwork in 1984 indicated that education for a daughter was well and good to a point; once that point was reached, education didn’t help and could actually hurt a young woman’s chances of getting a job. This was summed up in the comments of one puzzled mother, a middle-aged employee at a suburban branch of a Tokyo bank:

Now my daughter is debating about whether to go to junior college or to university. She says that getting a university education will be a handicap (feri) when she looks for a job; it’s true that the situation for women university graduates is very bad and that close to 100 percent of women junior college graduates can get jobs. But even so, I think she should go ahead and go to university. It’s a hard situation—and it’s hard for me to give advice to my daughters. (Brinton 1986)

A 1984 survey asked young Japanese women’s opinion on the correspondence between education and success in their job search. Respondents were women who were to graduate the following March, and thus had either completed or were in the midst of job seeking. One-fifth of the university women felt that in the final analysis their education was more of a disadvantage than an advantage, compared to only 12 percent of junior college women. Conversely, half of the junior college women felt that their education helped them on the job market, a proportion similar to that for university women.

Japanese employers have customarily asked women during the job interview whether they plan to quit when they marry. Many young women reported in my fieldwork interviews

---

2 Table 3 is restricted only to employees, which means that these trends are not produced by women who work as unpaid workers in small family enterprises. Rather, the trends are produced only by women who work in the formal (paid) sector of the economy.

3 Such questioning is now formally illegal as a result of the Japanese Diet’s passage of an Equal Employment Opportunity Law in 1985.
that previous job seekers advised them to state an intention to quit, because this would heighten their chances of being hired. By quitting in their mid- to late 20s, Japanese women provide employers a cushion against too many “permanent” employees. Yet at the same time that employers encourage this behavior, many claim that they do not give equivalent training and promotion opportunities to men and women because they fear women will get married and leave the labor force. The employer’s returns from the investment in women workers’ training will then be lost. This constitutes one of the contradictions of female employment in Japan, a link in the vicious circle of strongly gender-defined expectations on the employer side and conforming behavior on the labor supply side.

Japanese employers are strongly motivated to hire employees who plan to remain with the firm over a long period, so that the costs of on-the-job training will not be wasted. Past experience has taught them that women are more likely to quit and that investment in women’s training is therefore riskier than investment in men’s. In this way, the pervasiveness of the internal labor market structure and accompanying firm-specific training constitutes an institutional barrier to women. And as poignantly illustrated in the ethnographic material above, employer expectations and behaviors feed back to young women’s attitudes and behavior as well as to their parents’. This is especially meaningful in a cultural setting such as Japan, where parents are almost uniformly responsible for financing children’s education and are therefore intimately involved in educational decision making and investment (Brinton 1988).

The employment practices outlined above can be analyzed with microlevel data on Japanese men’s and women’s entry into the labor force after leaving school. In the next section, I make predictions concerning the relative proportions of men and women entering large firms and the proportions entering career-track positions in such firms. I then make a number of predictions about the factors important in the process by which individuals enter large firms and career ladders, paying particular attention to the translation of education into employment outcomes for men and women.

ENTRANCE INTO LARGE FIRMS AND CAREER LADDERS

Descriptive Predictions

I make two descriptive predictions concerning labor market entrance of men and women.

(1) Japanese men and women will have roughly equal probabilities of initially being hired into large firms upon school graduation; women’s probability may be slightly higher.

Why? Japanese employers in large firms have only a limited number of career-ladder positions to offer; career lines represent “packages of training and jobs” (Miyahara 1988, p. 41). Hiring women over men into non–career-track positions in the firm represents savings in wage costs for employers, for these women will “retire” in a few years and be replaced by new school graduates at starting wages. If this is true, we should expect to see large numbers of women entering large firms, but we should expect to see them entering different slots than men. This leads to the second prediction:

(2) Significantly more men than women will enter career-track positions on their first job.

Causal Predictions

I make several predictions about the process of entering large firms and career tracks, and differences in the process for men and women. A number of factors can be hypothesized to be important: (1) the individual’s educational attainment and the quality of education; (2) ability; (3) labor force attachment (relevant for women); (4) the historical timing of labor force entry, represented by cohort; and (5) family background variables (father’s employment status and mother’s labor-force participation). Because particular features of the Japanese social-institutional context affect both measurement and prediction, these issues are also discussed below.

Educational level and quality. Educational attainment is typically used as a measure of human capital in the prediction of job placement. The hierarchical structure of the Japanese educational system and the strong

---

4 See Roos and Reskin (1984) for a general discussion of institutional barriers. For discussions of internal labor markets, promotional tracks, and on-the-job training in Japan, see Cole (1979), Koike (1983), and Shirai (1983).
link between schools and work organizations (Miyahara 1988; Rohlen 1983; Rosenbaum and Kariya 1987) suggest that "quality" of schooling in addition to level is an important predictor. Further, the effects of educational level and quality may differ for males and females. Specifically:

Educational attainment should be positively related to entrance into a large firm and into a career track for males. However, the effect is not necessarily a linear one: male high school graduates may fare better than those with the next level of schooling (junior college/vocational school).

Among males who continue on to higher education after high school (currently about 38 percent), 95 percent are in four-year universities and only 5 percent are in vocational schools. Given the strength of the recruitment relationship between large firms and high schools (Rosenbaum and Kariya 1987) as well as large firms and universities, a young man's probability of entering a large firm from high school or university should be higher than the probability attached to vocational school. The survey to be used for the analysis distinguishes the rankings of schools, and I expect that more of the males who attended top-ranked high schools and universities will be recruited into large firms and into career-track positions.

A linear relation is expected between females' educational attainment and probability of entering a large firm, with only a slight gain for women with a university education. For entrance into a career-track position, education will be significantly less helpful to women than to men. Further, only the most highly educated women (graduating from top universities) will have any chance of entering a career-track position.

Women's educational attainment in Japan differs significantly from men's. While about one-third of women continue their education after high school, nearly two-thirds of these go on to junior college and the rest enroll in four-year universities. Since junior college represents the most "typical" route after high school and since such women largely follow a sex-typical curriculum, graduates represent a ready pool of labor for large firms' low-level clerical needs. University education will not represent a great improvement in women's chances of being hired into large firms. For entrance into career tracks, I predict that only graduation from a top university will increase women's chances.

**Ability.** Ability is hypothesized to be a predictor of placement in both large firms and career positions for men and women.

**Work plans.** No relationship is predicted between women's work plans and placement in a large firm, but a positive relationship is expected between women's placement in career-track positions and plans to work across the life cycle.

Japanese employers frequently claim that it is not economically rational to place women in career-track positions and on-the-job training programs because of their high propensity to quit upon marriage or childbirth. This is difficult to test without a longitudinal study, but an indirect approach is to examine the relationship between first job and women's retrospective report of their adolescent plans for future work life. If the claim of Japanese employers is correct, we would expect to find an association between women's plans for continuous work and their placement in a career-track position. And if the arguments in this paper are correct, we would also expect that women's plans for continuous work do not have anything to do with placement in a large firm per se, because it is likely that they will be in positions that neither require nor encourage long-term employment.

**Control variables**

**Cohort.** It is predicted that members of the older cohort (40-44 years of age) in the sample experienced greater opportunities initially to enter career-track positions than members of the younger cohort (25-29 years of age).

The sample includes two cohorts. Members of one (40-44) entered the labor market in the early 1960s during a period of rapid economic growth, and members of the other (25-29)
entered in the late 1970s, a recessionary period. Some scholars have suggested that Japanese women are the first to be affected by economic downturns, as employers attempt to protect the core male workers who are permanent employees (Rohlen 1979). If this is correct, then female members of the younger cohort would have been particularly subject to exclusion from career-track positions.

Father’s employment status. Father’s employment status is a control variable and is not expected to directly influence labor force entry, except that children of self-employed fathers may be less likely to work in large firms or in career-track positions because their labor is valued in the family business.

Mother’s labor force participation. In the highly sex-discriminatory environment of Japan, mothers’ participation in the paid labor force may exert a discouraging effect on daughters’ career-track entrance because daughters witness their mothers’ difficulties. Mother’s labor force participation will not necessarily have any effect on daughter’s entrance into a large firm, a temporary state before marriage. No effect is predicted for sons.

DATA AND METHODS

Data for the following analysis come from a survey (the “Survey on Work Patterns”) I conducted in three urban locations in Japan during 1984: Sapporo, Kodaira (a suburb of Tokyo), and Toyohashi. Up to the present time, no microlevel data set that includes the necessary variables has been publicly available. The data were collected as part of a larger project on gender stratification in the Japanese economy. Questions in the mail survey include extensive information on natal family, educational, marital, and work histories, as well as educational aspirations and behaviors towards respondents’ own children. A stratified random sampling procedure was followed, with random samples of men and women in two cohorts (25–29 years and 40–44 years) drawn from the senkyonin meibo (voting registration records) in each city. These records constitute a complete current listing by household of all adults over age 20 in the city. A 13-page questionnaire was mailed to the sample, with an overall response rate of 50.1 percent for the three cities. This response rate, while respectable for a mail survey, nevertheless may entail biases that could affect the statistical results. Therefore, a number of checks were carried out to assess the degree of response bias.

Comparison of the respondents to the populations from which they were drawn indicates a slight overeducation bias. Weights were applied to equalize the educational distribution of the age/sex groups in each city with the populations from which the samples were drawn. The overall sample was then compared with the general urban population (or, where possible, with the figures for the three sampled cities) on labor force status, employment status, and industry—employment indicators available in published census materials. The distributions on all three variables are very similar for the respondents and the population. Further, the proportions of men and women in the younger cohort (25–29) who entered large firms after leaving school are strikingly similar to labor force data collected by the government. Government statistics for the age cohort 20–24 in 1975 (the cohort most comparable in terms of historical timing of labor market entrance) show that 33.0 percent of men and 35.2 percent of women were employed in large firms. This compares to rates of 32.0 and 35.0 for men and women, respectively, in the younger cohort in our sample.

Statistics computed from this sample also closely match national surveys on a number of attitudinal variables such as perceptions of sex discrimination in the labor market, educational aspirations for sons and daughters, and expectations to live with children in old age. Finally, no significant differences exist among the means of variables for the three major waves of respondents. In short,

7 Bowman notes the high demand for both male and female clerical workers in the mid-1960s in the Japanese economy. She adds, “But recent history suggests that net movements of men out of clerical employment into higher level jobs will persist, while women will continue to fill the clerical posts” (1981, p. 214).

8 The unweighted sample was used in the logistic regression analyses reported in this paper, as the analyses were done separately for each sex, and education and age were both used as independent variables.

9 Tables showing these comparisons are available from the author upon request.
Table 4. Measurement of Variables

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Dummy variable (representing historical timing of respondent’s entry into the labor market); 0 = respondent 25–29 years of age, 1 = respondent 40–44 years of age.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father’s employment</td>
<td>Series of dummy variables for father’s employment status when respondent was 15 years of age: unemployed or absent, self-employed or farm, blue-collar, white-collar (omitted category).</td>
</tr>
<tr>
<td>Mother’s employment</td>
<td>Dummy variable for mother’s employment status outside home when respondent was 15 years of age: 0 = mother was full-time housewife, family worker, or worked in a home handicraft job; 1 = mother was employed part-time or full-time outside the home.</td>
</tr>
<tr>
<td>Ability</td>
<td>Respondent’s class rank in senior year of high school, by decile, scored 1–5. (If respondent did not attend high school, class rank in final year of junior high school is substituted.)</td>
</tr>
<tr>
<td>Education</td>
<td>Series of dummy variables for respondent’s educational level and, for university, educational quality: junior high school (omitted category), high school, junior college/vocational school, low-ranking university, medium-/high-ranking university.(^a)</td>
</tr>
<tr>
<td>Work plans</td>
<td>Dummy variable representing women’s reported plans in adolescence to work continuously across the life cycle.(^b)</td>
</tr>
<tr>
<td>Large-firm placement</td>
<td>Dummy variable representing initial job placement in the government sector or in a firm employing 1000 + employees.</td>
</tr>
<tr>
<td>Career-ladder placement</td>
<td>Dummy variable representing initial job placement in a career ladder (see text for details on measurement).</td>
</tr>
</tbody>
</table>

\(^a\) The scale of university quality was constructed with the cooperation of Professor Keiko Nakayama Watanabe, a member of the Social Stratification and Mobility (SSM) project in Tokyo. Universities were ranked into three groups: the former seven Imperial Universities, Tokyo Institute of Technology, and Hitotsubashi University (Group 1), a larger group of public and private universities (Group 2), and lower-ranked private universities (Group 3). A complete listing of universities and their rankings is available from the author.

\(^b\) The survey question was phrased in the following way: “When you were about 18 years old, what combination of work and family life did you most hope to have in the future?” The proportion of women reporting the expectation of working continuously throughout the life cycle was only 15.9 percent; this category was combined with the category of women who expected that they would quit work temporarily with childbirth and later reenter the work force. The combined category represents 39.6 percent of women.

Measurement of the variables is described in Table 4, and means and standard deviations are shown in Table 5. (Means for dummy variables are proportions of respondents who scored “1” on those variables.) Ninety-three percent of the 1154 respondents have had some work experience, yielding a total of 1075 respondents in the present analysis. Of these, 96 percent entered the labor market within two years after leaving school, and there is no differentiation in this timing by sex. Thus, gender differentiation in employment outcomes is not due to women’s delay of their initial labor market entry. In preliminary analyses, a dummy variable was created to reflect whether the respondent entered the labor market within two years after school graduation. This variable was insignificant in the models. Less than 5 percent of either males or females were married at the time of entry into the labor force, and a dummy variable measuring marital status was also insignificant in all models.

Measurement of the two dependent variables—placement in a large firm and placement in a career-track position in such a firm—merits separate discussion below.

**Operationalizing Firm Size and Career-Track Position**

A dummy variable was created to measure initial placement in a large firm, with large firm considered to be one that employs at least 1000 people, or the government sector. This measure is in accord with Hashimoto and Rajian’s (1983) conceptualization and is consistent with classic studies of the Japanese economy such as Cole’s (1979) and with published government statistics on firm size.\(^10\)

\(^10\) A further justification for classifying large firms as those employing 1000 or more workers stems from Hashimoto and Rajian’s findings on median tenure and estimated eventual tenure of currently held jobs in medium (100–999 employees) and large (1000+) firms: median tenure increases by a factor of 1.5 and estimated eventual
The variable measuring initial career-track position was constructed as a composite of several indicators. Respondents provided the following information on the first job they held after leaving school: employment status (employee, manager, self-employed, family enterprise worker, piece-rate worker), size of firm (1–9, 10–99, 100–299, 300–999, 1000 or more employees, government), working status (full-time, part-time, temporary worker), occupation (10 categories), industry (9 categories), and self-assessed promotional possibilities in first job (none, supervisor or foreman, section chief, department head, higher than department head). Individuals were classified as starting their work life in a career ladder if they (1) started as full-time employees or managers in a firm (not an individual establishment) of 1000 or more employees or in the government sector, (2) reported having perceived some possibility for promotion (to section chief or any category above), (3) were neither in an agricultural occupation nor in an “assistant clerical” position, and (4) were not working in primary industry (agriculture, mining, or fishing).

The principal unconventionalities in the construction of the career ladder variable are the use of perceived promotional possibilities and the limited use of occupation and industry. These decisions are related to the Japanese case but also have relevance for the measurement of career ladders in general. The present study follows the spirit of several previous approaches (Spilerman 1977; Villemez and Bridges 1988) but makes special use of the standard hierarchy of positions in Japanese enterprises to construct the measure of career ladder placement. 11

Positions in large Japanese work organizations are arranged in vertical tiers, each corresponding to a span of control: (1) supervisor or foreman (kakaricho), generally in charge of up to 5 subordinates, (2) section chief (kacho), heading a section of approximately 10 subordinates, (3) department head (bucho), supervising a department (typically consisting of three or four section), and (4) the highest level administrative positions, above department head. This structure is common in large firms across industries, and it represents both the factory and office systems of titles and statuses: “The standard ranks also supply a common frame of references for people in different departments or sections doing different kinds of jobs. A worker on the shop floor can look forward to being first a sub-section head and then a section head, with exactly the same privileges as sub-section heads and section heads in the sales department or the accounts section” (Clark 1979, p. 108). The terms for rank even appear on the ubiquitous Japanese business card.

The survey question that addressed the issue of position/status was as follows: “At

<table>
<thead>
<tr>
<th>Table 5. Means and Standard Deviations of Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

11 In an influential article on career ladders, Spilerman (1977) suggested replacing status and earnings of first job by representative measures of the career line’s worth. He proposed measures of expected lifetime earnings and expected status 20 years after career-line entry, proposing a simulation procedure for estimating values on such variables. More recently, Villemez and Bridges (1988) constructed a composite variable measuring internal labor markets based on workers’ and employers’ perceptions of how given jobs are filled and what their promotional possibilities are.
the workplace where you held your first job (after leaving school), what was the highest promotional possibility for you and for others doing the same type of work as you?" The question was phrased in such a way as to inquire about the promotional possibilities inherent in the position rather than for the specific respondent. All those who reported having promotion possibilities to the second level (kacho) or above were considered as fulfilling this measurement criterion for career track.

**Occupation and industry.** Occupational and industrial classifications were used in only a limited fashion to construct the career ladder variable because both occupations and industries are quite heterogeneous (Baron and Bielby 1980). Blue- as well as white-collar jobs may be structured in career ladders (Hartmann 1987; Doeringer and Piore 1971) and this is particularly true in Japan. Salary and status differences are also lower between blue- and white-collar workers in Japan than in the United States. Thus any distinctions based on a blue-/white-collar criterion would be erroneous. The measure used in this paper employs occupational and industrial classifications in a discretionary way, using only those categories that clearly distinguish workers as being in or out of a career track.

When promotional possibilities are cross-classified with occupational categories, the occupations that emerge as having very low promotional possibilities are agricultural activities and the assistant clerical category. Other occupational categories such as sales work, general office work, and services demonstrate a wider distribution across promotional categories. Only two occupational categories were therefore used to sort respondents into career ladders: people in the combined category including agriculture, fishing, and mining, or in the category of assistant clerical work were classified as non–career-position incumbents. The latter was a category used in the questionnaire in addition to “clerical” in an attempt to distinguish among white-collar workers. The length of career ladders in entry-level white-collar jobs in large firms varies widely (Halaby 1979; Hartmann 1987; Kanter 1977; Kelley 1982; Rosenbaum 1985), and “assistant clerical” was intended to capture those low-level white-collar or pink-collar jobs with limited career potential.

Industrial classification was used only as a check to classify people whose work lives began in primary industries (agriculture, fishing, mining) in the non–career-ladder category and to include government sector employees in the career-ladder category (if they fulfilled the other qualifying criteria listed above). Checks were carried out to see whether further use of industrial classification would refine the composite measure of career ladder based on employment status, full-time/part-time work, firm size, and occupation. Industries were classified into core and periphery sectors. The mean promotional possibility reported by full-time employees and managers was computed for each sector, as well as the mean promotional possibilities for full-time employees and managers in large firms (1000 or more workers). When firm size is left unspecified, the difference in mean promotional possibility is significant (t-test, p < .001) between the core and periphery. But when the analysis is restricted to large firms,

---

12 A comparison of the response to this question with the response to a question later in the survey that asked about actual promotional experience of the individual respondent yielded the following: Among respondents who reported having been in a position with no promotional possibilities, only 1.8 percent of women and 6.1 percent of men reported that they had actually received a promotion in their first workplace. However, much greater variability in actual experience was reported among respondents who said that they were initially in a position with promotional possibilities. These results are consistent with the intention of the question on the structure of promotional possibilities: One would expect very few people who say they are in a position with no upward trajectory to ever experience such a trajectory, whereas people who say their position can lead to promotion may or may not actually experience that outcome.

13 The classification developed for Japanese data by Kawashima and Tachibana (1986) was used for this purpose. They classified manufacturing industries as being in the competitive or noncompetitive sector based on the production share of the 10 largest firms in each industry. Nonmanufacturing industries were considered to be in the noncompetitive sector if at least 30 percent of workers in that industry were employed in large firms (1000 or more workers). In the data set at hand, manufacturing, finance/insurance/real estate, transportation and communications, utilities, and the civil service were classified in the core (noncompetitive sector). Agriculture, construction, wholesale and retail sales, and services were classified in the periphery (competitive sector).
the mean promotional possibility in the two sectors is nearly exactly equal. So, specifi-
cation of economic sector based on industry does not add information above and beyond
description of firm size. The reverse does not hold. The mean promotional possibilities
for firms of different sizes (small, medium, and large) within industrial sector are signifi-
cantly different.14 Given these results, data on industry were used only to make certain that
agriculture/primary industry and government employees had been properly classified.

Logistic regression methods were em-
ployed for the analysis. The dichotomous
nature of the two dependent variables (large
firm or government versus small firm;
career-track position/non—career-track posi-
tion) violates the assumptions of ordinary
least squares regression. In this case, and
especially when the split on the dependent
variable is rather extreme (as in the case of
females’ entrance into career ladders), logistic
regression is advisable (Hanushek and Jack-
on 1977).

RESULTS

Virtually equal proportions of men and
women (30.7 percent vs. 30.0 percent) in the
sample entered a large firm upon leaving
school (see Table 5). This result replicates the
aggregate government statistics reported
earlier. As predicted, there is no significant
difference in the rate at which men and
women enter large firms.

But the proportions of men and women
whose first job was a career-track position in
a large firm are significantly different: 22
percent of men and only 7 percent of women
started their work lives in a career ladder.
Stated differently, fully 71 percent of men
who started out in large firms were in
career-track positions, in contrast to 23
percent of their female counterparts. This is
brought into sharp relief when we consider
the fact that 60 percent of the women who
entered a large firm when they left school
entered as clerical workers. Among these,
three-quarters were “assistant clerical” posi-
tions. In contrast, one-third of the men who
entered large firms were placed in clerical
jobs and only 7 percent of these (one-tenth the
proportion of women) were “assistant clerical”
positions.

In Table 6 I show the results of regressions
for placement in a large firm at the start of
one’s work life. Two models were run for
women, an initial one that omits women’s
retrospectively reported adolescent work plans
and a second one that includes this variable.
This permits comparison of the initial model
for men and women and comparison of the
second model with the first one for women, to
see if adolescent work plans add significantly
to the explained variance.

The process of entering a large firm is
similar for males and females. Ability and
education are positively associated with
entering a large firm for both sexes, and
family background variables do not exert
significant effects. High school education is
worth more than junior college/vocational
school or low-ranking university for males,
whereas progressively higher educational at-
tainments increase women’s probability of
entering a large firm.15 For women, mother’s
labor force participation is not related to
entrance into a large firm. Nor are work
plans—Model 2, which includes this variable,
does not represent a significant improvement
over Model 1. These findings are as pre-
dicted.

When the coefficients for men and women
are compared,16 high-ability men are signifi-
cantly more likely than high-ability women to
enter large firms. Male high school graduates
are also significantly more likely to start out
in large firms than are female high school
graduates.

Further sex differences emerge when the
process of entrance into career-track positions
is examined. Human capital variables signifi-
cant for men’s placement in a career ladder

---

14 Tiny firms (those employing less than nine
workers) were excluded from this analysis because
of the very limited promotional possibilities within
them.

15 I originally ordered high schools into three
tiers, expecting to insert rank order into the
equations. But virtually all individuals who
attended top-ranked or second-ranked high schools
continued on to university, leaving these cells
nearly empty. The number of respondents who
attended top-ranked universities is also low in a
sample of this size, so the categories of top- and
second-ranked universities were combined.

16 Analyses were carried out on the full sample
(men and women), with interaction terms between
sex and each variable included.
Table 6. Logit Coefficients Describing the Effects of Individual Characteristics on Entrance into Large Firms after Leaving School

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-4.909** (.867)</td>
<td>-2.557** (.545)</td>
</tr>
<tr>
<td>Cohort</td>
<td>.074 (.254)</td>
<td>-2.234 (.202)</td>
</tr>
<tr>
<td>Father’s employment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed or absent</td>
<td>-.574 (.518)</td>
<td>.127 (.358)</td>
</tr>
<tr>
<td>Self-employed</td>
<td>-.497 (.317)</td>
<td>-.309 (.229)</td>
</tr>
<tr>
<td>Blue-collar</td>
<td>-.215 (.333)</td>
<td>-.251 (.258)</td>
</tr>
<tr>
<td>White-collar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother’s employment outside home</td>
<td>-.268 (.299)</td>
<td>-.047 (.232)</td>
</tr>
<tr>
<td>Ability</td>
<td>.596** (.130)</td>
<td>.269** (.103)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior high school</td>
<td>2.525** (.744)</td>
<td>1.088** (.380)</td>
</tr>
<tr>
<td>High school</td>
<td>2.138** (.838)</td>
<td>1.192** (.407)</td>
</tr>
<tr>
<td>Low-ranking university</td>
<td>2.429** (.765)</td>
<td>1.600** (.468)</td>
</tr>
<tr>
<td>Medium-/high-ranking university</td>
<td>3.283** (.787)</td>
<td>2.135** (.539)</td>
</tr>
<tr>
<td>Work plans in adolescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum likelihood $\chi^2$</td>
<td>432.64</td>
<td>744.20</td>
</tr>
<tr>
<td>$D.F.$</td>
<td>413</td>
<td>640</td>
</tr>
</tbody>
</table>

Note: All significance tests are one-tailed; * $p<.05$, ** $p<.01$.

are ability and attendance at a medium-/high-ranking university (Table 7). The coefficients for education suggest a monotonic effect of educational attainment, but the only educational credential that significantly affects probability of placement in a career ladder is graduation from a medium-/high-ranking university. These follow our predictions. Sons with self-employed fathers are less likely to enter a career track than others.

Ability exerts a strong effect on women’s probability of placement in a career ladder and the coefficients for educational attainment suggest a linear effect for education, but the similarities in the process of placement in a career ladder for the two sexes end there. Graduation from a medium-/high-ranking university has a positive but insignificant effect on women’s probability of entering a career track, and graduation from junior college has a negative, though insignificant, effect. Graduation from a low-ranking university has a positive insignificant effect. The pattern of these coefficients shows that university graduation does not substantially increase women’s chances of entering a career-track position; junior college graduation may actually damage those chances (whereas the effect of junior college on entering a large firm is positive and significant).

Family background variables also exert some play in determining women’s probability of entering a career ladder. Having a self-employed father depresses a woman’s probability of entering a career track, and having a mother in the paid labor force dampens the probability.

Women’s adolescent plans for labor force participation exert a predicted strong positive effect on probability of entrance into a career track (whereas there was no effect on the probability of entrance into a large firm). Causal interpretation of this variable must be somewhat tentative because of its retrospec-
Table 7. Logit Coefficients Describing the Effects of Individual Characteristics on Entrance into a Career Track after Leaving School

<table>
<thead>
<tr>
<th></th>
<th>Males Model 1</th>
<th>Males Model 2</th>
<th>Females Model 1</th>
<th>Females Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-.2769**</td>
<td>-.4977**</td>
<td>-.5297**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.540)</td>
<td>(.843)</td>
<td>(.870)</td>
<td></td>
</tr>
<tr>
<td>Cohort</td>
<td>-.005</td>
<td>.656*</td>
<td>.738*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.274)</td>
<td>(.390)</td>
<td>(.393)</td>
<td></td>
</tr>
<tr>
<td>Father's employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed or absent</td>
<td>-.312</td>
<td>-.800</td>
<td>-.860</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.522)</td>
<td>(.688)</td>
<td>(.694)</td>
<td></td>
</tr>
<tr>
<td>Self-employed</td>
<td>-.644*</td>
<td>-1.015**</td>
<td>-1.013**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.338)</td>
<td>(.410)</td>
<td>(.412)</td>
<td></td>
</tr>
<tr>
<td>White-collar</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother's employment outside home</td>
<td>-0.080</td>
<td>-1.283*</td>
<td>-1.325*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.315)</td>
<td>(.591)</td>
<td>(.595)</td>
<td></td>
</tr>
<tr>
<td>Ability</td>
<td>.453**</td>
<td>.725**</td>
<td>.713**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.133)</td>
<td>(.192)</td>
<td>(.194)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior high/high school</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.134</td>
<td>-.325</td>
<td>-.338</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.500)</td>
<td>(.443)</td>
<td>(.444)</td>
<td></td>
</tr>
<tr>
<td>Low-ranking university</td>
<td>.353</td>
<td>.209</td>
<td>.088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.327)</td>
<td>(.577)</td>
<td>(.580)</td>
<td></td>
</tr>
<tr>
<td>Medium-/high-ranking university</td>
<td>1.176**</td>
<td>.556</td>
<td>.384</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.354)</td>
<td>(.555)</td>
<td>(.562)</td>
<td></td>
</tr>
<tr>
<td>Work plans in adolescence</td>
<td>-</td>
<td>-</td>
<td>.758*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum likelihood $\chi^2$</td>
<td>399.62</td>
<td>289.56</td>
<td>284.32</td>
<td></td>
</tr>
<tr>
<td>D.F.</td>
<td>414</td>
<td>641</td>
<td>640</td>
<td></td>
</tr>
</tbody>
</table>

Note: All significance tests are one-tailed; * $p<.05$, ** $p<.01$.

tive nature. Nevertheless, the importance of the variable, demonstrated by Model 2’s significant addition to explanatory power, offers support for the notion that there is a strong fit between women’s entrance into career ladders and their intention to work continuously across the life cycle. But other significant coefficients in the model remain stable when the variable measuring work expectations is added, indicating that work motivation is not the mechanism through which those variables operate.

Finally, cohort exerts a significant effect on women’s, but not men’s, probability of entering a career ladder. Women in the older cohort had significantly higher chances of initially entering a career track upon leaving school than women in the younger cohort. Between 1973 and 1978, when most of the younger cohort in our sample entered the labor market, Japan experienced its worst recession in the post–World War II period. While permanent employment for men was largely preserved, large numbers of women exited from the labor force and employers’ willingness to allocate career-track slots to women became even slighter than in the era of high economic growth (Rohlen 1979). The empirical finding of a cohort effect for women is understandable in this context.

Despite the differences in independent variables’ effects for men and women, the only coefficient that differs significantly for the sexes is that for mother’s labor force participation (a predicted effect). While the coefficient for medium-/high-ranking university is much higher for men than women, there is no statistically significant interaction effect with sex. It may be that this is due to the small numbers of women in this category (and the large standard error).
blue-collar workers to enter career ladders (or similarly for white-collar workers), then the determinants of career ladder entrance may differ for the sexes because we are dealing with different types of career ladders. I investigated this further.

Equivalently low proportions of blue- and white-collar women enter career tracks (7 percent). White-collar men, on the other hand, are significantly more likely to enter a career ladder (27 percent) than blue-collar men (14 percent). Given this, I ran regressions for white-collar men’s and women’s entrance into career ladders to see whether the results differed from the previous results for all workers. The results for white-collar women are the same as for all women. The results for white-collar men are also the same as the general results for men, with one modification: father’s employment is not significant for white-collar men. A regression on blue-collar men shows that men with blue-collar or white-collar (non–self-employed) fathers have higher probabilities of entering career-track positions. For young men entering the labor market, then, the effect of father’s self-employment differs according to whether the young male is in a blue- or white-collar occupation. It may be that the career-track fate of young men in blue-collar occupations is affected by father’s self-employed/employee status because it is young blue-collar men who would be most apt to work in a family business if such an opportunity existed.

CONCLUSION

The first half of the paper documented Japanese women’s participation in the economy and investigated gender stratification patterns using available aggregate data. Japanese women participate in the labor force at rates similar to women in other industrial nations but are less likely to work as employees. And among the employee labor force, the male-female wage gap is greater in Japan and women’s representation in managerial ranks is lower. As women move across the life cycle, they are more likely to work in family businesses; older women who are employees are also more likely than younger women to work in small firms. These findings from aggregate government statistics coupled with ethnographic evidence suggest that very few Japanese women find their way into career ladders at the start of their work lives. Rather, they are apt to work as temporary employees in low-level clerical positions.

The second half of the paper probed these findings using microlevel data. While about 30 percent of each sex enter large firms when they initially start working, women are much less likely to enter career ladders (the Japanese “permanent employment system”) than men: 22 percent of men and only 7 percent of women have such an experience. Among the population entering large firms, twice as many women as men enter as clerical workers, and the majority of these women are in low-level “assistant clerical” positions.

Although not always statistically different for men and women, the effect of human capital variables (ability and education) on men’s entrance into large firms and career-track positions is generally stronger than for women. High-ability women have a higher probability of entering career ladders than other women, but larger increments of education do not significantly help women. Family background variables do not exert significant effects on entrance into large firms for either sex. But children of self-employed fathers are significantly less likely to enter career-track positions in large firms. This could be due to some unmeasured disadvantage or to less interest on the part of these individuals in the long-term participation in corporate or factory work that a career-track position implies. This will be interesting to investigate in future work, as will the negative effect of mother’s employment on daughter’s probability of entering a career-track job. Finally, employers’ oft-cited reluctance to hire women into career ladders because of women’s lack of labor force attachment is supported by a test of that hypothesis.

The paper demonstrates that the strong gender stratification patterns in the Japanese economy are already apparent at the beginning of individuals’ work lives. But we would not have seen this were our focus only on the distribution of men and women in the large- and small-firm sectors of the economy when they start working, for this sex distribution is even. This points to the importance of attempting to measure career-ladder position

---

18 I owe this modification to the comments of an anonymous reviewer.
and constructing such a measure in a culturally appropriate fashion. Researchers have asserted that the first job is critical for future wages and promotions in the Japanese context; future work should address the extent to which Japanese women are handicapped in later life by their initial failure to enter career ladders.

On a more upbeat note, the Japanese Diet ratified an Equal Employment Opportunity Law in spring 1985, after years of debate within the Labor Ministry, employers’ groups, labor unions, and women’s associations. The law prohibits sex discrimination in all phases of the employment process from recruitment to retirement, but no penalties are imposed on employers who do not conform. A recent check of classified advertisements in Japanese newspapers shows that some employers continue to recruit on the basis of sex as well as age. The effectiveness of the law will depend heavily on the degree to which local administrative units set up by the Japanese government monitor businesses, and the degree to which firms find it in their interest to gradually move away from a statistical discrimination rule that reserves the great majority of career positions for men. Future research on gender stratification in Japan will need to address this new exogenous influence on the operation of labor markets.

In conclusion, the findings in this paper are consistent with arguments in the American sociological literature that internal labor market structures are disadvantageous to women. Japan represents a prototypical case of such structures, where employers and newly recruited employees make an implicit bargain to engage in a long-term employment relationship. As Japanese industries face collective belt-tightening and permanent employment even for men becomes less taken for granted, the internal labor market structure is beginning to exhibit cracks. The effect of these changes on gender stratification patterns will be fascinating to observe.

MARY BRINTON is Assistant Professor of Sociology at The University of Chicago. Her interests are in the areas of gender stratification, contemporary Japanese society, and rational choice theoretic applications to social institutional issues. She is currently completing a book on the role of women in the Japanese economy.

REFERENCES
Kawashima, Yoko and Toshiaki Tachibanaki.