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A scries of two-plin/cr, sccoiui-pricc avunwu-valuc auctions tire reported. In
symmctrk niictioiis, biiiticrs suffer from a wi}iiier's curse, hi nsi/uinietrie auc-
tions in wliieh one bidder has a private value ai1vanta<;^i'. the effect on bids and
prices is proportional rather than exp>losive (the prediction of Nash equilibrium
biddiu^ theory). Although advantaged bidders are close to makin^^ best re-
sponses to disadvantnged bidders, the latter bid much more aggressiivly than
in equilibrium, thereby earnin<^ negative average profits. Experienced bidders
coiisistently bid closer to the Nash equilibrium than inexperienced bidders,
although these adjustments towards equilibrium are small and at times un-
even.

1 . INTRODUCTION

In the vast literature on auctions the effect of asymmetries between
bidders has been little studied. Asymmetries are the norm and not the
exception in many auctions, it is common for one bidder to be known
to have a special interest beyond that of others in winning the auction.
Some examples of this are an oil company bidding for a tract near its
other properties, the current managers of a company bidding against
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outsiders for its takeover, and the recent FCC broadband MTA auc-
tions. '

In the important situation of common values and correlated infor-
mation, asymmetries can lead to a reversal of the standard revenue
ranking different auction rtiles,"̂  For example, Milgrom and Weber
(1982) prove that symmetric equilibrium bid functions produce
(weakly) greater expected revenue in second-price than in first-price
auctions, given the assumptions of affiliated information and risk-neu-
tral bidders. In contrast, Bikhchandani (1988) shows that when one
player is known to have a payoff advantage K in a second-price com-
mon-value auction then (1) the advantaged bidder mtist win the auction
with certainty in any Nash equilibrium, no matter how small the size
of K, and (2) the disadvantaged bidder reduces the bid drastically in
response to the addition of K, causing a large decline in expected reve-
nue compared to the symmetric payoff case.^ This large loss in revenue
holds for any value of K, no matter how small, so we say that the
addition of the private value K has an explosive effect in reducing the
theoretical expected revenue for the aitction. However, the addition of
the same asymmetry has little effect on the bids or the expected reve-
nues in first-price auctions (see the Appendix), In vit'w of recent debates
over the format of government auctions (such as the treasury-bill auc-
tions and the FCC auctions), studying the effect of asymmetries on
bidding outcomes is of practical as well as theoretical importance.

This experiment studies the effects of asymmetries on bidding in
common-value second-price auctions. The question of interest is "Can
payoff perturbations have explosive effects on bidding functions as
predicted by an equilibrium analysis of second-price auctions?" Past
experiments indicate that even though the point predictions of Nash
equilibrium bidding models are rarely satisfied, the comparative static
implications ot the theory are likely to be upheld (see, for example,
Kagel and Levin, 1993). Therefore, we study behavior in both symme-
tric and asymmetric second-price atictions, concentrating on the predic-
tion that disadvantaged bidders will reduce their bids explosively in
asymmetric auctions relative to symmetric auctions.

Second-price asymmetric auctions are derived from symmetric

1. For example, in the FCC auctions it was well known that PacTel had a particular
interest in acquiring licenses in l.os Angeles and San Francisco (Cramton, 1997),

2. Miiskin and Riley (iy84)denionstratt.' tho effect of asymmetries on first- and second-
price auctions for bidders with asymmetric priviite values,

3. There is an iiltern<iti\ e class of equilibria in which the disadvantaged bidder wins
each auction with certainty, Bikhchandani dismis.ses these equilibria because they rely
on weakly dominated strategies.
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second-price auctions by adding a separate private value component
to the value of one bidder, giving that bidder a specialized, known
advantage. We find evidence from the empirical bidding functions that
disadvantaged bidders reduce their bids in response to the private-
value advantage, but that the effect of the private-value advantage is
proportional and not explosive. Thus, the expected revenue in second-
price auctions is more robust to the addition of asymmetries than is
predicted by equilibrium theory. The difference between the bids of
advantaged and disadvantaged players is only slightly above the pri-
vate-value advantage, rather than several times the private value as
Nash equilibrium bidding theory predicts. Profits for advantaged bid-
ders are held down from those of equilibrium by overly aggressive
bidding by disadvantaged bidders, who lose money on average as a
result of their overly aggressive bidding. These losses by disadvantaged
bidders can largely be attributed to a winner's curse. A comparison
of the inexperienced and experienced cases suggests that bidders are
moving in the direction of Nash equilibrium, but very slowly.

The paper proceeds as follows. Section 2 describes the format of
the two-bidder, second price auctions utilized in the experiment and
derives the theoretical equilibrium bid functions for the participants.
Section 3 explains the experimental design and gives some particulars
of the experimental sessions. Section 4 sets out the hypotheses to be
tested, and Section 5 gives the main statistical results. Section 6 con-
cludes.

2. THE BASE MODEL

We use the following general setting as the base case for experimental
study. Two bidders participate in an auction for an object of value V,
where V is the sum of two independent symmetric random variables,
X and y, each uniform on the range {a, c). One bidder observes X, the
other observes Y, and they compete in a sealed-bid second-price auc-
tion. Under these conditions a second-price auction is strategically
equivalent to an English auction with fixed bidding increments.

One player may be known to have an additional private value of
K for the object. When that is the case, we shall refer to that player as
the advantaged bidder and to her opponent as the disadvantaged bid-
der. Then the advantaged bidder values the object at V + K, while her
opponent continues to value it at V, which remains unknown. The
value of K is common knowledge, as is the identity of the advantaged
player. In the rest of the paper we refer to the case with no additional
private value (i.e. K = 0) as a sinwdard second-price auction and to the
case with a positive value for K as a piivate-valuc-advanta^e auction.
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2.1 EQUILIBRIUM ANALYSIS

This subsection re\'iews the theoretical results that are relevant for our
analysis. Although these results are not, for the most part, new, we
record them as theorems to distinguish them from our experimental
results, which we record as conclusions.

The standard second-price auction produces a class of equilibria
as identified by Miigrom (1981) and Levin and Harstad (1986) among
others. There is, however, just one equilibrium with symmetric bid
functions for the bidders. Let v{x, t/) = £(V'|X = x, Y = y) = x +
I/. In the unique symmetric equilibrium of the standard second-price
auction, both bidders follow the bidding function B*(x) = v{x,x) -
2x, and the bidder with the higher private observation wins the auction,

THEOREM 2 . 1 : There is no ex post regret in the syuvnetrie equilibrium
of the stmidarii second-price auction. Even after learning the results of the
auction, no bidder then wishes to eluDige his bid.

Proof. Suppose x > y. In equilibrium the winning bid, 2x, falls above
the true value x + t/, which is in turn greater than the price set by the
losing bid, 2i/, That is, the winning bidder is guaranteed a profit, while
the loser could only lose money by raising his bid. The minimum price
at which the loser can win the auction is 2x, which is greater than the
true \'alue, ,Y + y. D

The no-regret property occurs regularly in private-value auctions
but is rare in common-value auctions. In effect, the loser turns down
a price that must be greater than the true value, although that price is
never stated formally. The no-regret property is important for experi-
mental purposes, because it means that the symmetric equilibrium is
unaffected by risk aversion. It also implies that there is no possibility
that limited liability for losses can be responsible for bidding above the
Nash equilibrium. In equilibrium, profits are always nonnegative. As in
the Vickrey {private-value second-price) auction, each player achieves a
profit in every instance in which it is available itt equilibrium, and that
profit does not depend on the winner's actual bid.

In addition to the symmetric equilibrium of the standard second-
price auction, there are a continuum of asymmetric equilibria of the
form 6|(.v) - f'(.Y, f{x)) - x + /(.v), 62(1/) = 1/ + /"'(.'/)• Any pair of
functions (B|(.Y), ^2(1/)) constructed from an increasing fimction /( )
produces a bidding equilibrium. Each such pair has the same property
as the symmetric equilibrium that the equilibrium bids are unaffected
by risk aversion. It is possible to make a bid that falls above the upper
boitnd forbids of one's opponent in a second price equilibrium because
that bid does not affect the price set in equilibrium.
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We shall not be concerned with these asymmetric equilibria in
the standard case, but they are vital in the private value advantage
case. With K > 0, the discrepancy between the values for the two players
invalidates most of the equilibria of the standard second-price auction.
The following argument is based on related results from Bikhchandani
(1988),"̂  See Maskin and Riley (1996) for private value revenue compari-
sons between first-price and second-price asymmetric auctions.

T H E O R E M 2 .2 : In any seeoiid-priee bidding equilibrium with eontlnuous
(ami inereasing) strategies in the private adva)itage ease, one player must win
the auetion with probability 1.

Proof: Suppose not. Then there is an equilibrium with continuous
bidding functions (6|(.v), Bjiy)) such that each player wins the auction
with positive probability. Since the bidding functions are continuous,
there must then be values J*, y* such that B|(.Y*) = 62(1/'*). Denote ('*

Suppose that /'* < -Y* + t/* + K. Then player 1 prefers to win the
auction if both players bid /'*, The value of the item to him is A" + 1/*
+ K, which is greater than his prospective price of b*. Further, since
the strategies are continuous, player 1 also prefers to win the auction
if player 2's observation is in the neighborhood of x* so that player 2's
bid is just above b*. Therefore, player 1 prefers to increase his bid from
6i(.Y*) and the proposed equilibrium fails. A similar argument would
imply that player 2 should reduce his bid from Bzlv*) if ''* - ^* + V*
+ K. ' ' •

Ruling out the cases in which the advantaged player loses each
auction, and restricting players to bid in the range of their own possible
values conditional on their private signals, the natural set of remaining
equilibria are those of the form (B,i(.v), 6,,(i/)), where B^ix) ^ x + e
is the bidding function for the advantaged player and B,,{y) ̂  y + a
+ K for the disadvantaged player and the bid functions satisfy 6,.i(-v)
> B,,( y) for each {x,y). The advantaged player bids above the maximum
value to her opponent, while the disadvantaged player bids below the
minimum value to his oppottent conditional on his private observation.
These bid functions fulfill the conditions of equilibrium because of the
implicit element of price discrimination in the auction. The relatively
kiw bids of the disadvantaged player produce a low effective price for
the advantaged player, which in turn give the advantaged player rea-

4, In addition, the same qualitative results hold with a single <id\antaged bidder and
more than one disadvantaged bidder. Thus, our use of only two bidders in the experiment
should bo viewed as a procedural modification.
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son to set a high bid and thus a high effective price for the disadvan-
taged player. This same result does not hold in a first-price auction,
because the winner pays her own bid and thus cannot afford to make
exorbitant bids.

While the conditions for a Nash equilibrium require the advan-
taged bidder to win every auction, there is some flexibility in the actual
values of bids in equilibrium. In fhe most favorable oufcome for the
advantaged player, the equilibrium bid funcfions are B,,(i/) = y + a
and B_,\{x) = x + c (or greater). In the least favorable outcome for the
advantaged player, assuming that K < (c - a)l2, the equilibrium bid
functions are 6,,(!/) = y + a ^ K and B,^{x) = x + e -V K. Although
this flexibility produces a wider range of possible equilibria for larger
values of K, it is important to remember that the equilibrium bid func-
tions for advantaged and disadvantaged bidders are a matched pair.
When the disadvantaged player bids more aggressively within the
range of possible equilibria, the advantaged player increases her bids to
compensate. Thus, the explosive effect of the private-value advantage
holds in every equilibrium, and the privately advantaged player always
wins the auction.

Since there are so many equilibria in the private-value-advantage
auctions, it may seem ciesirable to allow for a failure of coordination
in the players' actions. Thus, we consider the predictions of rationaliza-
bilify, as well as those of Nash equilibrium. For two-player games,
rationalizability is equivalent to solution by iterated strict dtiminance
{Pearce, 1984). However, iterated strict dominance never eliminates any
strategies in a second-price auction.

CONCLUSION 2 .3 All strategies are rationalizahle in a second-price auc-
tion.

Proof. Consider a strategy B| in which player 1 bids above the maxi-
mum possible value for player 2. The best response for player 2 is to
select any bid thaf will lose the auction. Thus, all strategies for player
2 are besf responses fo R]. Now consider a strategy for player 2, Bj, in
which player 2 bids {). The best response for player 1 is to select any
bid which will win the auction, meaning that Bi is a best response to
BT and vice versa. Both of these strategies will survive in each elimina-
tion of strictly dominated strategies, meaning that all other strategies
survive as well. •

Since all strategies are rationalizable in any second-price auction,
to produce a prediction related to rationalizability, we strengthen the
definifion to consider the elimination of weakly dominant strategies:
we call strategies which satisfy this requirement zveak-dotnina)!ce ration-
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alizable^ For our case, the logic behind Nash equilibrium bidding is
sufficiently close to iterated weak dominance that the two requirements
nearly coincide.

THEOREM 2 .4 All strategies that select bids in the range of conditional
values (on observing one's signal) are weak-dominanee rationalizable in the
standard seeond-price auction. Any pair of strategies that are weak-dominance
rationalizable in the private-advantage second-price auction cause the advan-
taged bidder to win the auction.

Proof. See Appendix. D

In the remainder of the paper, we distinguish between iterated
weak dominance and Nash equilibrium by examining predictions sug-
gested by the logic underlying iterated weak dominance.

2.2 REVENUE COMPARISONS

Since the private observations are drawn independently, a standard
second-price auction conforms to the requirements of the revenue
equivalence theorem. Any auction rules and equilibrium strategies
which give the same allocation of the good {and zero expected revenue
to a player with the minimum observation) produce the same expected
revenue to the auctioneer. In particular, since the symmetric equilibria
of first- and second-price auctions allocate the good to the bidder with
the highest observation, they must produce the same expected price.''
The following theorem compares revenue between the standard and
private value advantage second-price auctions.

THEOREM 2 .5 The expected revenue from the symmetric equilibrium of
the standard second-price auetion is 2(2a + e)/3. The expected revenue
for the private-value-advantage auction is no more than (3a + L )/2 +
K.

Proof. Calculating the revenue in tho second-price symmetric equilib-
rium, we find that the expected price is Eimm{B*(x), B*(i/))) = £
(mm{v{x,x),v{y,if))) = £(min(2.Y,2i/}) = 2E(mm{x,y)) = 2(2/? + c-)/3.

!>, The procedure of eliminating we.ikly dominated strategies may gi\e different re-
stilts depending on the order ot the elimination of weakly dominated strategies. We
follow the usual convention of eliminating all weakly dominated strategies at each stage
(I-udenherg and Tirole, 1991, Sec, 11.3),

h. Note that only the symmetric equilibrium of a standard second-price auction pro-
duces the same i-xpeL t̂ed revenue as that of a first-price auction. The asymmetric equilihria
of second-price auctions produce much less revenue than the symmetric outcomes.



580 jouriiid of Economics & Management Strategy

In the private-value-advantagc case, the second-price equilibrium
predetermines the advantaged player as the winner. Then the expected
revenue to the auctioneer is simply the expectation of the disadvan-
taged player's bid. Since B,,{y) ̂  y + a + K, expected revenue is
bounded above by £(i/) -^ a + K ^ {3a + c)/2 + K. D

For K near zero, there is a drop in expected revenue of {c-n)/6
from the standard case to the private-value-advantage case. Ironically,
a small increase in the value of the object to one of the bidders creates
a significant decline in the seller's expected revenue in a second-price
auction. For larger K, revenue can rise or fall depending on the choice
of new equilibrium.

In contrast to these results for the second-price auction, the equi-
librium of a first-price auction is relatively unchanged by the addition
of a private value for one of the players.

T H E O R E M 2.6 /;/ the privnte-vaUie-advantage case, there is a first-price
bidding equilibrium in which each player's bid is within K of the bid for
the same observation in a stnmiard first-price auction with no private value
component for either player.

The Appendix cierives the first-price bidding equilibrium of the
asymmetric case. See Klemperer (1997) for preliminary arguments to-
wards generalizing this result beyond the specific case used in our
experiments.

Theorems 2.5 and 2.6 imply that the theoretical revenue ot the
first-price auction dominates that of the second-price auction for the
private-value-advantage case with K near zero. Our experiment is im-
portant for testing the relevance of this theoretical prediction. If equilib-
rium bidding is found in private-value-advantage second-price auc-
tions, then sellers are likely to prefer a first-price auction when one
bidder is known to have an unusual interest in the item up for auction.

3. EXPERIMENTAL DESIGN

These experiments focus on comparing behavior for bidders in stan-
dard second-price auctions and private-value-advantage auctions. The
base model was employed with the individual private observations
X and y independent and uniform t>n the range (1,4). Otir choice of
parameters was specifically designed to give bidders reasonable profit
opportunities. In the standard case, the expected price is then $4, giving
the bidders an aggregate expected profit of $1, or 50 cents each.

To study the private-value advantage, we chose K = \, as we felt
that a smaller value of K was unlikely to ha\e much bite. Conditional
on their observations, an advantaged bidder faced a uniform value on
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{x -I- 2, J 4- 5) as opposed to (i/ + 1, i/ + 4) for his opponent; on
average, the increment is 20 percent of the common value. Then there
is a range of Nash equilibria in which the advantaged bidder wins the
auction and pays a minimtmi expected price of $3.50 against the bid
function S,,(.v) = .Y 4- 1 and a maximum expected price of $4.50 against
the bid function B,,(x) = x + 2. Therefore, the choice K = I does not
yield a sharp price prediction in comparison with the $4.00 expected
price for the standard auction. The theory still makes a number of sharp
predictions:

(Nl) disadvantaged bidders should be reducing their bids on average
compared to the symmetric auctions, with particularly sharp reduc-
tions in bids for higher values of .Y,

(N2) in equilibrium, for any given private information signal, the dif-
ference between bids of the advantaged and disadvantaged bidders
should be at least $3.00, and

(N3) the advantaged bidders win all the auctions (or at least a vast
majority of them).

We ran two sessions with inexperienced subjects for the standard
case and two for the private-value-advantage case, as summarized in
Table I. After the sessions with inexperienced bidders, we brought back
subsets of the individual groups to compete as experienced bidders
under the same conditions. Participants began each session with a bal-
ance of $10 and accrued profits and losses over a series of periods of

TABLE I.

EXPERIMENTAL SESSIONS

Experimental
Session

1
2
3
4
5
6
7

Subject
Experience

Inexperienced
Inexperienced
l:\perionced''
Experienced''
Inexperienced
Inexperienced
Experienced

N Limber
of

Phi ye r̂

12
10
U)
8

12
11'
14

Number
of

Auction
I'erinds

16
16
24
22
18
18
24

Auction Type

Private advantage
Private advantage
Private advantage
Private advantage

Standard
Standard
Standard

' Aii\,inl.i);t-d.'ili.sjdv.iiitJ);L-d iiidiiiT puhiliuns m.imLiincJ tiir live rcinsi'ciitivf periods.
'' Ki'sulls i>f jll .luilkins ivtTe publitly pi>sted. Two players who parlitjpalt'd in j^'ssjon 3 parlinp.itcd in this sessiiin

.IS lVl-11.
' With iiii inid numbt'r i'/ plnyiTS, ono pl.iyer cich rimnd w.is iinpairi'd, bill lh.i( playiT dui ridl kni>w th^t until told

thf rt'siills ot tlif .luction. Subjwts riwiv-fd a tiM'd p.iyitii'nl ut Si.DO liir ci th Mich aiiftion pcniH.!
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bidding. Bidders alternated roles as advantaged and disadvantaged
in the privtite-valtie-ddvantage bidding sessions. Switching roles was
intended to speed up any learning that might be going on in the auc-
tions and to minimize rivalrous bidding that might result from "fair-
ness" considerations.

For each experiment, the subjects drew their own observations
from containers filled with random values.' In each round, subjects
were paired anonymously for a second-price auction based on the val-
ues that they drew.^ In the standard auctions there was no additional
private value. In the private-value-advantage auctions it was known
by both players that one bidder's value was V + K and that the other's
was V, where K was known to be 1 and V + K unknown. Although
the players did not know the identity of their opponent, they did know
the value of K and whether they were advantaged or disadvantaged
in a particular auction.

After each round, players learned the bid of their competitor and
the value of the object, and in all but one session (see Table 1) did not
learn the results of any other auction. Each session lasted two hours.
Most of the participants were economics undergraduates recruited
from advanced and introductory classes. To allow for some initial con-
fusion, we began each session with inexperienced bidders with two
practice rounds, and we discarded the first five periods of bidding. We
also discarded the first few (four for asymmetric, two for symmetric)
periods of bidding with experienced bidders.

The players were matched by prior assignment based on a round-
robin format. Any pair of players were matched at most three times in
a single session, and the players did not know the matching schedule.
Since the players were matched so infrec^uently and there was no com-
munication between rounds, it seems unlikely that there would be any
incentive to alter one's strategy to attempt to create a bidding reputa-
tion."

We changed formats slightly with experienced bidders in efforts
to speed convergence to equilibrium. In the first experienced private-
value-advantage session, bidders maintained an advantaged or disad-

7, Theso experiments were conductL'd by hand. Copies of the instructions employed
are iiv<iilable on request.

8, Theory predicts the same experimentiil results with .i single advantaged bidder .ind
more than onedis.idv.intaged bidder, since Nash equilibrium predicts that an acl\ antaged
bidder must win every auction, regardless of bow m.iny disad\ antaged bidders partici-
pate in tbe auction, I'lirtber, use of more than one ciisadvantaged bidder increases tbe
costs of the experiments substantially.

9, Subjects vi'ere told tbat they were matched according to a random matching plan
designed to minimize the chances of repeated interactions.
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vantaged position for sets of five periods in an efftirt to provide more
time to adjust to the different circumstances of advantaged and disad-
vantaged bidders.'" In the second experienced private-value-ad vantage
bidders' session we employed a public information format in which
players learned the results of the other auctions as well as their own.
At the end of each round, the results of ail the auctions were written
on a blackboard rather than dispensed to each person privately. In
addition, these outcomes were segregated sti that cases where advan-
taged bidders won were posted separately frcim those where disadvan-
taged bidders won. Our purpose was to speed the transmission of infor-
mation about the results of the game, since the disadvantaged players
won relatively few auctions. Our conjecture was that a public informa-
tion format would demonstrate that disadvantaged players tended to
lose money when winning an auction, thus giving them additional
incentive to adjust their bids towards the equilibrium where those play-
ers bid low enough to lose every auction,'' As the analysis below indi-
cates (see especially the suppi>rt for Conclusion 5.3), these minor differ-
ences in treatment conditions had no material effect on behavior, so
that we are fully justified in pooling the experienced subject data.

4. EXPERIMENTAL HYPOTHESES

The focus of the experiment was to test the Nash equilibrium prediction
of Bikhchandani. For alternate hypotheses, we selected a number of
other predictive models. While these alternate models predict disparate
bidding results, Nash equilibrium is the only model that suggests that
bidding should be systematically higher for bidders in the standard
auction than for disadvantaged bidders in the private-value-ad vantage
case. The other models (with the exception of the rivalrous model)
conclude that since the distribution of individual signals and value are
the same for symmetric and disadvantaged bidders, their bids should
be the same in both cases. The expected-value model makes an explicit
point prediction, while the other models merely make predictions for
the general relationship between symmetric and asymmetric bids.

10, PlnytT pairing continued to rot.ite between .itiction periods, so thnt the cost of
this tidjustment w.is th.it pl̂ iyers could no longer be paired with ,ill of the other partici-
piints e\t'nly, lo control for any confound this might h.i\ e introduced, we iiseil the same
block design with the experiencecl symmetric bidders,

11, Even when losing on auction, the players received enough intormation to figure
out their profits had thev bid high enough to win, Howe\er, it seems clear that not all
players will bolher vviih such calculations (j>ee below) so that we thouj;ht th<it observing
A\\ of the actual losses and gains might speed up the learning process.
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The set of hypothesized models is as follows:

1. Nash equiiibrinnr. There will be an explosive effect from the
private value advantage Iprediction {N2)J. The advantaged bidder will
win the vast majority of the auctions [prediction (N3)]. In comparison
to the standard case, the disadvantaged {K ^0) hidder will reduce his
bids while the advantaged player will increase her bids by more than
the $1 /(-value Iprediction (Nl)l.

la. Rationalizability and iterated wenk dominance: Rationalizability
makes no prediction whatsoever about the bidders' choice of strategies
because of the infinite set of strategies available to them. The concept
of iterated weak dominance makes almost the same prediction for be-
havior as the Nash equilibrium requirement for the private-value-ad-
vantage case. We distinguish between the two by the logic behind iter-
ated weak dominance, which eliminates some bidding strategies prior
to others. As shown by the analysis in the Appendix, the first serious
requirement of iterated dominance is that advantaged bidders should
bid at least $8.00 and win every auction with an observation above
$3.00 and that disadvantaged bidders with observations in the range
(1.00, 2.00) should lose every auction and bid no more than $3.00.

As noted above, iterated weak dominance makes no prediction
about the comparison between standard and private-value-advantage
auctions, because it does not eliminate any strategies in the standard
second-price auction.

2. Expected value: Bidders will bid the expected value given their
signal rather than the Nash equilibrium bid. In the standard case, that
is the function B| v(-v) = .v + 2.3. An advantaged bidder would add a
dollar for the private-value-advantage case, while the disadvantaged
bidder would not adjust at all. That is, the bid function for the disadvan-
taged bidders is the same as in the standard second-price auction.

Expected value is the classic example of bidders incurring a win-
ner's curse. In the standard second-price auction, in a pure world of
expected-value bidders, anyone with a private signal below fhe average
value cannot win money in any auction: a bidder with a signal x <
2.50 wins the auction against a bidder with a signal y < x, getting an
asset of value x + y for the price 2.5 + t/, resulting in a certain loss.
In contrast, with expected-value bidding, bidders with signals x > 2.50
will make positive profits. Thus, bidding according to expected value,
particularly for .v < 2.50, provides evidence of the winner's curse even
when these bidciers have the good fortune of not winning the auction.
Judging from the results of earlier experiments (Kage! and Levin, 1986;
Kagel et al., 1995), we expected that some form of winner's curse would
prevail, at least in early bidding rounds.
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FIGURE 1. POSSIBLE BID FUNCTIONS
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Figure 1 depicts the expected value and Nash equilibrium bid
functitins for the standard case and fur the advantaged bidders in the
private-valuo-advantage caso. For the standard auction, note that ex-
pected-value bids fall below equilibrium bids for the lowest private
observations and then cross the equilibrium bidding curve exactly at
X = 2.5. These relationships offer good possibilities for comparing the
models in relation U) the data.

3. Rivalroufi buiiiiii^i: The strong form of the rivalrous bidding
model predicts that disadvantaged bidders will confuse the desire for
profits with a desire to win the auction, bidding more aggressively than
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bidders in the standard-auction case to overcome their private-value
disadvantages. An extreme version of the rivalrous bidding model pre-
dicts that the disadvantaged bidders will increase their bids sufficiently
to completely offset the private-value advantage. In this case, the disad-
vantaged bidders will win 50'!o of the auctions, just as they would in
the symmetric value case.

We will also consider a weaker version of the rivalrous bidding
model in which disadvantaged bidders bid above equilibrium, not so
much to win, but out of a rivalrous effort to deny large profits to the
advantaged bidder.

4. Epsiloii-cqiiilibriuiu: Bidders will adjust to play approximate
best responses to the aggregate set of strategies played by their oppo-
nents, but will not necessarily reach equilibrium. The e-equilibrium
calculations make no specific prediction about bidding strategies except
that they will be close to (i.e. within 6 of) best responses to rivals' play.
Epsilon-equilibrium calculations provide measures of the (expected)
cost of failing to respond optimally to the play of others.

In calculating best responses we constructed an empirical distri-
bution of signals and bids from the experimental data and conducted
an exhaustive Monte Carlo simulation for each combination of experi-
mental conditions ({Experienced, Inexperienced [ x {Standard, Private-
Value Advantage}), In effect, we calculated the average payoff for each
bid in the sample when matched up with every other bid and .v-value
in the distribution, including that player's other bids. This procedure
is consistent with that of Fudenberg and Levine (1997) for estimating
deviations from best responses in normal-form, complete-information
games. Our experiment is complicated by uncertainty and the vast
number of possible v-values. We weight each empirical observation
equally in our simulation, with the result that the .Y-values which were
drawn more frequently in the experiments are also given more weight
in the simulation.'"' The empirical bidding function underlying the
simulations is equivalent to an explicit mixed strategy that replicates
the randomness ot the environment faced by bidders.'"^

12. A Mdnte C.ir!o simuLition which miicie .ill A-volues oqti.illy likely would hnvc to
f̂ ive more wt'ij^ht to the liids corresponding to less ciimmon ,v-\tilLies In the experiments.

13. In conductinj; the simiLl.itions it would be intippropriLite to creato a piirt'-str.itogy
empiriciil bid liniction by .neraging the set of bids for each obserwition, ns this would
disrupt the prob.ibilities of winning; .ind losing with a gi\en bid. For eXiimple, the best
response to a certain bid ot !fc5,l)0 is likely to be much different than the best response
to a bid of $8,00 with probabilitv one-half and $2.1)1) with probability one-half.
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5. EXPERIMENTAL RESULTS

We now test the series of predictive models described in the previous
section: Nash cquihbrium [and the individual hypotheses (Nl) to (N3)l,
weak-dominance rationalizability, expected-value bidding, rivalrous
bidding (in two forms) and eequilibrium. We present our findings in
the form of seven conclusions.

We begin by summarizing the bidding outcomes from the sym-
metric case in Conclusion 5.1 to set a baseline for comparison with the
asymmetric auctions. Conclusion 5.2 rejects the strong version of the
rivalrous bidding model. Conclusion 5.3 rejects the weak-dominance
rationalizability model and hypothesis (N3) of the Nash model. Conclu-
sion 5.4 rejects the remaining properties (Nl) and (N2) of the Nash
model, while providing support for the expected-value model. Conclu-
sion 5.5 studies the 6-equilibrium predictions and shows that advan-
taged bidders are closer to using optimal strategies than are disadvan-
taged bidders. Conclusion 5.6 provides some counterevidence against
the expected-value model and for prediction (Nl) of the Nash model.
Conclusion 3.7 rules out the weaker version of the rivalrous bidding
model: that disadvantaged bidders increase their bids with the aim of
reducing the profits of their opponents.

We now consider the results trom the symmetric auctions. While
we ran more sessions with the private-value advantage, we actually
have a larger data set for standard auctions because bidders face the
same game and the same situation in every period in that case. Further,
the consistency of the standard auction format may also speed up learn-
ing (although we do not specifically test for this), since players do not
have to learn how to play from the advantaged and disadvantaged
positions. The equilibrium and expected-value predictions are the
same in every period of the standard auction: B*{x) = 2x, REV
(x) = X + 2.5.

C O N C L U S I O N 5.1 There arc stvou^ tnurs of the iviiitier's curse for the
standard (control) case. Expected value is a better predictive model for the
staudani case than the Nash equilibriuin prediction. Further, bidders almost
iuvarinbUi lose money, conditional on zvinning, for $i<^ual vnlues of $2.50
or behno, consistent with the presence of a winner's curse. However, what
adjustments there are between experie)!ccd and inexperienced cases move bld-
dins; closer to the predictions of the Nnsihequilibrinm biddiiis^ model.

The first evidence of the winner's curse is the simple fact that
the winning bidder frequently lost money: 39.8"/. of the auctions with
inexperienced bidders and 29.2% of the auctions with experienced bid-
ders resulted in losses, despite the fact that the winning bidder always
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makes a profit in any Nash equilibrium. As a result, for inexperienced
bidders profits averaged 18 cents per player and prices averaged $4.62
per auction period, while for experienced bidders profits averaged 23
cents per player and prices averaged $4.63 per auction period. This
contrasts with equilibrium predictions of an average profit of 50 cents
per player and an average price of $4.00 in each auction.

While there is an element of randomness in the players' bids, this
set of results is much more consistent with the expected-value model
than with the Nash model. Both models predict that the player with the
higher draw will win the auction. But in contrast to the Nash prediction,
expected-vaiue bidding produces an expected profit of 25 cents to each
bidder, an average price of $4.50, and losses in 25 percent of the auc-
tions, quite close to the results for the experienced bidders. Further,
consistent with the expected-value model's predictions, when bidders
won the auction with signal values of $2.50 or less, they usually earned
negative profits (66"/<i of the time for inexperienced bidders and 65%
of the time for experienced bidders), while with signal values above
$2.50 they usually earned positive profits (83'''n and 76'X. of the time for
inexperienced and experienced bidders, respectively). Average profits
show an even more dramatic effect of winning with low compared to
high signal values: for experienced bidders these average -36 cents
conditional on winning with a signal value of $2.50 or less, compared
to -1-73 cents conditional on winning with a signal value greater then
$2.50.

The empirical bid distribution gives further support to the ex-
pected-value model, though it demonstrates that expected value does
not fully describe the actions of the bidders. Bids fall almost exclusively
above the equilibrium prediction for draws below $2.25, and almost
exclusively below the equilibrium prediction for draws above $3.25.
That bias in the residuals relative to the equilibrium fit indicates that
the slope of the empirical bid function is much less than that of the
Nash equilibrium, just as implied by expected-value bidding. However,
bids also tend to be higher than the expected-value prediction for the
highest signal values, though the bias is much less than for the Nash
bidding model.

Table II reports error-components estimates of bid functions for
the standard auctions which confirm these results. The estimated bid
function is

B,, = ao + ai-v,, + €„, i = 1, ..., N, t = 1 7,

where tbe error term e,, = u, + v,i is m a d e u p of a subject-specific
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TABLE M.

ESTIMATES OF ERROR-COMPONENT BID FUNCTIONS FOR

STANDARD AUCTIONS'^

/•-Test

Expected No. of
Bidders R" N.ish Value Observations

Inexperienced, B,, - 2.64 v i.l3.v,, 0.47 39.8 1.55 299
(0.68)" (l).OS}'' (<0.01) (0.21)

Experiencod, /?„ = 1 .W +1.34.V,, 0.73 80.9 22.6 308
(0.35)" (0.05)'̂  (-aiOI) (<0.0])

iTrors 111 pnri'iillii'si';-.
tlv dilfiTonl tn>m 0 .il \W (HU

error term ;;, and an auction-period error term r,/.'"̂  This model can
accommodate the Nash bidding hypothesis (o-y = 0, ai = 2) and the
expected-value hypothesis (a,, = 2.5, a, = 1). F-tests of these two hy-
potheses are reported in Table 11 along with the coefficient estimates.

For inexperienced subjects, the F-statistic shows that we cannot
reject expected-value bidding. For experienced bidders, the results are
sufficiently distinct from the two point predictions (2.Y for Nash equilib-
rium, X 4- 2.5 for expected value) to reject them both immediately. Still,
the results are closer to expected value than to equilibrium. As with
the profit data, what changes there are in going from iriexperienced
to experienced bidders sht>w movement in the direction of the Nash
equilibrium model's prediction, as the slope is increasing and the inter-
cept is decreasing.'''

The ^equilibrium calculations measure the expected cost of de-
viating from a best response to the sample population's behavior. Over-
all, experienced bidders were within 7.1 cents of the optimal payoff
against the empirical distribution, compared to 12.3 cents for inexperi-

14. Statidard assumptions were employed: /(, -- {0, ir̂ ,,) nnd r,, -- (0, rr .̂) where the
u, and the /',/ are independent ot each other and amon^ themselves. BalUigi's (1986)
weighted least-squares computational procedure w.is used to invert the \ ariance-covari-
ance matrix. A fixed-effects error specification generated similar coefficient estimates
and standard errtirs.

15. A regression model restricted to returning bidders shows this same pattern, with
the chanj;es in coefficient values beinj; jointly significantly different from zero at just
above the 5"'.i level. Thus, ihe movement towards Nash equilibrium, although small,
does not reflect a seif-selection effect.



590 lounial of Economies & Management Strategy

cnced bidders.'*' Here too there are important differences in deviations
from optimality tor signal values of $2.50 or less compared to higher
signal values, with the former showing losses of 12.4 cents for experi-
enced subjects and 18.1 cents for inexperienced subjects relative to the
expected payoffs from optimal bidding.

We now consider the results for the privatc-value-advantage auc-
tions. Most of our comparative statics results will rely on comparisons
with the standard (control) auctions just discussed.

CONCLUSION 5.2 There is little support for the stro)i^ form of the ri-
valrous biddin;^ model: Although disadvantaged players eonsistei^tly bid more
than predicted in equilibrium, they bid consistently less then the advantaged
bidders. Further, disadvantaged bidders bid the same or less than in the stan-
dard auctions in the range of the highest signal values, those signal values
where they are most likely to wi)i the auctions.

There is no evidence that disadvantaged bidders are completely
rivalrous, increasing their bids to win 5O'̂ (. of the auctions. In fact, ad-
vantaged (K = I) bidders win 62"''(i of the auctions with inexperienced
bidders and 7\"/u of auctions with experienced bidders, both of which
are significantly greater than 507o.

More generally, the rivalrous bidding model predicts that disad-
vantaged bidders will bid more than bidders in the standard second-
price auctions. Tests of this hypothesis are offered in Table III, where
we pool the data from the standard auctions with bids of disadvantaged
bidders and estimate the error-components bid function

By, = «() + a\X,i + a^Dx,, + a-^D, + e,,.

In this equation, D is a dummy variable that takes tin a value of 1 in
the private advantage auctions and 0 in the standard auctions. An F-
test of the joint hypothesis that m •̂ nd tfi both equal 0 is reported in
Table III along with the coefficient estimates.

For inexperienced bidders, the F-statistic indicates no significant
differences between disadvantaged bidders and bidders in the standard
auctions. This is, of course, inconsistent with the strong form of the
rivalrous bidding hypothesis. For experienced bidders, the disadvan-
taged bidders bid more over lower signal values (the coefficient of the
intercept dummy variable D, is positive and statistically significant),
but bid less over higher signal values (the coefficient for the slope

16. Deviations from optiniiility are, of course, considerably larger in the choice space
(bids) then in payoff space (costs), as tbe fornior avenige $i)._'̂ 2 and $0.73 for inexperienced
and experienced bidders respectively.
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dummy variable Dx,, is negative and statistically significant). The aver-
age disadvantaged bid is less than the average standard auction bid
for signal values greater than $1.80. Given that disadvantaged bidders
rarely win auctions with these lower signal values (experienced disad-
vantaged bidders lose 83'X. of all auctions for which they have signal
values of $2.50 or less) and given that their bids are less over higher
signal values, we do not count this as evidence for the strong form of
the rivairous bidding hypothesis. However, given that bidding is well
above equilibrium in the standard auctions with lower signal values,
the fact that bids of disadvantaged bidders are yet higher suggests the
weaker form of rivalrous bidding—that disadvantaged bidders in-
crease their bids to reduce the profits of their opponents. We discuss
this possibility at the end of this section of the paper.

C O N C L U S I O N 5.3 We reject ivcnk-iioniinnncc rntionnlizabiitty and hy-
pothesis (N3) of the Nnsh model. Ai1vnntn;^ei1 bidders win more than 50% of
the auctions, but far less than 100% as both Nnsh equilibrium bidding and
weak-dominance rationalizabilitxj require. Further, there is little evidence for
weak-dominance rationalizability, as both advantaged and disadvantaged bid-
ders fail to satisfy the first serious requirements of iterated dominance.

The advantaged bidders won 70.9% of the auctions for experi-
enced bidders and 62.0'/ci of the auctions for inexperienced bidders.
Recall that weak-dominance-rationalizability requires that they win
100% of the auctions. Further, the first serious round of deletion of
weakly dominated (rationalizable) strategies requires that disadvan-
taged bidders with signal values of 2.00 or less never bid above 3.00
(see the Appendix). Nevertheless, this fails to be satisfied 867.. of the
time with inexperienced bidders and 83'^ of the time for experienced
bidders. In addition, the first serious round of deletion of weakly domi-
nated (rationalizable) strategies also requires that advantaged bidders
with signal values of 3.00 or more should never bid below 8.00. Never-
theless, this fails to be satisfied 73"/; of the time for inexperienced bid-
ders and 71% of the time for experienced bidders.

The next three conclusions relate to the comparative static impli-
cations of the Nash equilibrium bidding model resulting from the intro-
duction of asymmetries.

CONCLUSION 5.4 Contrail/ to !ii/polheses (Nl) and (N2) of the Nash
model, the effect of the private-value advantage on bids and prices is propor-
tional rather than explosive. The effect of the private-value advantage on bids
and prices is closer to the predictions of the expecled-vatue model than the
Nash bidding model.

Nash-equilibrium bidding theory requires advantaged bidders to
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bid $3.00 more thiin disadvantaged bidders with the same signal, com-
pared to the expected-value model's prediction of a $1.00 difference in
these bids. Table IV tests this prediction through error-components
estimates of the bid function for private-value-advantage auctions. Two
alternative specifications are employed. In the first specification we
impose the restriction, implied by both the expected-value and Nash
models, that the slope of the bid function does not vary as a function
of being advantaged or disadvantaged. Instead, only the intercept
changes in the equation

B,, = (To + a-i-v,, + a2DKi, -I- e,,,

where DK,, = 1 when X = 0 and DK,, = 0 when K = \. Under this
specification the expected-value model predicts an = 3.5, cri = 1.0, and
a2 = —] .0. For both inexperienced and experienced bidders, this is
very close to the estimated coefficient values. We are unable to reject
a null hypothesis of the expected-value model at conventional signifi-
cance levels for both inexperienced and experienced bidders. For the
Nash bidding model, o-o = 4.0, a, = l.l), and m = -3 .0 . An F-test
decisively rejects these restrictions for both inexperienced and experi-
enced bidders, primarily because the coefficient «2 'S too small.

In the second specification, we drop the restriction that the slope
coefficient is the same for advantaged and disadvantaged bidders, giv-
ing the equation

B,, = rti) + (Fi.Y,, 4- a2DK,, + a^DKx,, + e,,,

where DK.v,, = A,, when K = 0 and DKx,, =^ 0 when K = 1. For inexperi-
enced bidders, the value of a^ is close to zero and not significant. For
experienced bidders, a^, is negative and statistically significant, while aj
remains negative and statistically significant as well So the difference
between advantaged and disadvantaged bids grows with signal values.
The minimum difference between these predicted bids is $0.86 at the
lowest signal value and the maximum difference is $1.52 at the highest
signal value, $4.00. Thus, although there are significant differences in
bids between advantaged and disadvantaged bidders, these differences
are closer to the prediction of the expected-value model than to the
prediction of the Nash model for almost the entire range of signal val-
ues. Finally, applying these regression specifications to individual sub-
ject data, only 1 of 16 experienced subjects consistently hid closer to
the Nash than to the expected-value model's prediction.'^ Therefore,

17. Applying the second regression specification to the individual subject data, we
fail to reject the null hypothesis (at the ,10 level or better) that «i = 0 for 12 of 16 subjects.
Tor only one of these twelve subjects was ctj It?ss than -$2 , i.e., closer to the Nash
equilibrium prediction. The remaining four bidders all had cr's < 0, so that tho difference
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we conclude that the introduction of asymmetries does not produce
anything approaching the explosive effect on bids and prices that the
Nash model predicts. In what follows, we try to understand the mecha-
nism behind this outcome.

C O N C L U S I O N 5.5 The ^-cqniUhrinm calcuktions i^hoiv that the ndvan-
ta^ed bidders are close to making optimal respon:?cs. In contrast, the disadvan-
taged bidders shoio ihe strongest deviutions from optimal responses: thei/ eon-
sistenth/ bid too much, earning negative average profits and sharphf redneing
the profit opportunities for the advantaged bidders.

The e-equilibrium calculations show that experienced advantaged
bidders were quite close to optimal best responses: they were bidding
slightly below the optimum, averaging 5,4 cents below the maximum
average return (bids averaged 11 cents below the optimum). In contrast,
experienced disadvantaged bidders earned negative average profits
( - 12.6 cents; - 40,0 cents conditional on winning) and were losing an
average of 16.1 cents relative to optimal bidding. Further, their bids
were a full $1.31 above the best response against the empirical distribu-
tion. For signal values below $3.00, most bids by disadvantaged players
incurred average losses of 20 cents or more in the simulation. Since
they win only about 2O'X. of the auctions for such observations, that
implies an expected loss of $1 per auction conditional on winning. In
this range of signals, bids by disadvantaged players are commonly $2
or more above the empirical best-response bid. But winning the auction
for such observations may be a sufficiently rare event that there is
little learning about the winner's curse. Finally, we see no noticeable
differences in bidding with and without public information regarding
attction outcomes. Either subjects did not notice or pay attention to
the additional information, or they simply chose not to bid less when
disadvantaged in spite of occasional losses.

A comparison between experienced and inexperienced bidders
in the private-value-advantage auctions shows that experienced advan-
taged bidders increased their bids by 23 cents and experienced disad-
vantaged bidders reduced their bids by 16 cents on average. For the

bftwfen advantaged and disadvantagt'd bids grows with higher signal values. We then
evaluated these ftnir bid functions to find the value of ,v for which the slope coefficient
declined to less than - $2 (closer to Nash), In one case, there was no such ,v-\ alue, while
the average value in fhe ofher three cases was $2,67, jiisf above the midpoint of the
inter\al for which signal values were drawn.
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entire range of .Y-values, advantaged bidders won the iiiiction more
frequently in the experienced cose than in the inexperienced case. For
X > 3.00, the winning percentage increases from 79% to 98">ii. The in-
creased bidding by experienced advantaged bidders moved them
closer to optimal responses (inexperienced bidders averaged 11.2 cents
below optimal earnings vs. 5.4 cents for the experienced case). In con-
trast, even though bidding less, the experienced disadvantaged bidders
were worse off than in the inexperienced case (an average loss of 12.6
cents as opposed to 4.1 cents). The increased bidding by advantaged
bidders simply provided many fewer profit opportunities than in the
inexperienced case for disadvantaged bidders.

C O N C L U S I O N 5.6 Contrary to the cxpcctcd-vnltic inoiicl's prediction,
there is a elear temieney for experienced disaiivnntnged bidders to bid less
ni^^rcssiveli/ than in the stnndnrd auctions over higlier signal values. This
proiudes some zucak support for hypothesis (NV of the Nash motiel.

With pure expected-value bidding, the disadvantaged bidders
should bid no differently than in standard auctions. As the regression
results in Table IV show, a null hypothesis of expected-value bidding
for inexperienced bidders would not be rejected at standard signifi-
cance levels. However, for experienced disadvantaged bidders, there
is reduced bidding over higher signal values compared to the standard
auctions. That effect is inctinsistent with pure expected-value bidding.

Trends within the experienced sessions reinforce the conclusion
that experience leads to less aggressive bidding by disadvantaged play-
ers with high signals. We divided the experienced data into two subcat-
egories of earh/ and lute in the session. The estimated bid function for
the second half of the session gives bids of up to 70 cents more for
disadvantaged bidders at low signal values than in the first half of the
session, and up to 35 cents less at high signal values than in the first
half. In contrast, the standard auction bids seem to increase for all
ranges of signals in the last half of the experienced session. One inter-
pretation of the shift by disadvantaged bidders is that they learn to
reduce their bids for high signals because that is the one situation where
they most frequently win the auction and lose money. In contrast, the
primary effect of higher bids by disadvantaged bidders with low sig-
nals is to reduce the profits of their advantaged opponents.

The question remains here as to what motivates these higher bids
by disadvantaged bidders with lower signal values. One possibility
that suggests itself is the weak rivalrous bidding hypothesis as de-
scribed earlier in Section 4. It may be that disadvantaged bidders are
reluctant to bid low enough that they will never win an auction, since
such passive play would result in a very uneven distribution of earn-
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ings in favor of the advantaged bidder (minimum average profits of
$1.50 in each auction for the advantaged bidder versus $0 for them-
selves). At least one player seems to have been motivated by this fact:
paraphrasing the remarks of one subject on exiting the auction, "I know
I should bid less with K = 0, but this just increases the profits of my
opponent."

To examine this possibility, we looked at what disadvantaged
bidders did following a failure to win the item when a winning bid
would have earned negative profits [i.e., x + y < BA{X)\. In general,
disadvantaged bidders bid more aggressively following a failure to
win the auction even when a winning bid would have lost money. This
happened 637.. of the time for inexperienced subjects and 56"/<i of the
time for experienced subjects.'" This tendency to bid more aggressively
was not strongly conditioned on the disadvantaged bidder's signal
value, X. Rather, it was strongly conditioned on whether or not the
advantaged bidder earned positive or negative profits: Experienced
bidders bid more aggressively 697.. of the time following the advan-
taged bidder winning and making a positive profit versus 207. of the
time following the advantaged bidder winning and making a negative
profit (Z = 3.63, /' < .01), even though a higher winning bid would
have resulted in losses in both cases.'" This would appear to be symp-
tomatic of confusion (failure to think through the implications of win-
ning with a higher bid) rather than rivalrous bidding designed to deny
advantaged bidders high earnings.-^' This interpretation is reinforced
by the fact that the same pattern prevailed in the standard auctions:
Losing bids were followed by relatively more aggressive bids 36"/<> of
the time for inexperienced bidders and 637<. of the time for experienced
bidders even though the losing bidders would have lost money had
they won. Here too, bidding was more aggressive when the winner
made positive profits compared to when the winner made negative
profits (777<. vs. 367,,, Z = 4.98, p < .01 for inexperienced bidders; 627<.

18, liidJing more nr less .i^grt'ssi\ely between .iiiction periods Wtis nitvisured by
comparing the bid less the signal Viilue in auction / with the bid less the sî n̂al value in
auction / + I. The slope of tho a);;;rt'j;ati.' bid function with respect to own signal v<ilue
is close to 1 under all ta'titments, which is necoss<iry to justify this calculation. To control
for the slope coefficiont for own sij;nal value differing from I, we also measured relative
aggressiveness by subtracting the bid implied hy the aggregate bid function from the
actual bid in each aintion period and compared these difft'rences. Our results are robust
to this alternative measure. In both cases, calculations arc restricted to auctions in which
a player was a disad\antagL'd bidder.

14. Data for inexperienced bidders is too ihin to reach conclusions on this score, as
tht-rt' were relatively few cases in which the advantaged bidder won and lost money.

20. Cirvin and Kagel {1W4) report similar results in first-price common-value auc-
tions.
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vs. 52%, Z = 1.28, p < .10, one-tailed test for experienced bidders).
Finally, note that for both disadvantaged bidders and bidders in the
standard auctions, winning and losing money typically resulted in less
aggressive bidding in the next auction period (72'/ii of the time for disad-
vantaged hidders; 70"/o of the time in the standard auctions).

C O N C L U S I O N 5.7 In both the standard and private-value-advantage auc-
tions, luinning the item and losing money tends to result in less aggressive
biddiiig for the next auction period. This tends to correct for the ivinner's
curse. However, in both auctions, failure to win the item zvhen the zoinner
made positive profits promotes more aggressive bidding in the next auction
period even in cases where the losing bidder would have succumbed to the
winner's curse (lost money) had he ivon the item. The failure to fully appreciate
the consequences of winning in the latter cases tends to perpetuate the winner's
curse.

The fact that the same phenomenon occurs in both the symmetric
and asymmetric auctions leads us to reject the vveaker form of the ri-
valrous bidding model in favor of a "contused bidder" model.

6. SUMMARY AND CONCLUSION

In our standard second-price common-value auctions, bidders suffer
from a winner's curse, bidding closer to expected value than to the
Nasb equilibrium. Introduction of a private-value advantage generates
changes in bidding. Among inexperienced bidders there are no signifi-
cant differences between disadvantaged bidders and bidders in stan-
dard auctions. Among experienced bidders, disadvantaged bidciers bid
less than standard-auction bidders over higher signal values, those for
which they were most likely to win the auction. However, disadvan-
taged players still bid substantially more than in equilibrium, earning
average profits of - 40 cents conditional on winning for experienced
bidders. In contrast, experienced advantaged bidders, while not bid-
ding as aggressively as the Nash model requires, are withiti 5 cents,
on average, of maximum possible earnings, given the overly aggressive
bidding of the disadvantaged bidders. The net result is that the exis-
tence of asymmetric valuations does not produce anything approaching
the explosive change in bids, and reduction in revenues, that the Nash
bidding model predicts, the primary impediment to this outcome being
overly aggressive bidding by disadvantaged bidders.

Experienced subjects consistently bid closer to the Nash equilib-
rium than inexperienced bidders. But these changes are small and at
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times unsteady.-' Tlie introduction of a private-value advantage into
the bidding might be expected to speed convergence to equilibrium
(and elimination of the winner's curse), since the winner's curse will
be exacerbated from the symmetric case unless disadvantaged players
reduce their bids. However, a winner's curse remains, as disadvan-
taged bidders continue to lose money, primarily as a result of overly
aggressive bidding with relatively low signal values.

APPENDIX

Proof of iterated Wcak-Doniiiuvicc Rcsulti^. Step one: Bidders must
bid within the range of possible values conditional on their observa-
tions. This restricts the advantaged bidder to bids in the range (x + 2,
X + 5) given an observation of .Y, and the disadvantaged bidder to bids
in the range (i/ + 1, i/ + 4) given an observation of i/.

Step two: Disadvantaged bidders with y less than $2.00 cannot profit
now from winning the auction. They face a price of at least x + 2 for
an object whose value is .Y + i/ < .r + 2 for y < 2. In this instance, they
should bid no more than $3.00 (the minimum advantaged bid retained
from step one).

Similarly, advantaged bidders with observations greater than
$3.00 always profit from winning the auction. They face a price of at
most 1/ + 4 for an object whose value is .v -h y + 1 > y + 4 for x
> 3. in this instance, they should bid at least $8.00 (the maximum
disadvantaged bid retained from step one).

Otherwise, bids may remain in the ranges (y + 1, y + 4) for
disadvantaged bidders with observations in (2,4) and (.Y + 2, x + 5)
for advantaged bidders with observations in (1,3).

Step three: The strategies remaining from step two yield competitive
auctions for the cases where x E (1,3), y e (2,4). The minimum value
for the advantaged bidder in these cases is x + 3, since y > 2, and the
maximum value for the disadvantaged bidder in these cases is y + 3,
since .Y ^ 3.

Therefore, the advantaged bidder must now bid in the range {x
-F 3, Y + 5) for observations in the range (1,3), and the disadvantaged
bidder must bid in the range (y + 1, y + 3) for observations in the
range (2,4).

21. Forexiimple, a within-scssion .in.ilysis of bidding in thest.indard auctions shows
that, on avoraj^e, pLiyers iiicrcn^ai their bids in the last half of the auction ses_sion, actually
nio\ ing away from equilibrium rather than towards it.
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Step four: Consicier the same range of observations (1,3) for the ad-
vantaged bidder and (2,4) for the disadvantaged bidder. Now advan-
taged bidders always prefer to win the auction with observations of at
least $2.00, since the maximtim price for them is i/ + 3 and the value
is X + \f + 1. Disadvantaged bidders always prefer to lose the auction
with observations of $3.00 or less. As a result, the advantaged bidder
should bid at least $7,00 for an observation in the range (2,3), and
disadvantaged bidders should bid no more than $4.00 for any observa-
tion in the range (2,3).

Step five: Now the auction is competitive only if the advantaged bid-
der has an observation A, in the range (1, 2), bidding in the range (x
+ 3, X + 5), and the disadvantaged bidder has an observation y, in
the range (3,4), bidding in the range (i/ + 1, i/ + 3).

The value for an advantaged bidder under these conditions is at
least .V + 4, and the value for a disadvantaged bidder is at most i/ +
2. Thus they should adjust their bidding ranges to {x + 4, x + 5) and
(}/ + l,\/ + 2), respectively.

Step six: The maximum bid by a disadvantaged bidder is now i/ + 2,
and the minimum bid by an advantaged bidder is now x + 4. Therefore,
advantaged bidders always wish to win the auction and should bid at
least $6.00, while disadvantaged bidders always wish to lose the auc-
tion and should bid at most $5.00,

At this point, the advantaged bidders always win the auction,
the disadvantaged bidders always lose the auction and the maximum
expected price is $4.00 (with the disadvantaged bidders bidding no
more than $3.00 with observations less than $2,00, no more than $4.00
with observations less than $3.00, and no more than $5.00 for any obser-
vation). •

Proof of first-price auction result. We show that there is a first-price
auction equilibrium for the asymmetric (perturbed) auction of the ex-
periment with bids within e of the bids for the symmetric game. For
simplicity, we specialize to the case where each signal is U (0,1), player
l's value is .Y + i/ + €, and player 2's value is x 4- y.

Fix the strategy bzi}!) for player 2, and consider player l's best
response for an arbitrary draw of x. With a bid of /?| (x), player 1 wins
the auction at price /J, whenever player 2's observation is less than
''2~ '{ '̂i)- Therefore, player 1 chooses the bid î to solve
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ax ,Y + t/ + e - 1̂ f{y) dy
I, Jii \ /

max

V
max ^ + 1/ .Y + e

We look for an equil ibrium with linear b idding strategies: b^ {x) = (7iX

+ t"i, Ih {}!) = 'h}l + t-'i- Then bz 'C ' l ) = C'l ^ t^)/;!., and player l ' s

maximization problem simplifies to

I / / , Q \ /
max d -I- .Y

The first-order condition for this problem gives the outcome

(72.Y + a2€ + ((72 ~
b =

2a-, - 1

Similarly,/'2 = \aiy + ((7, - lV , ]/(2(J, - 1). For these to hold s imultane-

otisly, it must be that

( 7 | =

- r
(1)

2(7 | — 1

- ^JL^^±Jki] (3)
M =

C? =
2/1, -

(4)

Note that (1) implies (2) and vice versa. Substituting (1) and (2) into
(3) and (4) gives

(4')

Putting all equations in terms of (72 gives a set of three equations:

C-, = da2, (5)

C2 = (1 - n2)€/a2, (6)

.2 = 2 , ; ^ . (7)

At this point, the chtiice of (72 is arbitrary, but there is also a boundary
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condition. In a first-price auction, the top possible bid by each side
must be the same. Otherwise, one player should reduce the top bid,
since it is possible to win with probability 1 with a lesser bid. This gives
the further condition

a-i + Ci = aj + C2. (8)

The final set of equations {5)-(8) gives a quadratic equation for (72 with
the positive root a2 ̂  {I + e) -^ VI + ^^2. The remaining param-
eters, /?], fi, 2̂ are given by the appropriate equations in (5)-(8) and
the value of (72." These values satisfy 1 - 6 < fli < 1, 0 < t| < e,
- e < t: < 0. All bids by either player are within € of tbe symmetric
equilibrium bid functions /'*(j) = .v. D
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