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Abstract

Value stocks and junk bonds do poorly when the risk neutral probability of market crashes increases.

However, investors are slow to fully incorporate this information into prices leading to significant

predictability in value vs. growth stocks as well as junk vs. investment grade bonds. Using data

on mutual fund flows, we find that investors rotate out of value stocks slowly following increases

in the risk neutral probability of a market crash confirming the underreaction observed in returns.

These findings set a higher bar for rational models that attempt to explain the risk premia in

these two asset classes: because the returns to the value vs. growth trade and junk vs. investment

grade trade are predictable, investors can achieve a significantly better return by actively rotating

into/out of these securities. Our research highlights the role of slow moving capital in equity and

bond markets.



1 Introduction

The distribution of returns on the wealth portfolio changes over time: some times are riskier than

others. Finance has traditionally viewed market volatility as the source of risk and a tremendous

literature has developed on understanding how variation in volatility of the market portfolio affects

returns in the cross-section of assets (for example: Campbell et al. (2013); Ang et al. (2006); Chen

(2002)). Recent work has begun to recognize that other moments of the distribution matter as well.

In particular, the asymmetry in the distribution of returns is important to investors. Martin (2013)

shows theoretically that investors with CRRA (or Epstein-Zin) utility require higher compensation

for holding the market portfolio when its distribution of returns has a negative third cumulant. Our

work attempts to understand if the cross-section of securities efficiently incorporates information

regarding changes in the third cumulant of the market portfolio. We use the cross-section of equity

securities as our primary test assets and verify our conclusions in the corporate bond market as

well.

Our findings are two-fold: the value-minus-growth (HML)1 trade performs poorly when the third

cumulant of the market return distribution becomes more negative. HML incorporates information

into its price slowly and thus continues to do poorly the following month as well. These conclusions

also hold in the corporate bond market: the junk-minus-investment grade trade performs poorly

when the third cumulant becomes more negative but also continues to perform poorly the following

month. We measure changes in the distribution of returns by using options on the S&P 500 index.

The benefit of using options is it allows us to extract investor expectations about the distribution

of future returns without having to use a long time-series (which would be difficult anyway if

the distribution changes frequently). Options, however, reveal the moments of the risk neutral

distribution (instead of the physical) and thus we are unable to distinguish between changes in risk

aversion and the distribution of physical returns.

HML has historically enjoyed high returns; the reason for this phenomenon is controversial as

Chan and Lakonishok (2004) point out. The behavioral literature - as explained by Lakonishok

et al. (1994) - has claimed that investors make mistakes regarding future earnings growth rates on

value and growth stocks by incorrectly extrapolating recent earnings growth. Therefore, according
1We refer to a trade that goes long value and short growth as well as the formal value factor constructed by Fama

and French (1992) as HML.
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to this line of reasoning, value stocks are not riskier than growth stocks but are simply mispriced.

Rational explanations claim that value stocks achieve high returns because they are in some way

riskier (Fama and French (1992, 1993, 1996, 1998)). Campbell et al. (2013), for example, shows

that HML performs poorly when volatility on the market portfolio increases. Our results are

supportive of this interpretation: we find that HML also performs poorly when the third cumulant

of the risk neutral distribution becomes more negative. However, we set a new bar for strictly

rational explanations of the value premium because returns to HML are forecastable. This timing

ability allows an investor to take HML risk opportunistically to achieve a significantly higher return

stream. Accounting for this better performance in a strictly rational framework will be difficult.

Furthermore, we show (using mutual fund flows) that investors underreact to changes in the third

cumulant suggesting that either behavioral or institutional frictions will be important in explaining

an active strategy that rotates into and out of HML.

This work contributes to two strands of literature: understanding the value premium and slow

moving capital. In a series of papers Fama and French (1992, 1993, 1996, 1998) show that high

book-to-market securities earn high returns relative to low book-to-market stocks. The rational

asset pricing literature has advocated for an ICAPM style model where growth and value stocks

have covariance with state variables. Campbell and Vuolteenaho (2004) examine the covariance

of securities with discount rates and cash flows. Using an ICAPM they show that the price of

risk associated with discount rate covariance is lower; value stock betas are mostly composed of

cash flow betas while growth stock betas are discount rate betas. Therefore value stocks should

command a higher return per unit of market beta. In a followup article Campbell et al. (2010)

attempt to understand if this is related to sentiment: the authors show that the difference in value

and growth stocks corresponds to the covariance of their fundamentals with market discount rate

or cash flow news suggesting that there is a fundamental risk story. Petkova and Zhang (2005)

show that market β of value stocks is higher in bad states of the world. In recent work, Campbell

et al. (2013) report that value stocks have a negative β to volatility news. The authors use a long

time series of realized volatility with a FIGARCH model as their proxy for volatility. Our work

extends this literature by showing that returns to HML are poor when the third cumulant of the

risk neutral distribution becomes more negative.

In a large separate literature, researchers have documented underreaction by investors to pub-
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licly available information. Hong and Stein (1999) present a model theoretically motivating how

this could occur. Ang et al. (2012) show that individual stock options contain information regarding

future returns of individual stocks. Duffie (2010) shows that arbitrage opportunities can remain

unexploited during periods when investors experience impediments to trade. We contribute to this

literature by showing that investors underreact to changes in the third cumulant of the risk neutral

distribution.

2 Crash Risk

The third cumulant corresponds to the third central moment of the distribution. It is negative when

the distribution is negatively skewed and thus has a long left tail, something investors (generally

speaking) dislike. This aversion to a long left tail is captured in CRRA and Epstein-Zin preferences.

Martin (2013) shows that2:

Et(Rem,t) ≈ γκ2 −
1
2γ

2κ3 + higher order stuff (2.1)

where κj is the jth cumulant of the physical distribution of Rem,t and γ is investor risk aversion3.

A more negative κ3 causes a higher expected return on the market portfolio. We refer to this as

crash risk because of the definitional relationship between skewness and κ3,

skewness ≡ κ3
σ3 (2.2)

where σ is the volatility of the physical distribution.

Namely, κ3 measures the interaction between skewness and volatility raised to the third power.

The risk neutral version of κ3, which we denote κ3, can be extracted from the options surface using

the model free methods of Bakshi et al. (2003). Details are provided in the Appendix. Chang et al.

(2013) examine the price of risk neutral skewness and do not find a relationship with HML. We

differ in results because in our work, κ3 is the relevant theoretical quantity which is an interaction

of volatility and skewness. Since κ3 is a risk neutral measure, it can change because investor risk
2In his notation, with λ = 1, approximating −γ(γ − 1) ≈ −γ2.
3We work directly with the market in this article which can be justified if the consumption to wealth ratio is

approximately constant
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aversion (γ) changes or because the characteristics of the physical distribution have changed. This

relation is explained by Bakshi et al. (2003) under power utility4:

κ3 ≈ κ3 − γκ4 (2.3)

Therefore, risk due to the third cumulant can increase because the cumulant associated with the

physical distribution has become more negative or because investors have become more risk averse.5

As mentioned earlier, we are unable to disentangle these two effects. Because our work is concerned

with understanding the degree of efficiency with which prices incorporate information, rather than

estimating particular parameters of a model or explaining risk premia, this is less of a concern.

While we provide robustness results using the methodologically exact measurement of κ3, we

focus instead on an approximation analogous to the risk reversal used by Brunnermeier et al. (2008)

to measure currency crash risk. Moreover, investors are used to thinking of risk as a positive number

so we focus on approximating −κ3 in our work. Specifically define

SKEWt ≡
1
|P |

∑
j∈P

IVj,t −
1
|C|

∑
j∈C

IVj,t (2.4)

where P (C) is the set of 1 year S&P 500 out of the money (OTM) put (call) options and |P |

(|C|) its cardinality, IVj,t is implied volatility on option j at time t. Thus this is simply the average

volatility on OTM S&P 500 put options minus the average volatility on OTM S&P 500 call options.

We use the interpolated volatility surface from OptionMetrics to compute SKEW (while the actual

set of option prices is necessary to compute κ3 which we discuss in the Appendix) monthly from

1996-2012 based on data availability. The surface provides a set of volatilities for put and call

options in increments of five delta units and thus is symmetric around the at the money (ATM)

point. Since our work will focus on monthly data and option markets close 15 minutes after equity

markets, we use the second to last day of the month to compute our implied volatility related

metrics to prevent any look ahead bias.

To relate SKEW theoretically to risk neutral moments that we are familiar with, we look to
4Note that Bakshi et al. (2003) use κ to denote moments while we use it to denote cumulants.
5For completeness we note that this could also happen if κ4 has increased: the distribution has become more fat

tailed
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Proposition 2 of Backus et al. (2004). Using Gram-Charlier approximations the authors show that

IVt(d) ≈ σt
[
1− RNSKEWt

3! d− RNKURTt
4! (1− d2)

]
(2.5)

where IVt(d) is the implied volatility of a call option with moneyness d (d ≈ 0 for at the money

options, d > 0 in the money, and d < 0 out of the money)6, σt is the risk neutral volatility of the

underlying, RNSKEWt is the risk neutral skewness, RNKURTt is the risk neutral kurtosis. By

put-call parity, in the money (ITM) call options will have the same volatility as OTM put options

with the same strike. Therefore, SKEWt is equivalent to measuring the difference between the

average volatility on ITM call options and OTM call options. Since we are using a standardized

surface with perfectly symmetric d, by (2.5), the difference in implied volatilities between an ITM

call option (d > 0) and the symmetric OTM call option (d < 0) is7:

IVt(d)− IVt(−d) ≈ −σt ·RNSKEWt (2.6)

Therefore, SKEWt:

SKEWt ≈ −σt ·RNSKEWt (2.7)

That is, just like κ3 it measures the interaction of volatility and risk neutral skewness. When κ3 is

highly negative (high risk), SKEW will be highly positive; it captures times of high risk neutral

volatility and negative skewness.

There are several reasons we focus on using SKEW as opposed to κ3 in our work. First,

extracting SKEW from the set of data provided by OptionMetrics is simple and this database

is used by academics and practitioners alike. Second, while κ3 is meaningful to someone whose

goal is to estimate the coefficient of risk aversion (γ), SKEW is much more interpretable from a

practitioner perspective. Risk reversals are frequently traded by options investors and are quoted

in terms of volatility points - just like SKEW . One can have an intuitive understanding of what a

one volatility point increase in SKEW represents while an intuitive understanding of a one point

decrease in κ3 is more elusive. Thus another way to look at SKEW is the following: when investors
6Formally, d ≡ log(St/K)+r+σ2/2

σ
7IVt(d)− IVt(−d) ≈ −2σt RNSKEWt

3! d. Since we will be examining innovations, we can drop time invariant which
yields the desired result.
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want to protect their portfolio they can buy risk reversals. This transaction would increase the

spread in implied volatility between OTM puts and OTM calls and push SKEW higher. Therefore

when investors are particularly fearful and want to protect their portfolios with such a transaction,

SKEW will be particularly high.

While we have related SKEW to risk neutral moments from a theoretical perspective, it is

helpful to empirically verify that our metric is capturing the desired quantities. We proxy for

market volatility using the VIX index and extract RNSKEW from the cross-section of S&P 500

options using the methodology described in the Appendix. As noted earlier, a high positive SKEW

represents risky states of the world from the perspective of the investor. Analogously a highly pos-

itive VIX represents high (risk neutral) forecasted levels of volatility; a highly negative RNSKEW

represents a negatively skewed distribution. The point to keep in mind is that a negative innovation

in RNSKEW is an increase in risk from the perspective of an investor. The opposite is true for

VIX and SKEW : a positive innovation to these variables corresponds to a riskier distribution. We

extract innovations at the monthly frequency using univariate ARMA models chosen by BIC for

each quantity (SKEW, VIX and RNSKEW ). All of the quantities are can be described by a low

order ARMA model.

Our goal is to understand how SKEW innovations, εskew, relate to innovations in risk neutral

moments. We attack this problem parametrically using linear regression and non-parametrically

using local polynomial regressions. Namely, we run two forms of regressions:

εskew,t = f(εrnskew,t, εvix,t) (2.8)

εskew,t = a+ βvεvix,t + βrnsεrnskew,t + βi(εvix,tεrnskew,t) + ηt (2.9)

where f(·) is a second order local polynomial. Figure 1 presents a surface representing the results

of fitting (2.8). Variables are standardized prior to running these regressions so that magnitudes

can be more easily interpreted. The arrows point in the positive direction for each variable.

The figure plots the fitted values of εskew,t from regression (2.8) against εvix,t and εrnskew,t. It

shows εskew is high when there is an increase in volatility and the distribution of returns becomes

more negatively skewed. Thus SKEW is a measure of the joint behavior of volatility and skew-

ness, as desired. This can be examined in a linear regression context as well: the table below the
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figure presents results of regression (2.9). The results are the same as those explained by the plot:

SKEW increases when the distribution becomes more negatively skewed (εrnskew < 0) and volatil-

ity increases (εvix > 0). Additionally, there is a significant interaction effect that was highlighted

by the plots: SKEW increases particularly strongly when there is an increase in volatility and the

distribution of returns becomes more negatively skewed.

It is helpful to understand how SKEW varies through time in relation to the VIX and the

business cycle since investors are generally familiar with the time-series pattern of these quantities.

Figure 2 presents a plot of SKEW for our sample along with the VIX and SKEW orthogonalized

to the VIX (using linear regression) labeled OrthSKEW ; recessions are highlighted using gray

bars. The variables have been standardized. One obvious pattern is the correlation that SKEW

exhibits with the VIX: roughly 60%. However, there are subtle differences in the pattern: SKEW

was higher relative to its normal levels than the VIX (relative to its normal levels) prior to the

dot-com bubble bursting. It also spiked up prior to the 2008 financial crisis and has remained

elevated after the crisis. We will see further in the article that these features are important in

predicting HML returns.

3 Risk and Return

3.1 Equities

Martin (2013) provides the relationship between κ3 and returns on the market portfolio: a more

negative third cumulant should correspond to higher expected returns. Translated to our metric,

this implies a higher level of SKEW should mean higher expected returns. We first verify empiri-

cally that this conjecture is true and SKEW does, in fact, forecast the return on the market. The

finance literature has already identified several variables that are considered state variables and

forecast future market returns. We are careful to control for these other variables to understand

the multivariate implications of SKEWt on market returns. The variables that we consider are the

dividend yield on the S&P 500, the smoothed earnings yield, the term premium and the default

premium. To understand the relationship between SKEWt and expected market returns, we run
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the following regression:

Rem,t = a+ ρmR
e
m,t−1 + βsSKEWt−1 + βdpdpt−1 + βdydyt−1 + βseyseyt−1 + βtptpt−1 + εm,t (3.1)

using monthly data from 1996 - 2012. Our sample is constrained by the availability of options data.

Additionally, much of the expected return literature - see Cochrane (2011) for a recent summary

- has reported stronger effects at longer horizons. Therefore, we also run a regression of 6 month

market excess returns on predictor variables:

Rem,t→t+5 = a+ρmR
e
m,t−1 +βsSKEWt−1 +βdpdpt−1 +βdydyt−1 +βseyseyt−1 +βtptpt−1 +εm,t (3.2)

Table 1 reports the results. As noted earlier, since options markets close later than equity

markets, we skip an extra day between information on SKEWt and any equity return to prevent

look-ahead bias. Thus in monthly data, SKEWt represents observations on the second to last

day of the month. Note that the bandwidth selection for the HAC standard errors is automatic

using the procedure of Newey and West (1994) and thus accommodates overlapping observations in

regression (3.2). SKEW has significant forecasting power for market returns even in the presence

of other state variables. A one volatility point higher SKEW corresponds to roughly 30 - 60 basis

points of expected market returns the following month. Similarly the second half of the table shows

that a one volatility point increase in SKEW is related to 1.8% higher expected return over the

following 6 months. The empirical return relationship is supportive of (2.1).

We next turn to the cross-section of equities: to determine if innovations in SKEW are dif-

ferentially important in the cross-section (this is not a pre-determined conclusion) we use the

Fama-French 25 portfolios as our basis assets and regress excess returns of each portfolio, Rei,t, on

εskew controlling for market returns and VIX innovations:

Rei,t = a+ βmR
e
m,t + βvεvix,t + βεskewεskew,t + νt (3.3)

Table 2 presents the multiple β of each portfolio with respect to εskew. The results here are pretty

clear: HML has a negative exposure to εskew. That is, when the risk neutral distribution becomes
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riskier, value stocks do poorly while growth stocks do well. The results are especially strong in

small and medium stocks. This is an empirical extension to higher cumulants of results reported

by Campbell et al. (2013) who show that HML has a negative exposure to increases in volatility.

Since HML is clearly the factor of interest, we use the HML portfolio directly rather than

each individual Fama-French portfolio in subsequent results. As mentioned in the introduction,

we are interested in understanding how efficient securities in the cross-section are at incorporating

information regarding changes in risk into their prices; we find a significant lag in the price adjust-

ment process. In addition to doing poorly at time t when there is a positive innovation to SKEWt,

Rhml,t+1 is also highly negative; value stocks continue to underperform the following month. Figure

3 plots the cumulative response to εskew,t from the regression of

Rhml,t = a+ βmR
e
m,t + βε,jεskew,t−j + εt (3.4)

for j = 0...12. The Newey-West error bounds are presented in the plot in dashes; j is measured on

the x-axis. For each j, the figure plots
∑j
k=0 βε,k and assumes that estimates of βε,j are independent

so that the cumulative standard error at each j is
√∑j

k=0 sek(βε,k)2 where sej(βε,j) is the Newey-

West standard error associated with βε,j in equation (3.4). This regression can be interpreted as

asking: if there is a one volatility point increase in SKEW at time t and a one volatility point

increase in SKEW at t− 1, ..., t− j then what is the cumulative effect on HML at time t?

We see a striking pattern: while Rhml,t is indeed highly negatively correlated with εskew,t,

there is a significant delay in the price adjustment process. The plot shows that the j = 0 and

j = 1 coefficients for Rhml,t are highly negative and significant (with associated t-statistics of

−2.94 and −3.84, respectively). Following an increase in SKEW , HML continues to underperform

the following month. In fact, we see that the price adjustment process actually takes up to 4

months to fully realize. This is a startling finding: to confirm these results we extend the sample

internationally to Europe and Japan8. Note that our analysis is done from the perspective of a US

investor (thus, for example, market returns refer to the CRSP value weighted market return). We

also attempt to control for the effect of time-varying HML market β. As noted earlier, Petkova and

Zhang (2005) found that the market β of HML varies through time; it is possible that a high level
8While this gives us comfort against data snooping concerns, we note that there is a 40% correlation between US

HML returns and JPY HML returns; a 60% correlation between US and Europe HML returns.
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of SKEWt−1 forecasts a higher market β at time t. To be precise, imagine that

Rhml,t = βm,tR
e
m,t + ηt (3.5)

βm,t = β0 + β1SKEWt−1 (3.6)

then the appropriate attribution regression to run for HML is

Rhml,t = β0R
e
m,t + β1(SKEWt−1 ·Rem,t) + ηt (3.7)

We would like to eliminate the possibility that a time varying market β is driving our results so we

include the interaction of SKEWt−1 and Rem,t into the regression. Therefore, for each region we

run a forecasting regression of the form:

Rhml,t = a+ βmR
e
m,t + βs

 4∑
j=1

εskew,t−j

+ βi(Rem,t · SKEWt−1) + νt (3.8)

where we use the sum of the last four innovations in SKEW based on the results of Figure 3. Table

3 presents the summary statistics of HML returns in each region (Panel A) and reports the results

from this regression (Panel B).

Panel A shows that HML in all three regions has a high return and a high alpha during our

sample period. The units are left in their natural monthly frequency (the Sharpe ratio is annual-

ized). Thus HML, in the US, has a CAPM alpha of .347% per month. The sample statistics in all

three regions are similar with Europe having the highest Sharpe ratio. Panel B reports that a one

volatility point unexpected increase in SKEW over the last four months leads to a .6% lower return

the following month in the US, .25% lower HML return in Japan and .37% lower HML return in

Europe. The adjusted R2 statistics are also quite large: a simple univariate forecasting regression

in the US can explain 10% of the variation in HML returns in monthly data. The t-statistics are

also very large: in the US the t-statistic associated with
∑4
j=1 εskew,t−j is −6; this is directly linked

to the Sharpe ratio of a strategy that one can construct Sharpe (1994).

To construct a realistic trading strategy from these regressions, we would like to avoid estimating

an ARMA model for innovation extraction and also avoid estimating the distributed lag model for
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forecasting Rhml. While this is certainly the optimal method, our sample is relatively small and

we want to avoid all possibility of look-ahead bias in parameters. To get around this constraint,

we will simply use the level of SKEW : since several lags of innovations seem important (as noted

earlier) and SKEW is not terribly persistent, we hope that older innovations that are irrelevant

will have decayed sufficiently and thus not erode our forecasting performance. To do this we simply

run regression (3.8) but replace the term
∑4
j=1 εskew,t−j with SKEWt−1:

Rhml,t = a+ βmR
e
m,t + βsSKEWt−1 + βi(Rem,t · SKEWt−1) + νt (3.9)

Table 4 reports these results.

Comparing the two tables we can immediately see that our forecasting performance is worse

using the level of SKEW as to be expected: the t-statistic is cut in half in the US and so is the R2.

Thus, backtest results that we report using SKEW as a forecasting variable is a lower bound on

the true performance that an investor can achieve. Robustness of these results is presented in the

Appendix: the results are robust to choice of volatility maturity and sub-samples (see Tables 12

and 13). Finally, we want to be sure that our results are not related to something else that SKEW

(being an approximation for −κ3) is picking up. To verify this we run a forecasting regression of

HML returns in all three regions but replace the SKEW level (as in Table 4) with the level of −κ3.

Table 5 reports these results which are qualitatively no different (in terms of forecasting ability)

than those with SKEW .

These results imply a strategy, which we refer to as active HML, that would selectively rotate

into and out of HML being long value (growth) and short growth (value) stocks at different points

in time. We are careful to prevent any look-ahead bias in the parameters and ensure this strategy

is realistic. We begin by computing a forecast for returns on HML using

Rhml,t−1 = a+ βsSKEWt−2 + εt−1 (3.10)

allowing 36 months burn in period for estimation of βs. Based on this model we compute the

forecast for the following month’s HML return, R̂hml,t. Assuming an endowment of Wt−1, we

build a portfolio by putting whml,t−1 of Wt−1 into HML. Assuming that margin accounts pay no
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interest rate and require 50% of the absolute value of the position (so that if one wants to go

long HML by purchasing “H” and selling “L” then one has to put up margin equivalent to half of

the position), the remainder of the endowment, (1− |whml,t−1|)Wt−1, is invested into the risk free

rate9. The weight is defined as whml,t−1 = tanh

 R̂hml,t√
1
t

∑t

j=1(R̂hml,j−R̂hml,t)2

. This is the hyperbolic

tangent of the forecasted HML return scaled by the standard deviation of previous HML forecasts.

The hyperbolic tangent is applied so that whml,t−1 ∈ [−1, 1]. The gross return to this portfolio
Wt
Wt−1

= 1 + whml,t−1Rhml,t + (1 − |whml,t−1|)Rfree,t where Rfree,t is the risk free rate realized at

time t. Each successive month, the window over which the model is estimated expands but always

only includes historical data. Rebalancing is done monthly for both active and passive HML. The

monthly rebalancing for passive HML assures that the investor puts half of his wealth in being long

“H” and half into being short “L” (ie equal weights). The cumulative return to passive and active

HML is presented in Figure 4. The shaded regions represent times when the strategy is short HML

while the white areas represent times when the strategy is long HML.

As is evident from the plot, the position direction is quite persistent; since HML is such a large

aggregate, transaction costs here are also minimal. However, the performance of active HML is

significantly better than passive HML. An investment of $1.00 in HML in 1999 becomes roughly

$1.50 by the end of 2012. This same dollar invested in active HML becomes roughly $2.50 by

the end of 2012. The annualized information ratio, IR ≡ E(Ractivehml,t −R
passive
hml,t

)
σ(Ractive

hml,t
) , for this strategy is

.36. The times when this strategy is short HML correspond to significantly anomalous market

conditions. For example we see that this strategy is short HML during the run-up in tech stocks of

the late 90’s. It is also short HML during/post the 2008 financial crisis. These two periods account

for a substantial portion of the profit generated by this strategy. This is to be expected: we are

attempting to pick up states of the world when the price investors are willing to pay for portfolio

insurance spikes and these states should not be a frequent occurrence.

Given the relationship between SKEW , VIX and RNSKEW we can horse-race them to see

which contains the most relevant information for future HML returns. If, as claimed, SKEW is

the more relevant variable then it should perform better than VIX or RNSKEW . To answer this
9We assume that Wt−1 > 0; if at any point this condition is violated the strategy stops.
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question Table 6 presents a regression of

Rhml,t = a+ β1SKEWt−1 + β2V IXt−1 + β3RNSKEWt−1 + ηt (3.11)

As the results clearly indicate, in a multivariate regression with SKEW and VIX, the VIX becomes

insignificant in predicting HML returns while the SKEW is still highly significant. Similarly, in a

regression using SKEW and RNSKEW , SKEW is the more relevant variable.

While we have been fortunate that our time sample includes diversity in business cycle condi-

tions, we are still constrained by the availability of options data from OptionMetrics. To verify

that our results work in other time samples - a truly out of sample test - we attempt to impute

the value of SKEW based on quantities that SKEW should be picking up. To extend the sam-

ple in a principled way, we use the LASSO variable selection method of Tibshirani (1996). This

methodology is an `1 penalized regression that selects variables among a candidate set that best

capture the true relationship and kicks out all irrelevant ones. The set of possible variables that

we include is It ≡ {κ3, Rhml,t, R
e
m,t, dyt, tpt, dpt} and It−1. As noted earlier, κ3 is the physical third

cumulant of market returns computed over the past 3 months of daily data, Rhml,t is the US HML

return, Rem,t is the market return, dyt is the dividend yield, tpt is the term premium, dpt is the

default premium. The logic for including these variables is simple: κ3 should capture the portion

of SKEW corresponding to the physical distribution, dyt, tpt, and dpt could capture risk aversion

that we know affect SKEW as in equation (2.3), and we have already discussed how HML and

market returns relate to SKEW .

To operationalize this technology, we use five-fold cross validation using the 1996-2012 sample,

to fit the LASSO model to the SKEW using It and It−1. The cross validation is needed to select

the shrinkage parameter that LASSO uses to determine how aggressive it should be in shrinking

regression coefficients. For a particular shrinkage parameter, we divide the sample (1996-2012) into

5 sections, pick a section to leave out, fit LASSO over the remaining four sections and compute the

root-mean-square error of the model in forecasting the level of SKEW in the left out section; we

then leave a different section out and repeat the process. The average root-mean-square error for

this particular value of the shrinkage parameter is recorded. A shrinkage parameter is selected that

creates the lowest forecasting error. This shrinkage parameter corresponds to a particular set of
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variables out of the available set. A simple OLS model is then fit from 1996-2012 using the selected

set of variables and is used to compute a fitted value of SKEW , termed ̂SKEW , going back to

1963.

We validate that our results hold over this significantly longer non-overlapping sample period:

we show that ̂SKEW has forecasting power for Rem and Rhml is slow to respond to innovations in

̂SKEW , termed ε̂skew. Using the sample from 1963 - 1996, the first part of the Table 7 shows that

Rhml responds slowly to innovations in ε̂skew: a one volatility point increase in ̂SKEW corresponds

to 40 - 50 basis points poorer performance in HML the following month. The second part of the

table shows that ̂SKEW is capable of forecasting the market return the following month as we saw

in the 1996 - 2012 sample using SKEW .

3.2 Corporate Bonds

We have shown that HML responds to innovations in SKEW slowly in three regions and over a

lengthy time sample; these results led us directly to an implementable trading strategy. Do these

results hold in other asset classes? We examine corporate bonds to try and answer this question.

At the same time, it provides another out of sample test of our results regarding slow investor

reaction to changes in crash risk. Corporate bonds are a natural asset class to examine because

they contain a large cross-section (like equities) and have assets that are considered risky in absolute

terms (junk bonds) by investors and those that are considered safe (investment grade bonds). Bank

of America/ML provides total return indices by rating category (AAA through CCC) which we use

as basis assets.

We first examine if these assets have differential exposure to innovations in SKEW in Table 8.

We see clearly that AAA bonds enjoy a positive return while CCC bonds have a negative return

when SKEW increases contemporaneously. Thus the long CCC, short AAA trade performs poorly

when crash risk increases; this is the same type of result that we saw with value and growth stocks.

We next ask the question: do these securities incorporate changes in risk into their prices

efficiently? We saw that investors active in equities do not and thus HML incorporates changes
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in SKEW with a delay. To answer this question we run the analysis in equation (3.4) replacing

Rhml,t on the left hand side of the regression with RCCC−AAA,t: the return of CCC bonds minus

the return on AAA bonds. Figure 5 presents the results of this analysis. At lag zero we see the

contemporaneous results presented in Table 8: the long junk short investment grade (CCC-AAA)

trade performs poorly when there is a positive innovation in SKEW . However, we also see that

it proceeds to perform poorly the following month as well (until reversing in month two). That is,

these securities are also slow to fully incorporate all available information into their prices though

they are more expedient than equities (which took 4 months). One can speculate regarding the

reason for this: one story might be that corporate bonds have a more sophisticated investor base

since fewer retail investors participate actively in the bond market; however, this is just speculation

on our part.

These results can be presented in a regression framework using equation (3.8) replacing Rhml

on the left hand side with returns on each bond rating category and using one lag of SKEW

innovations as opposed to four based on Figure 5. Table 9 presents the results of these regressions.

We see that a one point increase in SKEW predicts a −77 basis point return to RCCC−AAA the

following month. These results confirm that underreaction to changes in crash risk is prevalent in

the financial markets.

4 Investor Trading Behavior

As we pointed out early in the article, in a rational frictionless market, changes in risk/risk prefer-

ences should be reflected in stock returns contemporaneously. However, we have shown that prices

are slow to fully incorporate information from SKEW into HML. A large behavioral/frictional

literature has documented significant delays in price reactions, discussed nicely by Hong and Stein

(1999); Duffie (2010). Ang et al. (2012) show that options on individual securities have relevant

information for future returns of those securities not captured by the standard risk factors. They

propose that sophisticated investors express their views in the options market and this information

is reflected in individual stock returns slowly. Duffie (2010) documents a number of such occur-

rences: in his evidence, investors are constrained due to leverage or lack of capital from exploiting

arbitrage opportunities. Fresh capital arrives to the market slowly and thus anomalies persist.
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Our work finds results that are similar: innovations in SKEW contain information about future

HML returns. While there is a clear contemporaneous reaction as shown in Figure 3, there is also

a significant delay. We confirm that investors are in fact slow to react to this information by

examining mutual fund flows. Just like HML returns, we find that flows into value and growth

mutual funds are predictable using past innovations in SKEW . A positive innovation in SKEW

causes investors to withdraw money from value funds while not withdrawing money from growth

funds.

We first classify funds by value style using their four factor exposure

Rf,t = a+ βm,tRm,t + βsmb,tRsmb,t + βhml,tRhml,t + βumd,tRumd,t + εf,t (4.1)

using 36 months rolling regression as in Chan et al. (2002) among others. Funds are arranged into

quintiles each month based on last month’s HML exposure: βhml,t−1. We further define

FLOWf,t ≡
TNAf,t − TNAf,t−1(1 +Rf,t)

TNAf,t−1
(4.2)

for each fund f and month t where TNA is the total net assets and Rf,t is the return of fund f .

This is the percentage increase/decrease in the assets of the fund due to contributions/withdrawals

by investors. Additionally as Chevalier and Ellison (1997) show, flows into mutual funds are highly

dependent on the funds’ past performance; we are sure to condition on this in our analysis so that

any effect in investor behavior we find is due to information in SKEW as opposed to past fund

returns. Therefore, we also compute the 1 year rolling cumulative return of each fund: Rf,t−12→t−1.

Then, for each value style bucket (1 - 5) a TNAt−1 weighted average of FLOWf,t (termed FLOWb,t

for b ∈ {1, 2, .., 5}) and Rf,t−12→t−1 (termed Rb,t−12→t−1) is taken. We regress:

FLOWb,t = a+ βb,skewεskew,t−1 + βb,retRb,t−12→t−1 + νt (4.3)

Results in Table 10 show that βb,skew is highly significant and negative for value stocks but roughly

zero or positive for growth stocks. Investors pull money out of value funds in response to an increase

in market crash risk with a lag. The magnitudes are significant: one volatility point increase in

SKEW causes a .2% outflow from value funds relative to growth funds the following month. This
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underreaction by investors to the information expressed by option market participants drives the

predictability of HML returns.

One may be concerned that mutual funds pre-position their portfolios in anticipation of flows

and thus dampen the effect of lagged information on stocks. Consider a savvy value mutual fund

manager who received an inflow of money this month: he may decide that there is a good chance

that he will also receive an inflow of money the next month since flows are persistent. Knowing

this fact, he uses his cash position (or takes a loan from a bank) to purchase value stocks this

month anticipating to return his cash position (or pay the loan) to equilibrium the next month.

This would serve to dampen the predictability of value stocks due to investor underreaction. To

account for this fact we extract innovations from flows into each quintile, εflowb,t , and treat these as

unexpected flows to the fund manager. We then regress these unexpected flows on εskew,t−1 and

past fund returns, Rb,t−12→t−1:

εflowb,t = a+ βb,skewεskew,t−1 + βb,retRb,t−12→t−1 + νt (4.4)

The results of this regression are presented in Table 11. This, however, does not alter our con-

clusions: innovations in SKEW predict unexpected flows into growth and value stocks. Investors

withdraw .1% from value funds relative to growth funds in response to one volatility point increase

in SKEW the previous month.

5 Discussion and Conclusion

We have shown that returns to HML (as well as corporate bonds) have a significant amount of

predictability. Utilizing this predictability, we perform an “out-of-sample” test of performance:

active HML significantly improves the returns to an investor relative to an investment in passive

HML. A dollar invested in passive HML in 1999 grows to approximately $1.50 by the end of 2012.

On the other hand, that same investment grows to roughly $2.50 in active HML. Furthermore,

this predictability is easy to extract: it does not require complex computation just the implied

volatility skew on the S&P 500. Using mutual fund flow data, we show that this predictability is

due to delayed reaction by investors.

Our results have deep implications for theories attempting to explain high returns on HML:
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theories must now consider explaining returns to active HML (a much more difficult thing to do

given the favorable return profile). More generally, our results relate to a large literature on slow

moving capital and segmented markets. We show how a large, heavily examined factor can have a

significant amount of return predictability due to the slow rotation into and out of value/growth

stocks by investors. One may regard slight economic frictions that prevent small stocks from re-

pricing perfectly as unimportant. However, the return predictability that we identify here is on an

aggregate, economically meaningful level. A significant portion of this predictability comes from

periods when the market experiences stress: during the tech bubble and during the financial crisis

of 2008. We highlight that these periods can generate significant mispricing for large aggregates.

A Appendix

A.1 Robustness

We perform several robustness checks. First we verify that our results are not solely driven by

the 2008 financial crisis. We split the time period in half (by years): pre and post 2004 and test

equation (4) in US, JPY, EUR. Results are robust in both sub-samples. It is difficult to split it up

much more finely than this due to the low number of observations already in the sample (constraint

is the options data). Table 12 reports the results.

The second set of robustness checks we run is to verify that the particular volatility maturity

that we use (1 year) is not the only source of the results. To do this we run predictive regressions

using other volatility maturities (from 1 month to 1 year): our results are highly robust to this.

Table 13 reports the results.

A.2 Extracting Risk Neutral Moments

We follow a similar data cleaning methodology to Chang et al. (2013) to remove options with

potentially erroneous quotes. In particular each day we remove options with prices of less than

$.375, options that are in the money, days where there are less than 10 options quoted, options

that have less than 10 days to maturity and options that violate arbitrage conditions. After this

filtering, we extract implied volatilities from the remaining options. On each day, for each maturity

we generate a volatility surface by interpolating the implied volatilities using a penalized cubic
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regression spline with a grid of 1000 evenly spaced strike to spot ratios (the strike to spot ratio is

the ratio of the option strike to the index spot price) in [.0001, 3]. For values outside of the range

available in the market we simply set the implied volatility to the nearest market available quote.

This is to prevent the cubic spline from generating extreme (implausible) volatilities that would

depend on the slope of the fit near potentially noisy tail options. Once we have a daily implied

volatility surface, we compute the value of risk neutral skewness as follows. As in Bakshi et al.

(2003), define:

V (t, τ) ≡
� ∞
St

2(1− ln K
St

)
K2 C(t, τ ;K)dK (A.1)

+
� St

0

2(1 + ln St
K )

K2 P (t, τ ;K)dK

W (t, τ) ≡
� ∞
St

6 ln K
St
− 3(ln K

St
)2

K2 C(t, τ ;K)dK (A.2)

−
� St

0

6 ln St
K + 3(ln St

K )2

K2 P (t, τ ;K)dK

µ(t, τ) ≡ erτ − 1− erτ

2 V (t, τ)− erτ

6 W (t, τ)− erτ

24 X(t, τ) (A.3)

RNSKEW (t, τ) = erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

(erτV (t, τ)− µ(t, τ)2)(3/2) (A.4)

where C(t, τ ;K) is the price of a call at time t with strike K and τ years until maturity, P (t, τ ;K)

is the price of a put at time t with strike K and τ years until maturity, and r is the risk free rate.

RNSKEW (t, τ) is the value of risk neutral skewness as used by Chang et al. (2013). To be consis-

tent in maturity with the VIX and previous studies of volatility such as Ang et al. (2006) we use the

value of τ = 30/365 and the VIX as a proxy for volatility. To build the constant maturity measures

we interpolate using linear regression between measures computed using available maturities. The

measures are then annualized (as the VIX is reported in annualized units).
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Table 1: SKEW Forecasts of Future Market Excess Returns

We report the forecasting power of SKEW for future market returns across the 1 month and 6
month horizon. We are careful to control for other variables that have been found to predict market
returns in the literature.

Dependent Variable SKEWt−1 Rem,t−1 dpt−1 dyt−1 seyt−1 tpt−1 (Intercept) R2 N

Rem,t
0.260 -0.734 0.35% 201
[1.221] [-0.724]

Rem,t
0.377 0.162 -1.357 2.31% 201

[2.221] [1.978] [-1.429]

Rem,t
0.591 0.171 -3.659 1.741 0.741 -0.315 -4.078 5.45% 201

[2.176] [1.934] [-2.051] [0.986] [1.178] [-1.031] [-2.291]

Rem,t→t+5
1.674 -4.803 4.32% 196

[2.025] [-0.907]

Rem,t→t+5
1.873 0.272 -5.847 4.78% 196

[2.346] [1.233] [-1.140]

Rem,t→t+5
2.142 0.300 -12.345 10.952 2.754 -1.208 -22.535 16.75% 196
[1.516] [1.305] [-1.089] [0.672] [0.469] [-0.466] [-1.795]
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Table 2: Cross Sectional Sort by β to εskew

Multiple β of Fama-French 25 portfolio returns to innovations in SKEW ; equation (3.3). Size of 1
indicates small stocks and size of 5 indicates large stocks. Value of 1 indicates low book-to-market
stocks and value of 5 indicates high book-to-market stocks. Newey-West t-statistics are in brackets.

Size
1 2 3 4 5 5-1

Va
lu
e

1 0.690 0.719 0.610 0.513 0.034 -0.627 [-0.942]
2 0.300 0.246 0.132 -0.124 -0.130 -0.401 [-0.758]
3 0.121 -0.158 -0.265 -0.275 -0.342 -0.434 [-0.959]
4 -0.054 -0.225 -0.244 -0.166 -0.484 -0.401 [-0.917]
5 -0.311 -0.140 -0.485 -0.146 -0.235 0.105 [0.211]
5-1 -0.972 -0.830 -1.066 -0.630 -0.239

[-2.753] [-2.015] [-2.455] [-1.594] [-0.907]
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Table 3: Forecast of Rhml,t Using
∑4
j=1 εskew,t−j 1996-2012

Panel A shows summary statistics for HML in US, Japan (JPY) and Europe (EUR): all of these
regions have a significant value effect. The results are from the perspective of a US investor
(CAPM α is with respect to the US market). Panel B shows that lagged innovations in SKEW
have significant forecasting power for HML in all of these regions.

(a) HML Summary Statistics By Region

Region Rt minRt maxRt σ(Rt) Sharpe CAPM α N
US 0.267 -12.600 13.840 3.495 0.265 0.347 201
JPY 0.457 -13.820 10.080 3.092 0.512 0.545 201
EUR 0.487 -9.570 10.960 2.653 0.636 0.481 201

(b) Rhml Forecasts

Region
∑j=4
j=1 εskew,t−j Rm,t SKEWt−1 ·Rm,t (Intercept) R2 N

US -0.600 0.403 10.87% 197
[-6.010] [1.689]

US -0.576 -0.154 0.468 15.07% 197
[-5.159] [-1.406] [1.773]

US -0.564 -0.419 0.053 0.428 17.00% 197
[-6.190] [-1.692] [1.403] [1.785]

JPY -0.255 0.505 2.09% 197
[-2.312] [1.939]

JPY -0.227 -0.183 0.582 9.89% 197
[-2.648] [-3.560] [2.380]

JPY -0.223 -0.268 0.017 0.569 9.74% 197
[-2.412] [-3.108] [1.048] [2.399]

EUR -0.376 0.554 7.15% 197
[-4.621] [2.052]

EUR -0.379 0.023 0.545 6.84% 197
[-4.849] [0.302] [1.837]

EUR -0.371 -0.147 0.034 0.520 8.02% 197
[-4.169] [-0.822] [1.261] [1.876]
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Table 4: Forecast of Rhml,t Using SKEWt−1 1996-2012

Reports the results of equation (3.9): forecasts of HML returns using the SKEW level which is
useful in turning our results into a trading strategy that avoids any look-ahead in parameters.

Region SKEWt−1 Rm,t SKEWt−1 ·Rm,t (Intercept) R2 N

US -0.524 2.695 6.26% 201
[-3.778] [4.217]

US -0.484 -0.154 2.581 10.41% 201
[-3.506] [-1.559] [4.298]

US -0.507 -0.480 0.065 2.650 13.54% 201
[-4.396] [-1.885] [1.568] [4.671]

JPY -0.285 1.778 2.05% 201
[-2.203] [3.067]

JPY -0.238 -0.180 1.646 9.58% 201
[-2.014] [-3.573] [3.152]

JPY -0.246 -0.286 0.021 1.668 9.61% 201
[-2.002] [-3.131] [1.253] [3.084]

EUR -0.380 2.245 5.65% 201
[-3.651] [4.756]

EUR -0.386 0.025 2.263 5.39% 201
[-3.602] [0.346] [4.221]

EUR -0.401 -0.181 0.041 2.307 7.41% 201
[-3.203] [-0.956] [1.397] [3.818]
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Table 5: Forecast of Rhml,t Using −κ3,t−1 1996-2012

Forecasts of HML using the level of −κ3,t−1 to verify that our SKEW metric’s ability to forecast
HML isn’t due to some incidental characteristic but is directly related to crash risk.

Region −κ3,t−1 Rm,t −κ3,t−1 ·Rm,t (Intercept) R2 N

US -2.424 1.130 5.18% 201
[-4.469] [3.530]

US -2.294 -0.161 1.159 9.76% 201
[-3.935] [-1.328] [3.472]

US -2.773 -0.492 0.667 1.311 23.37% 201
[-5.728] [-4.102] [4.397] [4.024]

JPY -1.249 0.902 1.42% 201
[-1.999] [2.680]

JPY -1.102 -0.183 0.935 9.30% 201
[-2.282] [-3.494] [3.064]

JPY -1.237 -0.277 0.189 0.978 10.29% 201
[-2.234] [-3.929] [2.671] [3.204]

EUR -1.592 1.054 3.75% 201
[-3.228] [3.082]

EUR -1.608 0.019 1.050 3.39% 201
[-3.283] [0.246] [2.816]

EUR -1.901 -0.183 0.408 1.143 12.04% 201
[-2.826] [-1.944] [3.601] [3.128]
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Table 6: Robustness to the VIX and RNSKEW

We show that SKEW contains the relevant information for forecasting HML returns even after
controlling for VIX or RNSKEW .

Dependent Variable SKEWt−1 V IXt−1 RNSKEWt−1 (Intercept) R2 N

Rhml,t
-0.523 2.690 6.23% 201

[-3.771] [4.210]

Rhml,t
-0.088 2.210 3.66% 201

[-2.980] [3.484]

Rhml,t
1.013 2.054 0.93% 201
[1.683] [1.841]

Rhml,t
-0.440 -0.028 2.918 6.00% 201

[-2.219] [-0.602] [4.118]

Rhml,t
-0.493 0.509 3.450 6.10% 201

[-3.533] [0.878] [2.881]
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Table 7: Extending the Sample: 1963 - 1996

We extend the sample to 1963 by replicating SKEW using other variables, termed ̂SKEW . This
table reports the results of forecasting returns on HML using innovations in ̂SKEW and the market
using ̂SKEW from 1963 - 1996.

Dependent Variable ε̂skew,t−1 Rm,t ̂SKEW t−1 ·Rm,t ̂SKEW t−1 Rm,t−1 (Intercept) R2 N

Rhml,t
-0.519 0.461 1.49% 396

[-2.472] [3.078]

Rhml,t
-0.413 -0.198 0.551 12.70% 396

[-2.274] [-5.239] [3.936]

Rhml,t
-0.423 -0.217 0.006 0.548 12.50% 396

[-2.069] [-2.400] [0.228] [3.977]

Rm,t
0.443 -0.781 0.85% 396

[2.107] [-1.277]

Rm,t
0.479 0.071 -0.914 1.09% 396

[2.360] [1.364] [-1.512]
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Table 8: Corporate Bond Returns and εskew

We document that AAA bonds perform well when SKEW increases while CCC bonds perform
poorly. Thus the trade that goes long CCC and short AAA bonds behaves like HML with respect
to innovations in SKEW .

Dependent Variable εskew,t εvix,t Rm,t (Intercept) R2 N

Raaa,t
0.228 -0.049 -0.006 0.271 1.08% 201
[1.699] [-0.532] [-0.143] [2.741]

Raa,t
0.154 -0.066 0.006 0.277 2.65% 201
[1.527] [-0.876] [0.142] [2.734]

Ra,t
0.167 -0.113 0.021 0.298 8.28% 201
[1.565] [-1.053] [0.419] [2.478]

Rbbb,t
-0.117 -0.055 0.072 0.338 11.48% 201
[-0.798] [-0.688] [1.506] [2.547]

Rbb,t
-0.296 -0.117 0.166 0.392 39.26% 190
[-1.454] [-1.789] [2.948] [2.384]

Rb,t
-0.427 -0.115 0.259 0.258 46.08% 190

[-2.167] [-2.216] [5.063] [1.549]

Rccc,t
-0.720 -0.121 0.454 0.337 46.06% 190

[-2.259] [-1.532] [3.696] [1.247]

Rccc,t −Raaa,t -0.945 -0.070 0.465 -0.181 44.34% 190
[-2.413] [-0.854] [3.810] [-0.650]
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Table 9: Bond Return Forecasts Using εskew,t−1

This table shows that lagged innovations in SKEW are able to forecast corporate bond returns
highlighting that this asset class is also slow to incorporate information from the options market
into prices.

Dependent Variable εskew,t−1 Rm,t ̂SKEW t−1 ·Rm,t (Intercept) R2 N

Raaa,t
0.397 0.034 -0.006 0.276 7.45% 200

[2.374] [0.493] [-0.494] [2.636]

Raa,t
0.318 0.051 -0.004 0.271 6.49% 200

[2.165] [0.761] [-0.401] [2.653]

Ra,t
0.365 0.146 -0.014 0.276 10.04% 200

[2.176] [1.365] [-0.954] [2.127]

Rbbb,t
0.233 0.283 -0.032 0.330 16.27% 200
[1.856] [1.946] [-1.438] [2.327]

Rbb,t
0.073 0.445 -0.033 0.334 36.43% 190
[0.693] [2.537] [-1.271] [2.030]

Rb,t
-0.262 0.500 -0.024 0.198 43.02% 190
[-1.670] [3.386] [-1.063] [1.090]

Rccc,t
-0.376 0.569 0.009 0.226 43.44% 190
[-1.504] [2.036] [0.201] [0.793]

Rccc,t −Raaa,t -0.775 0.545 0.014 -0.277 43.70% 190
[-2.897] [2.090] [0.337] [-0.914]
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Table 10: Flows Into Value and Growth Funds

Mutual funds are sorted into style quintiles according to βhml,t−1 in a regression of Rf,t =
a + βm,tR

e
m,t + βsmb,tRsmb,t + βhml,tRhml,t + βumd,tRumd,t - where Rf,t is the return of fund f

at time t - as in Chan et al. (2002) among others. FLOWf,t ≡
TNAf,t−TNAf,t−1(1+Rf,t)

TNAf,t−1
is com-

puted for each fund f and month t. To control for the flow performance relationship cumula-
tive returns over the past year are also computed and denoted by Rf,t−12→t−1. Then for each
quintile an asset (TNAt−1) weighted average is taken across FLOWb,t ≡

∑
f∈bwf,t−1FLOWf,t

and Rb,t−12→t−1 ≡
∑
f∈bwf,t−1Rf,t−12→t−1. Then for each quintile we regress FLOW t =

a + βskewεskew,t−1 + βretRt−12→t−1 + νt. The table shows that an increase in SKEWt causes
investors to pull money away from value funds.

Value Style Quintile εskew,t−1 Rt−12→t−1 (Intercept) R2 N

1

0.007 -0.182 -0.50% 199
[0.164] [-1.036]
0.035 0.016 -0.362 16.88% 199
[0.821] [2.678] [-3.111]

2

-0.099 0.089 1.31% 199
[-1.988] [1.002]
-0.082 0.010 -0.019 5.22% 199
[-1.592] [1.597] [-0.168]

3

-0.027 0.007 -0.14% 199
[-0.632] [0.167]
-0.012 0.008 -0.066 4.30% 199
[-0.258] [2.120] [-1.072]

4

-0.137 -0.055 4.25% 199
[-3.826] [-0.518]
-0.117 0.009 -0.147 7.82% 199

[-2.507] [2.192] [-1.535]

5

-0.208 0.057 4.73% 199
[-2.581] [0.377]
-0.164 0.017 -0.139 12.76% 199

[-2.039] [3.289] [-0.792]

5-1

-0.215 0.239 1.66% 199
[-2.076] [0.675]
-0.163 0.057 0.215 53.75% 199

[-1.980] [3.742] [1.387]
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Table 11: Unexpected Flows Into Value and Growth Funds

This table reports the results of equation (4.4) showing that innovations in FLOW (relative to
past values of FLOW ) are predictable using lagged innovations in SKEW .

Value Style Quintile εskew,t−1 Rt−12→t−1 (Intercept) R2 N

1

0.045 -0.038 0.04% 199
[2.108] [-0.930]
0.042 -0.002 -0.020 -0.06% 199
[1.208] [-0.685] [-0.412]

2

-0.032 -0.019 -0.17% 199
[-0.784] [-0.421]
-0.035 -0.002 0.000 -0.44% 199
[-0.868] [-0.558] [0.001]

3

-0.017 -0.027 -0.36% 199
[-0.364] [-0.808]
-0.022 -0.003 -0.001 -0.17% 199
[-0.479] [-0.793] [-0.011]

4

-0.051 -0.025 0.62% 199
[-1.600] [-0.694]
-0.059 -0.003 0.009 1.02% 199
[-1.490] [-1.328] [0.178]

5

-0.050 0.007 0.32% 199
[-0.961] [0.175]
-0.047 0.001 -0.006 -0.09% 199
[-0.895] [0.826] [-0.144]

5-1

-0.102 0.013 1.40% 199
[-2.328] [0.238]
-0.104 -0.002 0.014 1.10% 199

[-2.383] [-0.372] [0.259]
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Table 12: Robustness to Sub-Samples

We show that our results are robust to sub-samples by splitting the time-series in two. A finer split
is difficult due to the lack of S&P 500 options data going back further in time.

(a) 1996-2004
Region SKEWt−1 Rm,t SKEWt−1 ·Rm,t (Intercept) R2 N

US -0.793 3.799 6.80% 95
[-2.872] [3.162]

US -0.663 -0.473 3.487 36.48% 95
[-2.982] [-5.790] [4.020]

US -0.685 -0.535 0.014 3.571 35.82% 95
[-2.996] [-2.010] [0.276] [3.788]

JPY -0.399 2.234 1.50% 95
[-1.187] [1.739]

JPY -0.327 -0.264 2.060 12.72% 95
[-1.097] [-3.280] [1.867]

JPY -0.383 -0.423 0.036 2.280 12.16% 95
[-1.408] [-1.964] [0.651] [2.268]

EUR -0.650 3.777 9.71% 95
[-2.468] [3.688]

EUR -0.600 -0.182 3.657 18.02% 95
[-2.383] [-2.251] [4.002]

EUR -0.643 -0.305 0.028 3.826 17.50% 95
[-2.330] [-1.240] [0.539] [3.705]

(b) 2004-2012
Region SKEWt−1 Rm,t SKEWt−1 ·Rm,t (Intercept) R2 N

US -0.360 1.918 6.34% 106
[-2.712] [2.783]

US -0.412 0.189 2.095 18.60% 106
[-2.948] [2.190] [2.808]

US -0.394 0.003 0.033 1.989 20.35% 106
[-3.230] [0.029] [1.368] [3.159]

JPY -0.218 1.470 2.34% 106
[-2.351] [2.843]

JPY -0.193 -0.090 1.386 5.06% 106
[-2.213] [-1.851] [2.837]

JPY -0.190 -0.124 0.006 1.367 4.24% 106
[-2.227] [-2.062] [0.725] [2.841]

EUR -0.136 0.700 0.43% 106
[-1.654] [1.960]

EUR -0.204 0.245 0.930 28.91% 106
[-2.367] [5.274] [2.722]

EUR -0.193 0.135 0.020 0.867 29.40% 106
[-1.948] [1.829] [1.255] [2.012]

33



Table 13: Robustness: Other S&P 500 Implied Volatility Maturities

To demonstrate that our results are robust to using other maturity points on the S&P 500 volatility
surface, we run two regressions: Rhml,t = a+βmR

e
m,t+βsεskew,t+ εt where εskew,t is the innovation

in SKEWt from an AR(1) model (this validates the contemporaneous relationship). The other
regression is the forecasting regression of Rhml,t = a + βsSKEWt−1 + εt to show that one can
forecast HML with other maturities as well.

Vol Tenure Rm,t εskew,t SKEWt−1 (Intercept) R2 N

1 month

-0.246 -0.422 0.398 10.56% 200
[-1.978] [-3.496] [1.375]

-0.252 1.306 2.34% 200
[-2.521] [3.036]

3 months

-0.274 -0.623 0.416 10.57% 200
[-1.928] [-3.349] [1.430]

-0.442 2.266 5.65% 200
[-3.924] [4.349]

6 months

-0.264 -0.717 0.413 9.85% 200
[-1.807] [-3.026] [1.398]

-0.544 2.834 7.39% 200
[-4.188] [4.507]

9 months

-0.276 -0.876 0.422 10.72% 200
[-1.905] [-3.230] [1.423]

-0.539 2.803 6.69% 200
[-3.934] [4.326]

12 months

-0.265 -0.817 0.417 9.43% 200
[-1.849] [-3.001] [1.385]

-0.552 2.849 6.86% 200
[-3.922] [4.347]
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Figure 1: Nonparametric Relationship Between SKEW , VIX and RNSKEW Innovations

We show a nonparametric surface that relates innovations in SKEW to innovations in the VIX
and RNSKEW . The surface is the result of a local polynomial regression using second order
polynomials and 75% span. Below the plot we present the parametric version of the relationship
from equation (2.9).
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εskew,t
-0.167 -0.266 0.516 0.062 41.02% 201

[-3.421] [-2.074] [9.369] [1.013]
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Figure 2: Time Series Plot of SKEW

Plot of SKEW , VIX and OrthSKEW (SKEW orthogonalized to the VIX through linear regres-
sion) from 1996-2012.
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Figure 3: HML Underreaction to SKEW Innovations

This plot demonstrates the underreaction of Rhml,t to innovations in SKEWt. We run regressions
of Rhml,t = a + βmRm,t + βε,jεskew,t−j + εt for j = 0...12 and plot

∑j
k=0 βε,k. The error bars are

plotted in dashes and assume that estimates of βε,j are independent. As is clear from the plot,
there is a significant predictability to Rhml,t based on lagged innovations in SKEWt.
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Figure 4: Cumulative Returns to Passive and Active HML Strategy

This plot demonstrates the out-of-sample forecasting performance of SKEWt in timing returns to
Rhml,t. To construct the strategy we run a forecasting regression of Rhml,t−1 = a+ βsSKEWt−2 +
εt−1 using 36 months of lagged data (this is the burn in period). Based on this model we compute
the forecast for next month’s HML return, R̂hml,t. To determine how much to invest each month
we assume an endowment of Wt−1 and Build a portfolio by putting whml,t−1 of it into HML and

(1 − |whml,t−1|) into the risk free rate where whml,t−1 = tanh

 R̂hml,t√
1
J

∑t

j=1(R̂hml,j−R̂hml,t)2

. This is

the hyperbolic tangent of the forecasted HML return scaled by the standard deviation of previous
HML forecasts. The hyperbolic tangent is applied so that whml,t−1 ∈ [−1, 1]. The return to this
portfolio is 1 +Rp,t = 1 +whml,t−1Rhml,t + (1−|whml,t−1|)Rfree,t. The mechanism described avoids
look ahead bias in values and parameters. This cumulative return is plotted in the figure and
labeled Active HML. Passive HML corresponds to monthly rebalancing strategy that invests equal
weights into being long “H” and short “L”.
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Figure 5: Cumulative CCC-AAA Response to εskew

Plot of the cumulative response to innovations in SKEW of a trade that goes long CCC and short
AAA bonds. Corporate bonds, like equities, are also slow to fully incorporate all information from
SKEW .

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

0 1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

v
e 

R
et

u
rn

 R
es

p
o

n
se

 

Month Lag 

39


	Introduction
	Crash Risk
	Risk and Return
	Equities
	Corporate Bonds

	Investor Trading Behavior
	Discussion and Conclusion
	Appendix
	Robustness
	Extracting Risk Neutral Moments


