Supporting Information for:
Substrate-Independent Light Confinement in Bioinspired All-Dielectric Surface Resonators

Emma C. Regan,†,‡,⊥ Yichen Shen,*,†,⊥ Josue J. Lopez,† Chia Wei Hsu,¶ Bo Zhen,‡§ John D. Joannopoulos,∥ and Marin Soljačić∥

†Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
‡Department of Physics, Wellesley College, Wellesley, Massachusetts 02481, United States
¶Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
§Physics Department and Solid State Institute, Technion, Haifa 32000, Israel
∥Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

⊥ These authors contributed equally to this work.

E-mail: ycshen@mit.edu
Figure S1: Numerical Simulation of T-bar Structure. FDTD simulation of the reflectance of an acrylic $\epsilon = 2.235$ T-bar structure (see inset of (b)) with periodicity a, height $h = 0.88a$, thickness $t = 0.22a$ on substrate with dielectric constants (a) $\epsilon_{\text{substrate}} = \epsilon_{\text{air}} = 1$, (b) $\epsilon_{\text{substrate}} = \epsilon_{\text{t-bar}} = 2.235$, (c) $\epsilon_{\text{substrate}} = 6 > \epsilon_{\text{t-bar}}$. The incident light is polarized in the y-direction. Inset in each figure: FDTD mode profiles (E_y) and Q-factors of the resonance modes at wavelengths equal to the first-order Fano resonance peaks indicated.
Figure S2: Numerical Simulation of Suspended Grating. RCWA simulation of the reflectance of an acrylic $\epsilon = 2.235$ grating (see inset of (b)) with periodicity a, width $w = 0.22a$, thickness $t = 0.22a$ suspended at $h = 0.56a$ above a substrate with dielectric constants (a) $\epsilon_{\text{substrate}} = \epsilon_{\text{air}} = 1$, (b) $\epsilon_{\text{substrate}} = \epsilon_{\text{slab}} = 2.235$, (c) $\epsilon_{\text{substrate}} = 6 > \epsilon_{\text{slab}}$. The incident light is polarized in the y-direction. Inset in each figure: FDTD mode profiles (E_y) and Q-factors of the resonance modes at wavelengths equal to the first order Fano-resonance peaks indicated.
Figure S3: Microspectrometer Setup for Reflectance Measurement. Schematic of CRAIC QDI 2010 microspectrometer used to excite zigzag sample at normal incidence and collect reflected light at normal ±2°.