
JOURNAL OF APPLIED PHYSICS VOLUME 87, NUMBER 10 15 MAY 2000
Contact stiffness of layered materials for ultrasonic atomic
force microscopy

G. G. Yaralioglu,a) F. L. Degertekin, K. B. Crozier, and C. F. Quate
Ginzton Laboratory, Stanford University, Stanford, California 94305

~Received 18 November 1999; accepted for publication 4 February 2000!

A method to calculate the contact stiffness between a layered material and an ultrasonic atomic force
microscope~UAFM! tip is proposed. The radiation impedance method is used to determine the ratio
of the applied force to the average displacement within the contact area. This information is used in
an iterative algorithm based on Hertzian theory to obtain the contact stiffness. The algorithm
converges into a couple of iterations and does not suffer from numerical convergence difficulties as
does finite element analysis~FEA!. In the ultrasonic frequency range, comparisons with Hertzian
theory and FEA show the validity of the results in a quasistatic case. Definitions of the minimum
detectable layer thickness and the penetration depth of the UAFM are given and evaluated for
several thin film–substrate pairs. These results also show the potential of the method for modeling
defects and power loss due to radiation in layered materials. ©2000 American Institute of Physics.
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I. INTRODUCTION

Dynamic implementations of the atomic force micr
scope~AFM!1 turn this device into a powerful material cha
acterization tool. Ultrasonic methods like atomic for
acoustic microscopy~AFAM !,2 scanning microdeformation
microscopy ~SMM!,3 and ultrasonic force microscop
~UFM!4 enable high resolution measurement of the lo
elasticity of material surfaces. In all of the above metho
high order flexural or torsional modes of the cantilever
excited by vibrating the cantilever or the sample. The ca
lever vibration is then detected by optical means. The
force on the cantilever is adjusted to maintain continuo
contact between the AFM tip and the sample. The con
mechanics shift the resonance frequencies of the cantile
By detecting these shifts, the tip–sample contact stiffnes
measured and, with Hertzian theory, material properties s
as the Young’s modulus are calculated.5,6 Ultrasonic AFM
can be used to determine the layer thickness through
stiffness measurement with high lateral resolution. Our a
here was to develop a theoretical model for analyzing
effect of thin films on the response of an ultrasonic AFM a
investigate its thin film measurement ability.

The contact problem between two elastic half spaces
first solved analytically by Hertz.7 By using the theory of
elasticity, it is possible to generalize his results to inclu
layered materials. However, an analytical solution is diffic
to obtain for the layered case, especially for multilayer
materials. On the other hand, numerical methods like fin
element analysis~FEA! encounter convergence difficultie
because a nonlinear analysis is required and typically
computation time is excessive. Moreover, both the analyt
approach and FEA are valid only under quasistatic assu
tions.

a!Electronic mail: goksenin@leland.stanford.edu
7490021-8979/2000/87(10)/7491/6/$17.00
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In this article, Hertzian theory and the radiation impe
ance method8,9 are combined to calculate the contact m
chanics between an AFM tip and a layered material. In S
II, the radiation impedance method is described and its r
tion to the equivalent surface stiffness is established. An
erative algorithm which combines the results of the radiat
impedance method and Hertzian contact theory is then
sented. The results of the algorithm for half spaces and
ered materials are compared with Hertzian theory and F
respectively, for the quasistatic case. The penetration d
and thin film thickness sensitivity of the ultrasonic AFM a
discussed before our concluding remarks.

II. RADIATION IMPEDANCE METHOD FOR
CALCULATION OF SURFACE STIFFNESS

When a vibrating AFM cantilever is brought into conta
with a flat surface by a dc force, the AFM tip–surface co
tact will form a finite size ultrasonic source radiating into t
surface as depicted in Fig 1. If the cantilever vibration is o
flexural nature, the traction applied to the surface will
predominantly in the direction of the surface normal. Fo
spherical tip geometry, the source will be circular with
contact radiusaS . Assuming that this contact radius is know
one can calculate the effective radiation impedance see
the tip. For cases whenaS!lm , wherelm is the smallest
wavelength in the probed solid at the vibration frequen
the quasistatic approximation can be used. This allows on
approximate the mechanical impedance by a lumped sp
element and the effective stiffness of the surface can be
tained. As expected, the results of this method converg
the Hertzian contact approximation in the quasistatic ca
Furthermore, the radiation impedance method can be use
find the effects of layers and high operating frequencies
tip–sample interaction which cannot be analyzed by st
methods.
1 © 2000 American Institute of Physics
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The problem of radiation impedance of mechanical
diators on a free half space has been studied by sev
investigators.8,9 The calculation method that will be use
here is based on a variational expression derived for u
sonic transducers attached to an isotropic half space.8 Given
a normal stress distributionTzz(x,y) over a regionS at the
surface of a solid half space and a normal particle velo
distributionvz(x,y) due this surface stress source, the eff
tive radiation impedance,Zeff , is defined by the relation,

1

Zeff
5

2**STzz* ~x,y!vz~x,y!dxdy

**STzz~x,y!Tzz* ~x,y!dxdy
. ~2.1!

Using the analogy that voltage and current in a circ
are a dual between stress and particle velocity, respectiv
this expression can be understood as the ratio of the com
power to the magnitude of the applied voltage squared
order to use plane wave solutions to findZeff in a problem
with circular symmetry, the Parseval relation can be used
rewrite Eq.~2.1! in the Fourier transform domain as

1

Zeff
5

2*0
`Tzz* ~kr !Vz~kr !krdkr

*0
`uTzz~kr !u2krdkr

, ~2.2!

wherekr is the radial wave number.
For AFM tip–surface contact, it is assumed that the

applies uniform stress of unit magnitude over the cont
area. In this case, F$Tzz(x,y)%5Tzz(kr)
52pa@J1(kra)/kr #, whereF$•% denotes the Fourier trans
form andJ1(•) is the Bessel function of the first kind, orde
one. At this point, the effective radiation impedance of a
solid medium at the surface can be evaluated if the rela
between a normal stress plane wave and the resulting no
particle velocity is known. The surface impedance ten
provides this relation for solids with arbitrary laycring an
material properties. It relates the stress componentsTxz , Tyz ,
Tzz on a plane with its normal in thez direction to the particle
velocity fields.10,11 Hence the surface impedance tens
G(kl ,z) is defined as

F Txz~kl !

Tyz~kl !

Tzz~kl !
G5G~kl ,z!F Vx~kl !

Vy~kl !

Vz~kl !
G , ~2.3!

FIG. 1. Ultrasonic AFM cantilever. The tip is kept in contact with a layer
half space by the dc forceF0 .
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wherekl is the lateral wave number of the plane wave anz
dependence is assumed for the particle velocity and st
fields. Details of the surface impedance tensor calculation
layered materials can be found elsewhere.10–12 With the as-
sumption that onlyTzz of unit amplitude is applied to the
surface by the AFM tip, the expression for the radiation i
pedance of the solid medium takes its final form,

1

Zeff

52
2paS

2*0
`u@J1~kraS!/kr #u2G3,3

21~kr !krdkr

paS
2

522E
0

`

u@J1~kraS!/kr #u2G3,3
21~kr !krdkr , ~2.4!

where z50 and G3,3
21(kr) denotes the scalar element wi

index ~3,3! in the inverse of the surface impedance ten
matrix.

As an example, Eq.~2.4! is used to calculate the effec
tive radiation impedance of a silicon half space assumin
contact radius of 5 nm, which is typical in AFM application
The result, shown in Fig. 2, suggests that the medium p
sents mostly a reactive load to the tip in the frequency ra
up to 10 GHz and very small radiation loss. It also sho
that the surface stiffness can be safely modeled by a lum
spring element. To obtain the spring constant, the nor
force applied on the contact should be divided by the aver
surface displacement. Hence, the spring constant,kS , which
represents the surface stiffness is given by

kS5
normal force on contact

displacement
5 j vZS5 j vAZeff , ~2.5!

whereZS is the mechanical impedance,v is the angular fre-
quency, andA is the contact area. Note thatkS has both real
and imaginary parts since the radiation impedance is c
plex.

III. CONTACT STIFFNESS CALCULATION ALGORITHM

The surface stiffness calculation presented in Sec
does not consider deformation of the tip. However, to obt

FIG. 2. Radiation impedance,Zeff , of a silicon half space for a source wit
a 5 nm contact radius~arb units!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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contact stiffness, the finite stiffness of the tip should also
included in the analysis. Tip deformation is dictated by t
material properties and by the radius of curvature of the
R, as well as by the force between the tip and the surfa
F0 . To include these factors, an iterative algorithm comb
ing Hertzian theory and the radiation impedance metho
proposed. The contact stiffness algorithm~CSA!, depicted in
Fig. 3, calculates an effective reduced Young’s modul
ES* , for the layered surface iterating on the contact rad
and assuming a rigid intruder. At each step, the surface s
ness is calculated using the radiation impedance met
Hertzian theory is used to relate the contact radius,aS , to the
spring constant,kS , and the contact radius is updated until
converges within error limits. OnceaS converges, the surfac
can be treated as a half space with reduced Young’s mod

FIG. 3. Contact stiffness algorithm.e in the decision box shows the accu
racy of the convergence. The algorithm converges into three or four it
tions with a relative accuracy of 0.1%.
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ES* . The contact radius,a, and the spring constant,k, can
then be calculated using Hertzian theory as outlined in
Appendix.

The algorithm converges into three or four iterations
initial estimates for theaS are obtained by making half spac
approximations.

IV. RESULTS AND DISCUSSION

A comparative study has to be performed to test
validity of the CSA. For layered materials, Hertzian theo
does not provide an analytical solution. Hence, the result
the CSA can only be compared to the FEA results. On
other hand, for half spaces an analytical solution exists an
can be used to verify both FEA and the CSA.

A. Verification of CSA for half spaces

Three methods are tested on half space materials wi
wide range of stiffness, such as photoresist, aluminum,
con, and tungsten~see Table I!.13 Silicon is chosen as the tip
material. The force,F0 , and the radius of curvature of th
tip, R, are set to 200 nN and 100 nm, respectively. Analyti
values of the contact radius and stiffness are obtained u
Eqs.~A1! and~A2! which are the results of Hertzian conta
theory.

The FEA calculations are carried out using ANSYS5.514

The tip and the sample are meshed with axisymmetric
dimensional~2D! structural finite elements~PLANE42!. The
mesh in the possible interaction area is overlaid by surfa
to-surface contact elements~TARGE169, CONTA172!.
Then, nonlinear static analysis15 is performed. The contac
radius is determined by the location of the outermost c
tacting node from the center of the contact. Hence, the ac
racy of the contact radius calculation is determined by
size of the finite element mesh. To find the contact stiffn
accurately, the tip–surface deformation is calculated in F
and Eq.~A6! is employed. Hence, the relation in Eq.~A1!
may not hold.

To use Hertzian theory relations in the CSA, the surfa
should be modeled by a lumped spring with no loss. In
implementation of the CSA, the frequency is chosen as
kHz where the imaginary part of the radiation impedance
very large compared to the real part as depicted in Fig
Hence, this small radiation loss can be neglected andkS is
assumed to be a real number. The calculations indicate
the small loss approximation is valid up to the GHz rang

Table II summarizes the results from three methods. T
agreement between the FEA and CSA results and Hert
theory is within 3% except for the FEA results for the res

a-

TABLE I. Material constants used in the calculations.

Material

Young’s
modulus
~GPa!

Poisson’s
ratio

Density
~kg/cm3!

Silicon 130.10 0.2780 2332.0
Aluminum 66.995 0.3564 2700.0
Photoresist 3.7151 0.3712 1120.0
Tungsten 361.83 0.4378 19 200.0
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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TABLE II. Calculated contact radius,a, and contact stiffness,k, between various tip and half space materia
using Hertzian theory, FEA, and the CSA~F05200 nN, R5100 nm!.

Material
~tip/half space!

Hertzian theory FEM CSA

a
~nm!

k
~N/m!

a
~nm!

k
~N/m!

a
~nm!

k
~N/m!

Silicon/silicon 5.97 841.7 6.04 849.4 6.05 820.5
Silicon/resist 15.31 128.0 14.85 119.7 15.58 123.7
Silicon/aluminum 6.71 666.7 6.44 664.0 6.85 645.9
Silicon/tungsten 5.19 1113.2 5.23 1120.4 5.26 1083.0
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half space. The 7% difference can be reduced by increa
the finite thickness of the soft half space in the FEA. In oth
words, the FEA calculation is for a finite rather than an
finite half space. One should also note the approximati
made in the CSA approach. The radiation impedance ca
lation neglects the components of stress parallel to the
face and it assumes uniform stress over the contact. Ne
theless, these results verify the adequacy of the F
implementation and the CSA in determining the cont
stiffness.

B. Contact stiffness of layered materials

Quantitative analysis of thin films using the ultrason
AFM requires understanding of relations between the con
stiffness and thin film properties such as thickness, ela
properties, etc. The CSA provides a natural approach for
evaluation of thin films since any layered material can
included in the calculation through the surface impeda
tensor as in Eq.~2.4!. Hertzian theory cannot be directl
applied to layered materials and the nonlinear contact an
sis using FEM suffers from convergence difficulties and
consumes too much computational time and resources.

Different layers on a silicon substrate are evaluated
ing both the CSA and FEA. Resist, aluminum, and tungs
are chosen as the layer materials. The first two materials

FIG. 4. Calculated surface stiffness using FEA and the CSA. Soft la
~aluminum or photoresist! on a hard substrate~silicon!. The frequency for
the radiation impedance calculation is chosen as 100 kHz~F05200 nN,
R5100 nm!.
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be considered as soft layers on a hard substrate, wherea
last material is an example of a stiff layer on a soft substra
The properties of the AFM tip are the same as those
Sec. IV.A as is the frequency for the radiation impedan
calculation.

Figure 4 depicts FEA and CSA results for aluminum a
resist layers on the silicon substrate. For a vanishing la
thickness, the contact stiffness approaches the value
would be obtained for a half space made of the subst
material. On the other hand, when the layer thickness is la
compared to the tip dimensions, one obtains the contact s
ness for the tip–layer material half space, which is smalle
the case of resist and aluminum layers on silicon. As
pected, the situation is reversed for a tungsten layer o
silicon substrate which is shown in Fig. 5.

These results can be used to quantify the thin film ch
acterization ability of the ultrasonic AFM with regard to film
thickness sensitivity and penetration depth. It is assumed
the ultrasonic AFM measures the resonance frequency s
of a cantilever that are due to contact stiffness changes.
method is shown to be the most sensitive approach for c
tact stiffness measurements.3,5,6 The accuracy of the reso
nance shift measurement, hence determination of the con
stiffness, is limited by the signal to noise ratio~SNR! of the
microscope. In this case, the minimum detectable con
stiffness change,Dk, can be considered as a measure of

r
FIG. 5. Calculated surface stiffness using FEA and the CSA. Hard la
~tungsten! on soft substrate~silicon!. The frequency for the radiation imped
ance calculation is chosen as 100 kHz~F05200 nN, R5100 nm!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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SNR. The main sources of the noise in an ultrasonic AF
~UAFM! system are the mechanical noise of the cantilev
electronics noise, and the shot noise of the laser beam.
sides these noise sources, the accuracy of the resonance
measurement is also affected by the quality factor and
sensitivity of the cantilever’s flexural mode which is bein
employed by the UAFM. For a givenDk and layer–substrate
material pair, the minimum detectable layer thickness a
the penetration depth can be defined. The minimum det
able layer thickness~MDLT ! is the layer thickness which
results in a difference of6Dk between the measured conta
stiffness and that of the tip–substrate half space. The p
etration depth is the layer thickness around which the dif
ence between the measured contact stiffness and that o
tip–layer half space is6Dk. It indicates the maximum laye
depth the ultrasonic AFM is sensitive to buried layers, int
faces, defects, etc.~see Fig. 6!.

From Fig. 6, it is apparent that the MDLT is proportion
to the slope of the contact stiffness curve around zero la
thickness. Hence, the ultrasonic AFM is more sensitive w
there is a large contrast in the elastic properties of the la
and the substrate in the case of single layered materials.
penetration depth also increases with increasing cont
Table III summarizes MDLT and penetration depth calcu
tions for different material pairs. In calculating the data
Table III, Dk is chosen as 10 N/m.16

Plots of field elastic field distribution in the layered m
terials also reveal the effect of material property contrast
Fig. 7, the variation of on axis normal particle displaceme
under the tip is depicted for 5 nm thick resist and tungs
layers on silicon. The displacement field is concentrated

FIG. 6. Definitions of the minimum detectable layer thickness and the p
etration depth on a generic curve. The minimum detectable contact stiff
change is denoted byDk.

TABLE III. MDLT and penetration depth for different layer materials on
silicon substrate~F05200 nN, R5100 nm,Dk510 N/m!.

Material Resist Aluminum Tungsten

MDLT ~nm! 0.015 0.715 0.248
Penetration depth~nm! 95.75 61.38 66.84
Downloaded 25 Apr 2003 to 171.64.85.145. Redistribution subject to A
r,
e-
hift
e

d
t-

n-
r-
the

-

er
n
er
he
st.
-

n
s
n
in

the resist layer compared with the tungsten layer where
field extends to a greater depth.

It is also possible to calculate the penetration depth a
function of dc force, shown in Fig. 8 where it is assumed t
Dk is 10 N/m and the material is a resist layer on a silic
substrate. The penetration depth increases nonlinearly
increasing force, whereas it has a linear relation to the c
tact radius.

V. CONCLUSION

The layer thickness measurement is crucial in many
plications for material characterization. An ultrasonic AF
can determine layer thickness with high resolution throu
the contact stiffness measurement. In this article, an a
rithm for the calculation of the contact stiffness between
AFM tip and layered materials as a function of layer thic

n-
ss
FIG. 7. On axis normal component of the particle displacement into
layered material. The solid lines depict the interface atz525 nm. Note the
two orders of magnitude difference in the displacement scales.

FIG. 8. Maximum detectable layer thickness~penetration depth!. It is as-
sumed that the minimum detectable change in the contact stiffness i
N/m. The material is resist on a silicon substrate (R5100 nm).
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ness was described. The algorithm was based on calcula
of the radiation impedance seen by a small source resu
from tip–surface contact. The algorithm is very fast and e
to converge compared to FEA. The algorithm, which w
verified for half spaces and single layered materials, can
easily extended to the multilayered case.

The radiation impedance method can also be used
calculate the power coupled to the material surface from
AFM tip; this can be significant for large tip radii and hig
ultrasonic frequencies.

Using the results of the CSA algorithm, the minimu
detectable layer thickness and penetration depth were
fined. The results indicated that the ultrasonic AFM is mo
sensitive to the very thin layers and layer–substrate p
whose elastic properties are very different, which is enco
aging for the examination of monolayers and biologic
films.

As a final remark, the radiation impedance of a surfac
also affected by the adhesion properties of the interfaces
tween layers and the substrate. Hence, it may be possib
detect flaws between layers with this instrument.
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APPENDIX: HERTZIAN CONTACT EQUATIONS

Hertzian theory defines the contact mechanics betw
two spherical surfaces. It can also be used to solve con
problems involving a spherical surface and a plane by
suming an infinite radius of curvature for one of the spheri
surfaces. This is a case where an AFM tip is pressed up
sample surface by a force,F0 . The contact radius,a, and
stiffness,k, are given by

a5A3 3F0R

4E* 2, ~A1!

k5A3 6F0RE* 2 , ~A2!

whereR is the tip radius.E* is the effective Young’s modu
lus of the tip–sample contact and is given by

1

E*
5

1

ET*
1

1

ES*
, ~A3!
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with

ET* 5
ET

12rT
2 , ES* 5

ES

12rS
2 , ~A4!

whereET* andES* are the reduced Young’s moduli of the ti
and the sample, respectively.rT , rS , ES , andET , are the
Poisson ratios and the Young’s moduli.ET* or ES* can also be
viewed as reduced Young’s moduli of the tip–sample co
tact when the tip is pressed against a rigid sample, i.e.,ES

5` or the sample is against a rigid tip, i.e.,ET5`. So it is
possible to calculate the contributions of the tip and
sample to the contact separately.

Equations~A1! and ~A2! can be combined to obtain
simple relation between the contact radius and the stiffne

a5
k

2E*
. ~A5!

Moreover, deformation is given by

h5
3F0

2k
. ~A6!
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