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Contact stiffness of layered materials for ultrasonic atomic
force microscopy
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A method to calculate the contact stiffness between a layered material and an ultrasonic atomic force
microscopg UAFM) tip is proposed. The radiation impedance method is used to determine the ratio
of the applied force to the average displacement within the contact area. This information is used in
an iterative algorithm based on Hertzian theory to obtain the contact stiffness. The algorithm
converges into a couple of iterations and does not suffer from numerical convergence difficulties as
does finite element analys{FEA). In the ultrasonic frequency range, comparisons with Hertzian
theory and FEA show the validity of the results in a quasistatic case. Definitions of the minimum
detectable layer thickness and the penetration depth of the UAFM are given and evaluated for
several thin film—substrate pairs. These results also show the potential of the method for modeling
defects and power loss due to radiation in layered materials20@0 American Institute of Physics.
[S0021-897€00)01110-5

I. INTRODUCTION In this article, Hertzian theory and the radiation imped-
ance methot® are combined to calculate the contact me-

Dynamic implementations of the atomic force micro- chanics between an AFM tip and a layered material. In Sec.

scope(AFM)* turn this device into a powerful material char- 11, the radiation impedance method is described and its rela-

acterization tool. Ultrasonic methods like atomic forcetion to the equivalent surface stiffness is established. An it-

acoustic microscopyAFAM),? scanning microdeformation erative algorithm which combines the results of the radiation

microscopy (SMM),> and ultrasonic force microscopy impedance method and Hertzian contact theory is then pre-

(UFM)* enable high resolution measurement of the localsented. The results of the algorithm for half spaces and lay-

elasticity of material surfaces. In all of the above methodsgered materials are compared with Hertzian theory and FEA,

high order flexural or torsional modes of the cantilever arg'espectively, for the quasistatic case. The penetration depth

excited by vibrating the cantilever or the sample. The canti@nd thin film thickness sensitivity of the ultrasonic AFM are

lever vibration is then detected by optical means. The déliscussed before our concluding remarks.

force on the cantilever is adjusted to maintain continuous

contact between the AFM tip and the sample. The contact

mechanics shift the resonance frequencies of the cantilevey, RADIATION IMPEDANCE METHOD EFOR

By detecting these shifts, the tip—sample contact stiffness iIEALCULATION OF SURFACE STIFFNESS

measured and, with Hertzian theory, material properties such o ] . )

as the Young’s modulus are calculafdiUltrasonic AFM _ When a vibrating AFM cantilever is brou_ght into contact

can be used to determine the layer thickness through th¥ith @ flat surface by a dc force, the AFM tip—surface con-

stiffness measurement with high lateral resolution. Our ainfct Will form a finite size ultrasonic source radiating into the

here was to develop a theoretical model for analyzing th urface as depicted in Fig 1. If the cantilever vibration is of a

effect of thin films on the response of an ultrasonic AFM and lexural nature, the traction applied to the surface will be
investigate its thin film measurement ability predominantly in the direction of the surface normal. For a

The contact problem between two elastic half spaces Wa%pherlcal t'.p geometry, .the source will be cwgula_r with a
. ) . contact radiusig. Assuming that this contact radius is know,
first solved analytically by HertZ.By using the theory of

elasticity, it is possible to generalize his results to includeOne can calculate the effective radiation impedance seen by

layered materials. However, an analytical solution is difficultthe tip. For cases wheas<An, WhereAp, is the smallest
Y ' ’ Y wavelength in the probed solid at the vibration frequency,

to obtain for the layered case, especially for muIUIayeredthe guasistatic approximation can be used. This allows one to

materials. On the other hand, numerical methods like ﬁniteapproximate the mechanical impedance by a lumped spring
element analysi$FEA) encounter convergence difficulties element and the effective stiffness of the surface can be ob-

because a nonlinear analysis is required and typically thé,ineq As expected, the results of this method converge to
computation time is excessive. Moreover, both the analyticajye Hertzian contact approximation in the quasistatic case.

approach and FEA are valid only under quasistatic aSSUMR=ithermore, the radiation impedance method can be used to
tions. find the effects of layers and high operating frequencies on

tip—sample interaction which cannot be analyzed by static
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FIG. 1. Ultrasonic AFM cantilever. The tip is kept in contact with a layered
half space by the dc forcg,. _10% . i " ;
10 10" 10° 10° 10
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o ) ) FIG. 2. Radiation impedancé, of a silicon half space for a source with
The problem of radiation impedance of mechanical ra-; 5 nm contact radiugrb units.

diators on a free half space has been studied by several

investigator$® The calculation method that will be used

here is based on a variational expression derived for ultrawherek, is the lateral wave number of the plane wave and
sonic transducers attached to an isotropic half spageen dependence is assumed for the particle velocity and stress
a normal stress distributiof,(,y) over a regionS at the fields. Details of the surface impedance tensor calculation for
surface of a solid half space and a normal particle velocitjayered materials can be found elsewhéfé? with the as-
distributionuv,(x,y) due this surface stress source, the effec-sumption that onlyT, of unit amplitude is applied to the

tive radiation impedance.., is defined by the relation, surface by the AFM tip, the expression for the radiation im-
pedance of the solid medium takes its final form,
1 JISTaXy)ua(xy)dxdy @1 p 2 1 kAl 1 26l
Zef‘f - ffSTzz(ny)ng(le)dXdy ) ) i: _ 7Tan0|[ 1( raS) 2I'jll 3,3( r) r T
Zeff mag

Using the analogy that voltage and current in a circuit
are a dual between stress and particle velocity, respectively, °° 21
this expression can be understood as the ratio of the complex - _ZL [[31(krag)/k][*G 5k )k dk:, 2.4
power to the magnitude of the applied voltage squared. In . )
order to use plane wave solutions to fidig in a problem ~Wherez=0 and G 3(k;) denotes the scalar element with
with circular symmetry, the Parseval relation can be used t§dex (3,3 in the inverse of the surface impedance tensor

rewrite Eq.(2.1) in the Fourier transform domain as matrix. _
B As an example, Eq2.4) is used to calculate the effec-
1 _ _f()/];z(kr)vz(kr)krdkr

tive radiation impedance of a silicon half space assuming a

z_eff N Iol T4k %k dk, contact radius of 5 nm, yvhich is typical in AFM applic_ations.
) ) The result, shown in Fig. 2, suggests that the medium pre-
wherek; is the radial wave number. ~ sents mostly a reactive load to the tip in the frequency range
For AFM tip—surface contact, it is assumed that the tipy, 1o 10 GHz and very small radiation loss. It also shows
applies uniform stress of unit magnitude over the contachat the surface stiffness can be safely modeled by a lumped
area. In this case, AT AxY)}=TAK:)  spring element. To obtain the spring constant, the normal
=2ma[J;(ka)/k;], where 7{-} denotes the Fourier trans- force applied on the contact should be divided by the average

form andJ,(-) is the Bessel function of the first kind, order gyface displacement. Hence, the spring constaptwhich
one. At this point, the effective radiation impedance of anyrepresents the surface stifiness is given by

solid medium at the surface can be evaluated if the relation

between a normal stress plane wave and the resulting normal _normal force on contact .
. . . . ks— T =] (,L)Zs— J wAZeﬁ, (25)

particle velocity is known. The surface impedance tensor displacement

provides this relation for solids with arbitrary laycring and

material properties. It relates the stress compongpts7,,,

7,,0n a plane with its normal in thedirection to the particle

velocity fields!®!! Hence the surface impedance tensor

G(k;,2) is defined as

(2.2

whereZg is the mechanical impedance,is the angular fre-
quency, andA is the contact area. Note thiag has both real
and imaginary parts since the radiation impedance is com-
plex.

T (k) Vi(ky) lll. CONTACT STIFFNESS CALCULATION ALGORITHM
Tyk) | =G(k;,z)| Vy(ki) |, 2.3 The surface stiffness calculation presented in Sec. I
T,4k) Vi(k)) does not consider deformation of the tip. However, to obtain
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R TABLE |. Material constants used in the calculations.
Initial
Young's
ds[0] modulus Poisson’s Density
i=0 Material (GPa ratio (kglcn)
l Silicon 130.10 0.2780 2332.0
Aluminum 66.995 0.3564 2700.0
Photoresist 3.7151 0.3712 1120.0
Calculate Tungsten 361.83 0.4378 19 200.0
impedance |4
Z
E% . The contact radiusa, and the spring constark, can
¢ then be calculated using Hertzian theory as outlined in the
. 2 Appendix.
kS - JZ”aS[i]a’ The algorithm converges into three or four iterations if
. ks initial estimates for theg are obtained by making half space
E,= approximations.
2ag, —-
3R i=i+l IV. RESULTS AND DISCUSSION
_ 0
sivy =3 4E? A comparative study has to be performed to test the
S validity of the CSA. For layered materials, Hertzian theory
¢ does not provide an analytical solution. Hence, the results of
the CSA can only be compared to the FEA results. On the
‘ a s ' <g other hand, for half spaces an analytical solution exists and it
S[i+l] S[il NO can be used to verify both FEA and the CSA.
? A. Verification of CSA for half spaces
VES Three methods are tested on half space materials with a
i wide range of stiffness, such as photoresist, aluminum, sili-
1 1 1 con, and tungste(see Table)L*2 Silicon is chosen as the tip
= material. The forceF,, and the radius of curvature of the
E ET ES tip, R, are set to 200 nN and 100 nm, respectively. Analytical
- values of the contact radius and stiffness are obtained using
k=3/6E 2FOR Egs.(Al) and(A2) which are the results of Hertzian contact
theory.
. 3F,R The FEA calculations are carried out using ANSYS5.5.
a= AE™? The tip and the sample are meshed with axisymmetric two
dimensional2D) structural finite elementfPLANE42). The

_ o o mesh in the possible interaction area is overlaid by surface-
FIG. 3. Contact stiffness algorithne.in the decision box shows the accu- to-surface contact element§TARGE169, CONTA172
racy of the convergence. The algorithm converges into three or four itera: . . .
tions with a relative accuracy of 0.1%. Then, nonlinear static analy$isis performed. The contact
radius is determined by the location of the outermost con-
tacting node from the center of the contact. Hence, the accu-
racy of the contact radius calculation is determined by the
contact stiffness, the finite stiffness of the tip should also besize of the finite element mesh. To find the contact stiffness
included in the analysis. Tip deformation is dictated by theaccurately, the tip—surface deformation is calculated in FEA
material properties and by the radius of curvature of the tipand Eq.(A6) is employed. Hence, the relation in E@1)
R, as well as by the force between the tip and the surfacanay not hold.
Fo. To include these factors, an iterative algorithm combin-  To use Hertzian theory relations in the CSA, the surface
ing Hertzian theory and the radiation impedance method ishould be modeled by a lumped spring with no loss. In the
proposed. The contact stiffness algorithi@6A), depicted in  implementation of the CSA, the frequency is chosen as 100
Fig. 3, calculates an effective reduced Young's moduluskHz where the imaginary part of the radiation impedance is
s, for the layered surface iterating on the contact radiusrery large compared to the real part as depicted in Fig. 2.
and assuming a rigid intruder. At each step, the surface stiffHence, this small radiation loss can be neglected leni
ness is calculated using the radiation impedance methodssumed to be a real number. The calculations indicate that
Hertzian theory is used to relate the contact radids,to the  the small loss approximation is valid up to the GHz range.
spring constantkg, and the contact radius is updated until it Table Il summarizes the results from three methods. The
converges within error limits. Onag; converges, the surface agreement between the FEA and CSA results and Hertzian
can be treated as a half space with reduced Young’s modulukeory is within 3% except for the FEA results for the resist
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TABLE Il. Calculated contact radius, and contact stiffnes, between various tip and half space materials
using Hertzian theory, FEA, and the CSR,=200 nN, R=100 nm).

Hertzian theory FEM CSA
Material a k a k a k
(tip/half space (nm) (N/m) (nm) (N/m) (nm) (N/m)
Silicon/silicon 5.97 841.7 6.04 849.4 6.05 820.5
Silicon/resist 15.31 128.0 14.85 119.7 15.58 123.7
Silicon/aluminum 6.71 666.7 6.44 664.0 6.85 645.9
Silicon/tungsten 5.19 1113.2 5.23 1120.4 5.26 1083.0

half space. The 7% difference can be reduced by increasinge considered as soft layers on a hard substrate, whereas the
the finite thickness of the soft half space in the FEA. In othelast material is an example of a stiff layer on a soft substrate.
words, the FEA calculation is for a finite rather than an in-The properties of the AFM tip are the same as those in
finite half space. One should also note the approximationSec. IV.A as is the frequency for the radiation impedance
made in the CSA approach. The radiation impedance calcwzalculation.

lation neglects the components of stress parallel to the sur- Figure 4 depicts FEA and CSA results for aluminum and
face and it assumes uniform stress over the contact. Neveresist layers on the silicon substrate. For a vanishing layer
theless, these results verify the adequacy of the FEAhickness, the contact stiffness approaches the value that
implementation and the CSA in determining the contactwould be obtained for a half space made of the substrate

stiffness. material. On the other hand, when the layer thickness is large
compared to the tip dimensions, one obtains the contact stiff-
B. Contact stiffness of layered materials ness for the tip—layer material half space, which is smaller in

the case of resist and aluminum layers on silicon. As ex-

Quantitative analysis of thin films using the ultrasonic pected, the situation is reversed for a tungsten layer on a
AFM requires understanding of relations between the contadijlicon substrate which is shown in Fig. 5.

stiffness and thin film properties such as thickness, elastic  These results can be used to quantify the thin film char-
properties, etc. The CSA provides a natural approach for thgcterization ability of the ultrasonic AFM with regard to film
evaluation of thin films since any layered material can benickness sensitivity and penetration depth. It is assumed that
included in the calculation through the surface impedancene ultrasonic AFM measures the resonance frequency shifts
tensor as in Eq(2.4). Hertzian theory cannot be directly of 5 cantilever that are due to contact stiffness changes. This
applied to layered materials and the nonlinear contact analymethod is shown to be the most sensitive approach for con-
sis Using FEM suffers from Convergence difficulties and |ttact Stiffness measuremeﬁtg_6 The accuracy Of the reso-
consumes too much computational time and resources.  pance shift measurement, hence determination of the contact
Different layers on a silicon substrate are evaluated USstiffness, is limited by the signal to noise rati®NR) of the

ing both the CSA and FEA. Resist, aluminum, and tungstemnjcroscope. In this case, the minimum detectable contact
are chosen as the layer materials. The first two materials cagtiffness change\k, can be considered as a measure of the
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FIG. 4. Calculated surface stiffness using FEA and the CSA. Soft layer

(aluminum or photoresiston a hard substratésilicon). The frequency for  FIG. 5. Calculated surface stiffness using FEA and the CSA. Hard layer
the radiation impedance calculation is chosen as 100 {4z 200 nN, (tungsten on soft substratésilicon). The frequency for the radiation imped-
R=100 nn). ance calculation is chosen as 100 kéfz =200 nN, R=100 nm).
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tip/substrate contact stiffness

0 05 1 15 2
absolute displacement x 10? (m)

contact stiffness

- \,\ _____ _Ak

* penetration depth tip/layer contact stiffness |
layer thickness
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FIG. 6. Definitions of the minimum detectable layer thickness and the pen- absolute displacement x 102 (m)
etration depth on a generic curve. The minimum detectable contact stiffness
change is denoted hyk. FIG. 7. On axis normal component of the particle displacement into the

layered material. The solid lines depict the interface=at-5 nm. Note the
two orders of magnitude difference in the displacement scales.

SNR. The main sources of the noise in an ultrasonic AFM

(UAFM) system are the mechanical noise of the cantilevere regjst layer compared with the tungsten layer where the
electronics noise, and the shot noise of the laser beam. Bgg g extends to a greater depth.

sides these noise sources, the accuracy of the resonance shift |; is 5150 possible to calculate the penetration depth as a

measurement is also affected by the quality factor and thg,nction of dc force, shown in Fig. 8 where it is assumed that
sensitivity of the cantilever's flexural mode which is being s is 10 N/m and the material is a resist layer on a silicon

employed by the UAFM. For a givetk and layer—substrate g psirate. The penetration depth increases nonlinearly with

material pair, the minimum detectable layer thickness angcreasing force, whereas it has a linear relation to the con-
the penetration depth can be defined. The minimum deteciz .t radius.

able layer thicknes$MDLT) is the layer thickness which

results in a difference of: Ak between the measured contact

stiffness and that of the tip—substrate half space. The per}{' CONCLUSION
etration depth is the layer thickness around which the differ-  The layer thickness measurement is crucial in many ap-
ence between the measured contact stiffness and that of timications for material characterization. An ultrasonic AFM
tip—layer half space is- Ak. It indicates the maximum layer can determine layer thickness with high resolution through
depth the ultrasonic AFM is sensitive to buried layers, inter-the contact stiffness measurement. In this article, an algo-
faces, defects, eté¢see Fig. 8. rithm for the calculation of the contact stiffness between an

From Fig. 6, it is apparent that the MDLT is proportional AFM tip and layered materials as a function of layer thick-
to the slope of the contact stiffness curve around zero layer

thickness. Hence, the ultrasonic AFM is more sensitive when
there is a large contrast in the elastic properties of the laye ,g9
and the substrate in the case of single layered materials. Th
penetration depth also increases with increasing contras g
Table Il summarizes MDLT and penetration depth calcula- v
tions for different material pairs. In calculating the data in  gp}-........
Table Ill, Ak is chosen as 10 N/if.
Plots of field elastic field distribution in the layered ma- £ 149
terials also reveal the effect of material property contrast. In®
Fig. 7, the variation of on axis normal particle displacementss j2o}-
under the tip is depicted for 5 nm thick resist and tungsten%
layers on silicon. The displacement field is concentrated inf* ;o

(nm)

80
TABLE lll. MDLT and penetration depth for different layer materials on a
silicon substratéF =200 nN, R=100 nm,Ak=10 N/m).

¢

60 1 L I ; 1
100 200 300 400 500 600 700 800 900

Material Resist Aluminum Tungsten Tip-surface force (nN)
MDLT (nm) 0.015 0.715 0.248 FIG. 8. Maximum detectable layer thickne§senetration depdh It is as-
Penetration deptfnm) 95.75 61.38 66.84 sumed that the minimum detectable change in the contact stiffness is 10

N/m. The material is resist on a silicon substra®=100 nm).
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ness was described. The algorithm was based on calculatianith
of the radiation impedance seen by a small source resulting E E
from tip—surface contact. The algorithm is very fast and easy  E} :—Tz, EX :—S,
to converge compared to FEA. The algorithm, which was 1=p7 1=ps
verified for half spaces and single layered materials, can ba&hereE} andEg are the reduced Young’'s moduli of the tip
easily extended to the multilayered case. and the sample, respectively;, ps, Es, andEt, are the
The radiation impedance method can also be used tPoisson ratios and the Young's modiik or EE can also be
calculate the power coupled to the material surface from th@iewed as reduced Young’s moduli of the tip—sample con-
AFM tip; this can be significant for large tip radii and high tact when the tip is pressed against a rigid sample, Eg.,
ultrasonic frequencies. =0 or the sample is against a rigid tip, i.&;=0. So itis
Using the results of the CSA algorithm, the minimum possible to calculate the contributions of the tip and the
detectable layer thickness and penetration depth were deample to the contact separately.
fined. The results indicated that the ultrasonic AFM is more  Equations(A1) and (A2) can be combined to obtain a
sensitive to the very thin layers and layer—substrate pairsimple relation between the contact radius and the stiffness,

(A4)

whose elastic properties are very different, which is encour- K
aging for the examination of monolayers and biological —a=_——_. (A5)
films. 2E

As a final remark, the radiation impedance of a surface isvioreover, deformation is given by
also affected by the adhesion properties of the interfaces be- =
tween layers and the substrate. Hence, it may be possible to h= —0_ (AB)
detect flaws between layers with this instrument. 2k
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