Investigations in the Economics of Aging

Edited by David A. Wise

The University of Chicago Press
Chicago and London
A National Bureau of
Economic Research
Conference Report
DAVID A. WISE is the John F. Stambaugh Professor of Political Economy at the Kennedy School of Government at Harvard University. He is the area director of Health and Retirement Programs and director of the Program on the Economics of Aging at the National Bureau of Economic Research.
National Bureau of Economic Research

Officers

Kathleen B. Cooper, chairman
Martin B. Zimmerman, vice-chairman
James M. Poterba, president and chief executive officer
Robert Mednick, treasurer

Kelly Horak, controller and assistant corporate secretary
Alanna Milone, corporate secretary
Gerardine Johnson, assistant corporate secretary

Directors at Large

Peter C. Aldrich
Elizabeth E. Bailey
John H. Biggs
John S. Clarkeson
Don R. Conlan
Kathleen B. Cooper
Charles H. Dallara
George C. Edwards
Jessica P. Einhorn
Mohamed El-Erian
Linda Ewing
Jacob A. Frenkel
Judith M. Gueron
Robert S. Hamada
Peter Blair Henry
Karen N. Horn
John Lipsky
Laurence H. Meyer

Michael H. Moskow
Alicia H. Munnell
Robert T. Parry
James M. Poterba
John S. Reed
Marina v. N. Whitman
Martin B. Zimmerman

Directors by University Appointment

George Akerlof, California, Berkeley
Jagdish Bhagwati, Columbia
Timothy Bresnahan, Stanford
Alan V. Deardorff, Michigan
Ray C. Fair, Yale
Franklin Fisher, Massachusetts Institute of Technology
John P. Gould, Chicago
Mark Grinblatt, California, Los Angeles

Bruce Hansen, Wisconsin-Madison
Marjorie B. McElroy, Duke
Joel Mokyr, Northwestern
Andrew Postlewaite, Pennsylvania
Uwe E. Reinhardt, Princeton
Craig Swan, Minnesota
David B. Yoffie, Harvard

Directors by Appointment of Other Organizations

Bart van Ark, The Conference Board
Christopher Carroll, American Statistical Association
Jean-Paul Chavas, Agricultural and Applied Economics Association
Martin Gruber, American Finance Association
Ellen L. Hughes-Coonwick, National Association for Business Economics
Thea Lee, American Federation of Labor and Congress of Industrial Organizations

William W. Lewis, Committee for Economic Development
Robert Mednick, American Institute of Certified Public Accountants
Alan L. Olmstead, Economic History Association
John J. Siegfried, American Economic Association
Gregor W. Smith, Canadian Economics Association

Directors Emeriti

Andrew Brimmer
Glen G. Cain
Carl F. Christ
George Hatsopoulos

Saul H. Hymans
Lawrence R. Klein
Paul W. McCracken

Rudolph A. Oswald
Peter G. Peterson
Nathan Rosenberg
Relation of the Directors to the Work and Publications of the National Bureau of Economic Research

1. The object of the NBER is to ascertain and present to the economics profession, and to the public, more generally, important economic facts and their interpretation in a scientific manner without policy recommendations. The Board of Directors is charged with the responsibility of ensuring that the work of the NBER is carried on in strict conformity with this object.

2. The President shall establish an internal review process to ensure that book manuscripts proposed for publication DO NOT contain policy recommendations. This shall apply both to the proceedings of conferences and to manuscripts by a single author or by one or more co-authors but shall not apply to authors of comments at NBER conferences who are not NBER affiliates.

3. No book manuscript reporting research shall be published by the NBER until the President has sent to each member of the Board a notice that a manuscript is recommended for publication and that in the President's opinion it is suitable for publication in accordance with the above principles of the NBER. Such notification will include a table of contents and an abstract or summary of the manuscript's content, a list of contributors if applicable, and a response form for use by Directors who desire a copy of the manuscript for review. Each manuscript shall contain a summary drawing attention to the nature and treatment of the problem studied and the main conclusions reached.

4. No volume shall be published until forty-five days have elapsed from the above notification of intention to publish. During this period a copy shall be sent to any Director requesting it, and if any Director objects to publication on the grounds that the manuscript contains policy recommendations, the objection will be presented to the author(s) or editor(s). In case of dispute, all members of the Board shall be notified, and the President shall appoint an ad hoc committee of the Board to decide the matter; thirty days additional shall be granted for this purpose.

5. The President shall present annually to the Board a report describing the internal manuscript review process, any objections made by Directors before publication or by anyone after publication, any disputes about such matters, and how they were handled.

6. Publications of the NBER issued for informational purposes concerning the work of the Bureau, or issued to inform the public of the activities at the Bureau, including but not limited to the NBER Digest and Reporter, shall be consistent with the object stated in paragraph 1. They shall contain a specific disclaimer noting that they have not passed through the review procedures required in this resolution. The Executive Committee of the Board is charged with the review of all such publications from time to time.

7. NBER working papers and manuscripts distributed on the Bureau's web site are not deemed to be publications for the purpose of this resolution, but they shall be consistent with the object stated in paragraph 1. Working papers shall contain a specific disclaimer noting that they have not passed through the review procedures required in this resolution. The NBER's web site shall contain a similar disclaimer. The President shall establish an internal review process to ensure that the working papers and the web site do not contain policy recommendations, and shall report annually to the Board on this process and any concerns raised in connection with it.

8. Unless otherwise determined by the Board or exempted by the terms of paragraphs 6 and 7, a copy of this resolution shall be printed in each NBER publication as described in paragraph 2 above.
Contents

Preface ix

Introduction 1
David A. Wise and Richard Woodbury

I. Financing Retirement

1. Were They Prepared for Retirement?
Financial Status at Advanced Ages in the HRS and AHEAD Cohorts 21
James M. Poterba, Steven F. Venti, and David A. Wise
Comment: David Laibson

2. Economic Preparation for Retirement 77
Michael D. Hurd and Susann Rohwedder
Comment: Robert J. Willis

3. How Well Are Social Security Recipients Protected from Inflation? 119
Gopi Shah Goda, John B. Shoven, and Sita Nataraj Slavov
Comment: Michael D. Hurd

4. The Availability and Utilization of 401(k) Loans 145
John Beshears, James J. Choi, David Laibson, and Brigitte C. Madrian
Comment: Gopi Shah Goda
II. HEALTH AND HEALTH CARE

5. Dimensions of Health in the Elderly Population
 David M. Cutler and Mary Beth Landrum
 Comment: David R. Weir
 179

6. The Value of Progress against Cancer in the Elderly
 Jay Bhattacharya, Alan M. Garber, Matthew Miller, and Daniella Perloff
 Comment: Amitabh Chandra
 203

7. Self-Reported Disability and Reference Groups
 Arthur van Soest, Tatiana Andreyeva, Aric Kappan, and James P. Smith
 Comment: David M. Cutler
 237

8. “Healthy, Wealthy, and Wise?” Revisited: An Analysis of the Causal Pathways from Socioeconomic Status to Health
 Till Stowasser, Florian Heiss, Daniel McFadden, and Joachim Winter
 Comment: Robert J. Willis
 267

9. Childhood Health and Differences in Late-Life Health Outcomes between England and the United States
 James Banks, Zoe Oldfield, and James P. Smith
 Comment: Amitabh Chandra
 321

10. The Financial Crisis and the Well-Being of America
 Angus Deaton
 Comment: Daniel McFadden
 343

Contributors
Author Index
Subject Index
377
381
385
Preface

This volume consists of papers presented at a conference held in Carefree, Arizona, in May 2011. Most of the research was conducted as part of the Program on the Economics of Aging at the National Bureau of Economic Research. The majority of the work was sponsored by the US Department of Health and Human Services, through the National Institute on Aging grants P01-AG005842 and P30-AG012810 to the National Bureau of Economic Research. Any other funding sources are noted in the individual chapters.

Any opinions expressed in this volume are those of the respective authors and do not necessarily reflect the views of the National Bureau of Economic Research or the sponsoring organizations.
Dimensions of Health in the Elderly Population

David M. Cutler and Mary Beth Landrum

Understanding changes in the health of the elderly is a central policy issue. A healthier elderly population is able to work to later ages, spends less on medical care each year, and requires less informal care from family and friends. Efforts to promote population health are therefore central to many health reform proposals (Pardes et al. 1999).

By many metrics, the health of the elderly has improved over time. For example, the share of elderly people with basic physical impairments such as difficulty walking around the home or bathing has declined markedly over the past two decades. By other metrics, however, the health of the elderly is worsening. Problems with more advanced functional measures such as stooping and walking moderate distances have increased over time, and obesity among the elderly has soared along with weight in the nonelderly population.

Researchers have attempted to combine indicators of the health of the elderly into a single summary measure, but these summaries are generally ad hoc and lacking in nuance. The most common single measure of disability is whether the person has any impairments in Activities of Daily Living (ADLs, such as bathing or dressing) or Instrumental Activities of Daily Living (IADLs, such as doing light housework or managing money). In the Medicare Current Beneficiary Survey, which we analyze in this chapter,
the share of the elderly population that is disabled by this definition has declined from 53 percent in 1991 to 42 percent in 2007 (figure 5.1). This summary measure exhibits somewhat different trends in different surveys and for different measures of health (Schoeni, Freedman, and Wallace 2001; Manton and Gu 2001), however, and ignores measures of functional impairment (e.g., can the person walk a reasonable distance), cognitive problems such as memory loss, and sensory impairments such as difficulty seeing and hearing.

At the same time, there is a history of more theoretically grounded measures of disability—as with the Grade of Membership (GOM) model proposed by Ken Manton and colleagues (Lamb 1996; Manton, Stallard, and Corder 1998; Woodbury, Clive, and Garson 1978; Manton, Woodbury, and Tolley 1994). But these models met resistance because of their complexity. Perhaps as a result, they have not been widely pursued.

In this chapter, we characterize the multifaceted health of the elderly and understand how health along multiple dimensions has changed over time. Our data are from the Medicare Current Beneficiary Survey (MCBS), a rotating panel of nearly 12,000 elderly people annually. The survey started in 1991; we employ data through 2007. The MCBS has the virtue that it is a person-based sample, not a housing-unit based sample. Thus, it samples and follows people when they move into nursing homes and records death.

We first consider how to optimally combine different measures of health into a smaller number of summary measures. Of course, the best way to summarize multiple measures of health depends on the question being asked. The optimal measure to predict medical spending may be somewhat...
different than the optimal measure to predict health transitions, for example. We use a somewhat ad hoc approach and estimate factor models for nineteen indicators of health in the community-based population. These measures include specific ADL impairments, IADL impairments, functional impairments, and sensory impairments.

We show that these nineteen dimensions can be compressed into three broad summary measures. The dominant factor is impairment in very basic physical and social tasks such as dressing, eating, transferring in and out of bed, preparing meals, doing light housework, and managing money. This encompasses many of the ADLs and IADLs, but not all. The second factor loads heavily on functional limitations and includes measures such as walking moderate distances, stooping, and reaching. The third dimension is sensory impairments—trouble seeing and hearing.

After determining these factors, we analyze the evolution of these health dimensions over time. We show that the set of physical and social limitations and sensory impairments have declined rapidly over time. Functional ability was flat or increasing, after declining early in the time period.

These results suggest many possible patterns. One possibility is that the community-dwelling population is increasingly concentrated among the less severely ill, with more severely ill individuals in nursing homes or having died. We show, however, that composition changes—both people leaving the sample and new people entering the sample—cannot explain a change in the health of the community-dwelling population. In a second scenario, it may be that people are recovering from severe disability more frequently in later years in the sample, thanks to better medical care or other environmental changes.

We investigate the evolution of health states in the final part of the chapter. In particular, we estimate models explaining within-person health trends over time, controlling for demographic characteristics and year dummy variables. We examine health trends in the early years in the sample (1991–1996), middle years in the sample (1997–2001), and later years in the sample (2002–2007). We show that health deteriorates less rapidly in later years of the sample than in earlier years. This sets up an exploration of what shocks to health are occurring less rapidly, which is the subject of ongoing research.

This chapter is structured as follows. The first section describes the data we employ. The second section presents information on trends in elderly health and reports the results of factor analyses for the 1991 to 2007 period. The third section shows the evolution of summary health measures of health over time, and the fourth section examines within-person changes. The last section concludes.

5.1 The Data

Our primary data source is the Medicare Current Beneficiary Survey (MCBS). The MCBS, sponsored by the Centers for Medicare and Medic-
aid Services (CMS), is a nationally representative survey of aged, disabled, and institutionalized Medicare beneficiaries that oversamples the very old (aged eighty-five or older) and disabled Medicare beneficiaries. Since we are interested in disability among the elderly, we restrict our sample to the population aged sixty-five and older.

While a number of surveys have measures of disability in the elderly population (Freedman, Martin, and Schoeni 2002), including the National Health Interview Study and the Health and Retirement Study, the MCBS has a number of advantages. First, the sample size is large: about 10,000 to 18,000 people annually. In addition, the MCBS samples people regardless of whether they live in a household or a long-term care facility, or switch between the two during the course of the survey period. Finally, the set of health questions are very broad, encompassing health in many domains.

The MCBS started as a longitudinal survey in 1991. In 1992 and 1993, the only supplemental individuals added were to replace people lost to attrition and to account for newly enrolled beneficiaries. Beginning in 1994, the MCBS began a transition to a rotating panel design, with a four-year sample inclusion. About one-third of the sample was rotated out in 1994, and new members were included in the sample. The remainder of the original sample was rotated out in subsequent years. We use all interviews that are available for each person from the start of the survey in 1991 through the 2007 survey.

The MCBS has two samples: a set of people who were enrolled for the entire year (the Access to Care sample) and a set of ever enrolled beneficiaries (the Cost and Use sample). The latter differs from the former in including people who die during the year and new additions to the Medicare population. The primary data that we use are from the health status questionnaire administered in the fall survey, which defines the Access to Care sample. We thus use the Access to Care data. We supplement this with information about death in the year following the fall interview, taken from the Cost and Use data. Because the Cost and Use data are only available through 2006, our analysis of deaths, nursing home transitions, and loss to follow-up go only through that year. Other data go through 2007.

Table 5.1 shows the number of individuals in the sample by year or interview and wave (number of interviews for that person). The sample of new beneficiaries is low in 1992 and 1993, rises throughout the 1990s, and then declines in the early 2000s. The difference between the number of people in one wave in year t and the next wave in year t + 1 is an approximate death and attrition rate across years.

The health questions asked about in the MCBS are shown in table 5.2. The questions are generally the same for the community population and the institutional population, with the exception that the institutionalized are not asked about three IADLs limitations—light housework, preparing meals, and heavy lifting. The tabulations in table 5.1 are for people interviewed in 1991 to 2007. On average, 5 percent of people are in a nursing home.
Table 5.1 Sample size for MCBS

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>10,495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,495</td>
</tr>
<tr>
<td>1992</td>
<td>1,685</td>
<td>8,895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,180</td>
</tr>
<tr>
<td>1993</td>
<td>1,795</td>
<td>1,516</td>
<td>7,391</td>
<td></td>
<td></td>
<td></td>
<td>10,702</td>
</tr>
<tr>
<td>1994</td>
<td>4,011</td>
<td>1,510</td>
<td>1,408</td>
<td>4,472</td>
<td></td>
<td></td>
<td>13,401</td>
</tr>
<tr>
<td>1995</td>
<td>4,250</td>
<td>3,270</td>
<td>1,244</td>
<td>809</td>
<td>3,411</td>
<td></td>
<td>12,984</td>
</tr>
<tr>
<td>1996</td>
<td>6,494</td>
<td>3,443</td>
<td>2,803</td>
<td>1,037</td>
<td>277</td>
<td>1,046</td>
<td>15,100</td>
</tr>
<tr>
<td>1997</td>
<td>6,374</td>
<td>3,764</td>
<td>3,036</td>
<td>2,450</td>
<td></td>
<td></td>
<td>15,524</td>
</tr>
<tr>
<td>1998</td>
<td>8,069</td>
<td>3,698</td>
<td>3,370</td>
<td>2,678</td>
<td></td>
<td></td>
<td>17,815</td>
</tr>
<tr>
<td>1999</td>
<td>5,341</td>
<td>3,545</td>
<td>3,289</td>
<td>2,958</td>
<td></td>
<td></td>
<td>15,133</td>
</tr>
<tr>
<td>2000</td>
<td>4,274</td>
<td>3,572</td>
<td>3,115</td>
<td>2,861</td>
<td></td>
<td></td>
<td>13,322</td>
</tr>
<tr>
<td>2001</td>
<td>4,279</td>
<td>3,563</td>
<td>3,172</td>
<td>2,709</td>
<td></td>
<td></td>
<td>13,273</td>
</tr>
<tr>
<td>2002</td>
<td>4,207</td>
<td>3,797</td>
<td>3,142</td>
<td>2,770</td>
<td></td>
<td></td>
<td>13,398</td>
</tr>
<tr>
<td>2003</td>
<td>4,160</td>
<td>3,437</td>
<td>2,996</td>
<td>2,741</td>
<td></td>
<td></td>
<td>13,334</td>
</tr>
<tr>
<td>2004</td>
<td>4,055</td>
<td>3,292</td>
<td>2,961</td>
<td>2,556</td>
<td></td>
<td></td>
<td>12,664</td>
</tr>
<tr>
<td>2005</td>
<td>4,195</td>
<td>3,302</td>
<td>2,916</td>
<td>2,617</td>
<td></td>
<td></td>
<td>13,030</td>
</tr>
<tr>
<td>2006</td>
<td>4,317</td>
<td>3,308</td>
<td>2,838</td>
<td>2,523</td>
<td></td>
<td></td>
<td>12,866</td>
</tr>
<tr>
<td>2007</td>
<td>4,203</td>
<td>3,411</td>
<td>2,910</td>
<td>2,485</td>
<td></td>
<td></td>
<td>13,009</td>
</tr>
</tbody>
</table>

Note: The sample is the elderly population in the Access to Care survey. Dashed cells indicate no observations.

Functional limitations are most common. Sixty-nine percent of the community-dwelling population report difficulty stooping, crouching, or kneeling, along with 93 percent of the institutionalized. For other questions, positive responses are reported by a quarter to a half of the population. Very severe physical impairments, such as help needed bathing or toileting, are very common for the institutionalized, but rare in the community. The same is true about social indicators such as managing money and shopping, with the exception that there is significant difficulty doing heavy housework among people living in the community. About one-third of both groups report difficulties seeing or hearing.

Figure 5.2 shows the trend in health for each of the dimensions identified in table 5.2, along with the share of people living in a nursing home. For each dimension, we determine the share of people who report having being impaired in at least one specific item, in each year of the data. For example, our ADL trend is the share of people in each year who report at least one ADL impairment. In this analysis, we do not distinguish between one or more than one impairment. Our models in the next section will do so.

There are very different patterns for the different dimensions of health. The share of people who are in a nursing home, who have an ADL or IADL impairment, or who have a sensory impairment has declined over time. The decline in nursing home residence is about 30 percent. The reduction in ADL impairment is also about 30 percent, while the reduction in IADL
Table 5.2 Health problems in MCHS

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Community (95%)</td>
</tr>
<tr>
<td>1</td>
<td>Stooping/crouching/kneeling</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>Lifting, carrying 10 pounds</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Extending arms above shoulder</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Writing/handling object</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Walking 1/4 mile or 2-3 blocks</td>
<td>44</td>
</tr>
</tbody>
</table>

Activities of Daily Living: Says difficulty doing by himself/herself because of a health or physical problem

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Bathing or showering</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Getting in or out of bed or chairs</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Eating</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Dressing</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Walking</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>Using the toilet</td>
<td>6</td>
</tr>
</tbody>
</table>

Instrumental Activities of Daily Living: Difficulty doing the following activities by yourself because of a health or physical problem

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Using the telephone</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>Doing light housework (like washing dishes, straightening up, or light cleaning)</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>Doing heavy housework (like scrubbing floors or washing windows)</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>Preparing own meals</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>Shopping for personal items</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>Managing money (like keeping track of expenses or paying bills)</td>
<td>7</td>
</tr>
</tbody>
</table>

Sensory problems

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Trouble seeing</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>Trouble hearing</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: Tabulations are from the MCHS Access to Care sample for 1991-2007 and use sample weights. Dashed cells indicate that questions were not asked of those individuals.

Impairment is about 20 percent. Sensory impairments declined by 24 percent. The share of the population with functional limitations, in contrast, was relatively flat.

The appendix shows the specific items that contribute to the trends for each dimension. There is surprisingly little variation within the specific items in each domain. Almost all of the ADL and IADL impairments have declined, as have both of the sensory impairments. Most of the functional limitations have been relatively flat, as have the two cognitive measures. This suggests that the grouping shown in figure 5.1 may be relatively accurate as a true description of elderly health. We turn to this next.
Fig. 5.2 Summary health measures by domain

Notes: Data are from the MCBS Cost and Use sample. Percentages use sample weights and are adjusted to the age/sex composition of the population in 2000.

5.2 The Dimensions of Elderly Health

As noted before, most research defines disability as a binary variable based on the self-report of any ADL or IADL impairment. While simple to implement, this measure lacks a theoretically rigorous foundation. Moreover, a binary measure does not capture heterogeneity in the population. For many purposes, we care about the distribution of health in addition to the proportion with any specific limitation. At the same time, there is a
literature (e.g., Verbrugge and Jette 1994) arguing for a distinction between functional status (measures of specific physical functioning) and disability (the ability to engage in the activities typically expected of a person). Within this latter spirit, we examine the different dimensions of health among the elderly.

The optimal way to combine the different measures depends on the purpose for which the data are being used. If one were interested in forecasting medical spending, for example, one would weight the questions by how much they are associated with medical service use. We propose a less structural version and simply ask the question: How many domains summarize the health impairments that people have? Those domains can then be used to assess the health status of the elderly. To do this, we will use factor analysis to characterize responses into different domains of functioning.

Formally, denote r_{ij} as the response to question j for individual i. Suppose there are J questions total ($J = 19$ in our setting). We imagine that these health states are a linear function of K different unobserved or latent factors, denoted F_{ik}. We fit a latent variable model of the form (e.g., Bartholomew 1987; Knol and Berger 1991):

$$r_{ij} = \gamma_{i0} + \gamma_{i1} F_{i1} + \gamma_{i2} F_{i2} + \gamma_{i3} F_{i3} + \ldots + \gamma_{ik} F_{ik},$$

where r_{ij} is a 0 or 1 outcome variable, γ_{i0} is a threshold parameter that accounts for varying prevalence of limitations in the population (for example, limitations climbing stairs are more common than limitations in bathing), and the γ_{ij}'s are factor loadings that describe the relationship between unobserved factor k and question j. Unobserved factors are assumed to follow a Multivariate Normal distribution. The latent variable model described by (1) is similar to the factor analyses and Grade of Membership models that have been previously used to describe dimensions of disability (Lamb 1996; Manton, Stallard, and Corder 1998; Woodbury, Clive, and Garson 1978; Manton, Woodbury, and Tolley 1994).

We can fit this model provided $K < J$. Empirically, because the data tend to be highly correlated and we have nineteen dimensions of health, a small number of factors is associated with a wide range of variation in the data.

Table 5.3 shows the results of the factor analysis on community-dwelling elderly over the 1991 to 2007 time period. By the usual criterion of eigenvalues greater than 1, there are three significant factors. These three also have natural economic and demographic interpretations. We thus work with those three.

To aid in interpretation, we consider rotations of the factors that maximize the loading of individual measures into single factors while also allowing correlation between latent factors. Specifically, we use an oblique rotation of the three factor scores ($promax = 3$). The predicted factor scores are positively correlated. The correlation between factors 1 and 2 is .428, between 1 and 3 is .251, and between 2 and 3 is .242.
Figure 5.3 shows plots of the (rotated) first factor against factors 2 and 3. These plots are primarily useful to see the individual items that are loading most highly on each dimension. The first factor encompasses largely ADL and IADL limitations, with heavy loading on all of the ADLs and IADLs such as shopping, light housework, and preparing meals. The second factor is largely associated with functional limitations and related IADLs, including difficulty walking, lifting, stooping, reading, and doing heavy housework. The third factor is concentrated in sensory impairments, including both vision and hearing.

For each individual, we predict their score on each of the three dimensions. Figure 5.4 shows trends in factor scores over the 1991 to 2006 time period. By definition, the factor scores are normalized to mean 0 and standard deviation 1. Thus, a decline of .1 is a reduction of .1 standard deviation. Corresponding to figure 5.2, there are large declines in factor 1 (ADL and IADL limitations) and factor 3 (sensory impairment) over time. Factor 2 declines in the early years of the sample, picking up the reduction in IADLs and ADLs that enter factor 2.

<table>
<thead>
<tr>
<th>Table 5.3</th>
<th>Factor Analysis for MCBS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalue</td>
<td>Proportion</td>
</tr>
<tr>
<td>1</td>
<td>6.90</td>
</tr>
<tr>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td>3</td>
<td>1.17</td>
</tr>
<tr>
<td>4</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>0.89</td>
</tr>
<tr>
<td>6</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Note: The results are from factor analyses using the MCBS community-dwelling sample from 1991-2007. The sample includes 211,952 observations.

Fig. 5.3 Factor Loadings
Notes: Data are from the MCBS Access to Care sample. The factor analysis is for people surveyed in 1991-2007. Table 5.3 has details.
Fig. 5.4 Trends in factor scores

Notes: Data are from the MCBS Access to Care sample. The factor analysis is for people surveyed in 1991-2007. Table 5.3 has details.

We next plot the factor scores by age. If all of the health improvement were at younger elderly ages, the explanation would likely fall in the medical and environmental factors that influence health of the working age population. Conversely, improvements in health at older ages raise the possibility that conditions at those older ages are the driving factor (though they do not prove it, as the literature on the impact of in utero conditions shows; Barker 1992).

Figure 5.5 shows the trend in each of the three factor scores by age. Health improvements in factors 1 and 3 are prevalent at all ages. For example, the reduction in factor 1 is 0.1 (.1 standard deviation) for people aged sixty-five to sixty-nine and 0.38 for people aged eighty-five and over.

Since there are more young elderly than old elderly, the contribution of the older elderly to the reduction in total disability is perhaps overstated. Another metric is to evaluate the share of the total improvement in the health of the elderly that is accounted for by improvements in the health of each age group. At any time period t, $F(t) = \sum_{a} p(t|a) \cdot F(a,t)$, where $p(t|a)$ is the percent of the population at time t that is in age group a. The contribution of age group a to the total change in health between two time
Fig. 5.5 Factor scores by age

Notes: Data are from the MCBS Access to Care sample. The factor analysis is for people surveyed in 1991–2007. Table 5.3 has details.

periods is then $\text{pct}(a,0) \times \Delta F(a)$, and the total change in the population is $\sum \text{pct}(a,0) \times \Delta F(a)$. The ratio of these two, $\text{pct}(a,0) \times \Delta F(a) / \sum \text{pct}(a,0) \times \Delta F(a)$, is the contribution of health improvements at age group a to the total change in population health.

Figure 5.6 shows these contribution shares for factors 1 and 3, the dimensions on which health is improving most significantly, along with the population distribution by age. For both factors 1 and 3, the oldest old contribute disproportionately to health improvements. People aged eighty-five and older are 14 percent of the population in 1991 but account for 30 to 50 percent of the health improvement. This suggests that late life health and social conditions may be important contributors to population health. At minimum, any theory of health improvement will have to account for this age differential.
5.3 Explaining the Improvement in Health

The central economic challenge is to understand why health improves in so many dimensions. We consider two explanations for improved health. The first explanation is composition change: people with severe health impairments may be more likely to die or transition into a nursing home over time. Alternatively, new entrants to the survey may be healthier than the people they replace. Either of these situations would improve the health of the community-dwelling population because of selection. Second, people may be impaired along the same dimensions, but impairment may not progress to more severe stages as frequently as it did formerly, either because of person-specific aging trends (e.g., richer people can manage their chronic conditions better), or because of population-wide shocks (a new treatment for vision impairment).

Figure 5.7 shows a schematic of the model that we estimate. We start off with the community-dwelling population in year t. Between t and t + 1, two things happen. First, the sample changes. Some people leave the sample, either through death, loss to follow-up, or nursing home entry, and others enter. The combination of these two transitions is the composition effect. Second, new health shocks occur (for example, a heart attack or diagnosis of cancer) and old health conditions exert an effect on health. An example of the latter is a continued deterioration that might occur from untreated arthritis. The combination of composition changes and health changes among the existing population yields the new population health at t + 1.
3.1 Composition Change

We now show the equations that we model, starting with the composition change. Denote $H_{i,t}$ as the factor score in dimension k for person i in year t; F_i as the vector of factor scores for person i in year t. The equations for nursing home entry (NH), death (Die), and loss to follow-up (Loss) are given by:

2) $NH_{i,t+1} = F_i \alpha^{NH} + X_i \theta^{NH} + \mu^{NH}_{i,t+1}$

3) $Die_{i,t+1} = F_i \alpha^{Die} + X_i \theta^{Die} + \mu^{Die}_{i,t+1}$

4) $Loss_{i,t+1} = F_i \alpha^{Loss} + X_i \theta^{Loss} + \mu^{Loss}_{i,t+1}$

where i denotes individuals and t is year. In a general specification, the μ error terms might be correlated. For simplicity, we assume they are not.

For new entrants, the issue is whether people who are new to the survey are healthier than those who continue. We estimate this as follows:

5) $F_{i,t} = X_i \theta^k + \pi_i \text{Wav} + \mu_i$

where Wav is a dummy for the first year in the survey. To the extent that new entrants at any age are more or less healthy than people of the same age but who are continuing in the survey, the coefficient π_i will be different from zero.

3.2 Health Trends within Individuals

We then consider the model for health of the continuing population. We describe the evolution of health for the surviving, community-dwelling population as:

6) $F_{i,t} = \alpha_{i,t} + \alpha_{i,t} l + \alpha_{i,t} h_i + \text{Year}_t \gamma_t + \varepsilon_{i,t}$

The factor score for an individual depends on their demographics ($\alpha_{i,t}$), aging (l), new and ongoing health shocks (h_i), and year dummy variables (γ_t).

It is natural for $\alpha_{i,t}$ to vary in the population, for both measurable reasons (older people are sicker than younger people) and unmeasurable reasons.
(random differences across individuals). Similarly, aging and health shocks may affect people differently. Generally, we parameterize \(\alpha_{jt} \) \((j = 0, 1, \text{ and } 2)\) corresponding to the three \(\alpha \) terms in equation (6) as follows:

\[
\alpha_{jt} = \beta_{0jt} + \chi_{jt} \beta_{1jt} + \text{Period}_{jt} \beta_{2jt} + \xi_{jt}.
\]

Equation (7) relates the level and trend in health to a constant, person-specific factors, and the time period.

In principle, the \(\epsilon_{jt} \) errors may be correlated (factor scores in different domains), as might the \(\xi_{jt} \) errors (coefficients on different control variables). A general formulation would model these as \(\epsilon \sim N(0, \Sigma) \) and \(\xi \sim N(0, \Psi) \). For this analysis, we assume that the \(\epsilon \)’s are independent, as are the \(\xi \)’s. Also for simplicity, we assume that the only coefficients that vary over people are \(\alpha_{0jt} \) and \(\alpha_{1jt} \) - the constant term and the coefficient on the time trend. We parameterize \(\alpha_{0jt} \) as depending on demographics and an error term (i.e., \(\alpha_{0jt} = \beta_{00t} + \chi_{jt} \beta_{01t} + \xi_{0jt} \)) and the \(\beta_{1jt} \) as differing in three time periods: 1991–1996; 1997–2001; and 2002–2007 (i.e., \(\alpha_{1jt} = \beta_{10t} + \text{Period}_{jt} \beta_{11t} + \xi_{1jt} \)).

Finally, for this analysis, we leave out the health measures \(h_{jt} \). We do this not because they are unimportant, but because we wish to focus on the aging effect \(\alpha_{1jt} \). We therefore estimate \(\beta_{00t}, \beta_{01t}, \beta_{10t}, \beta_{11t} \), \(\text{var}(\xi_{0jt}) \), and \(\text{var}(\xi_{1jt}) \).

Our \(X \) vector consists of basic demographics. We include dummy variables for age and gender (a dummy for aged sixty-five to sixty-nine, seventy to seventy-four, seventy-five to seventy-nine, eighty to eighty-four, and eighty-five and older interacted with gender), and a dummy for nonwhites. We also include year dummy variables. Future work could naturally incorporate a richer array of variables, including health shocks to the individual and other family members, changes in socioeconomic status such as reductions in income or wealth, and environmental conditions.

5.4 Composition Change

All three exits from the community sample are common. About 1.5 percent of the elderly population transitions into a nursing home in any year. This is smaller than the share of people who are living in a nursing home at a point in time (around 5 to 6 percent) because of the long-stayers. We also exclude from this analysis people who died between one survey wave and the next, since we do not know about nursing home utilization for them. About 4 percent of the population dies in any year (this is among the community-dwelling sample: a larger share of the institutionalized population dies). Finally, about 12 percent of the population is lost to follow-up each year. This share is particularly high early in the sample, when the initial population was purposely phased out. Outside of those years, the average loss to follow-up is about 10 percent.

The primary question we explore is whether people who are sicker (that is, score higher on the factor score) depart the sample more frequently, and
whether this is particularly likely to occur over time. Thus, we interact the factor scores in equations (2) through (4) with the period dummies noted before: 1991 to 1996, 1997 to 2001, 2002 to 2006. We then test whether being sick has a greater effect on sample exit in later years of the sample.

Table 5.4 shows the estimates of death, transitions to a nursing home, or loss to follow-up. Since we have repeat observations on the same individual, we cluster the standard errors by individual—as we do in Table 5.5 as well. In the first column, factor 1 is particularly predictive of mortality. An increase of 1 standard deviation raises mortality rates by 3 percent. Factor 1 is mildly more predictive of death in the later years of the sample than

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Die</th>
<th>Enter a nursing home</th>
<th>Loss to follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991–1996</td>
<td>.028**</td>
<td>.021**</td>
<td>.006**</td>
</tr>
<tr>
<td></td>
<td>(.001)</td>
<td>(.001)</td>
<td>(.002)</td>
</tr>
<tr>
<td>1997–2001</td>
<td>.031**</td>
<td>.020***</td>
<td>.007**</td>
</tr>
<tr>
<td></td>
<td>(.002)</td>
<td>(.001)</td>
<td>(.002)</td>
</tr>
<tr>
<td>2002–2006</td>
<td>.032**</td>
<td>.016**</td>
<td>.011**</td>
</tr>
<tr>
<td></td>
<td>(.002)</td>
<td>(.001)</td>
<td>(.002)</td>
</tr>
<tr>
<td>Factor 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991–1996</td>
<td>.009**</td>
<td></td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>(.001)</td>
<td></td>
<td>(.002)</td>
</tr>
<tr>
<td>1997–2001</td>
<td>.010**</td>
<td>.000</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>(.001)</td>
<td>(.001)</td>
<td>(.002)</td>
</tr>
<tr>
<td>2002–2006</td>
<td>.010**</td>
<td>.000</td>
<td>.003</td>
</tr>
<tr>
<td></td>
<td>(.001)</td>
<td>(.001)</td>
<td>(.002)</td>
</tr>
<tr>
<td>Factor 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991–1996</td>
<td>.000</td>
<td>.003**</td>
<td>.008**</td>
</tr>
<tr>
<td></td>
<td>(.001)</td>
<td>1.001</td>
<td>(.002)</td>
</tr>
<tr>
<td>1997–2001</td>
<td>.001</td>
<td>.002**</td>
<td>.009**</td>
</tr>
<tr>
<td></td>
<td>(.001)</td>
<td>(.001)</td>
<td>(.002)</td>
</tr>
<tr>
<td>2002–2006</td>
<td>.001</td>
<td>.002*</td>
<td>.006*</td>
</tr>
<tr>
<td></td>
<td>(.001)</td>
<td>(.001)</td>
<td>(.002)</td>
</tr>
<tr>
<td>Demographics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Wave dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>153,214</td>
<td>123,270</td>
<td>153,214</td>
</tr>
<tr>
<td>R^2</td>
<td>.053</td>
<td>.045</td>
<td>.032</td>
</tr>
<tr>
<td>Dependent variable mean</td>
<td>.035</td>
<td>.013</td>
<td>.125</td>
</tr>
</tbody>
</table>

Notes: Data are from the MCBS. Demographic controls include age-sex dummies (ages sixty-five to sixty-nine, seventy to seventy-four, seventy-five to seventy-nine, eighty to eighty-four, eighty-five and over, by gender), and a dummy for nonwhite. Standard errors are clustered by individual.

**Significant at the 5 percent level.

*Significant at the 10 percent level.
the earlier years. An F-test rejects that the coefficients in later years are
the same as in earlier years. But the quantitative difference is not large at
.4 percentage points.

We determine the quantitative impact of this change on the health of
survivors using a simulation model. Specifically, we simulate for each person
death under the coefficients in the early time period, and then again using the
coefficients in the later time period, but keeping the X's the same as in the
early time period. We then average health of the survival group in each case.
We estimate that the average score on factor 1 would decline by .004 because
of the increased propensity of the sick to die. Given an overall decline in
factor 1 of .072 between the early and late time periods, mortality selection
can explain only 5 percent of the decline in factor 1 over time.

In the models for nursing home entry, shown in the second column, factor
1 is particularly predictive of transitions into a nursing home. This corre-
sponds to severe physical or social impairment. Factors 2 and 3 (functional
limitations and sensory impairment), in contrast, have relatively little impact
on nursing home transitions. The coefficient on factor 1 declines a bit, implying
that sicker people are more likely to be in the community in later years of
the sample.

The third column shows the model for loss to follow-up. If appropriate
effort is put into follow-up, loss to follow-up should be approximately ran-
dom. Somewhat surprisingly, this is not true in the data. Higher scores on
factor 1 (that is, worse health) predicts loss to follow-up, while those with
sensory impairments are somewhat less likely to be lost to follow-up. These
coefficients are relatively small, however, and do not vary much over time.

We evaluate the combined impact of these three sources of sample attri-
tion using the simulation noted earlier. We draw random variables to predict
death, nursing home entry, and loss to follow-up and then simulate the
community-dwelling population under the coefficients in the early years
of the sample and the later years of the sample. The simulation shows that
factor 1 for the community-dwelling population would decline by .006 as
a result of selection, or 8 percent of the total decline. For factor 3, the pre-
dicted change is only 1 percent of the total improvement.

The regressions in table 5.4 have year dummies included, and these year
dummies are graphed in figure 5.8. Generally, the year dummies are rela-
tively flat—death and nursing home entry are no more or less likely over
time, conditional on health status and demographics. As noted before, loss
to follow-up is high in two years of the sample (1991 and 1994) and constant
in other years.

The final component of composition change is the changing health of
new enrollees to the survey. We estimate equation (5) interacting the wave 1
dummy variable with dummy variables for early, middle, and late periods of
the sample. We then examine whether people in the first wave of the survey
are increasingly healthy over time.
Fig. 5.8 Year effects for leaving the sample

Notes: Figure shows the year dummy variables for models of death, nursing home entry, and loss to follow-up. Data are from the MCBS Cost and Use sample. Table 5.4 describes the model.

Table 5.5 The health of new entrants

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient on Wave 1 dummy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991–1996</td>
<td>.013</td>
<td>-.009**</td>
<td>-.008</td>
</tr>
<tr>
<td></td>
<td>(.009)</td>
<td>(.012)</td>
<td>(.009)</td>
</tr>
<tr>
<td>1997–2001</td>
<td>.029**</td>
<td>.021**</td>
<td>.006</td>
</tr>
<tr>
<td></td>
<td>(.007)</td>
<td>(.008)</td>
<td>(.008)</td>
</tr>
<tr>
<td>2002–2007</td>
<td>.021**</td>
<td>.021**</td>
<td>.060**</td>
</tr>
<tr>
<td></td>
<td>(.007)</td>
<td>(.007)</td>
<td>(.007)</td>
</tr>
<tr>
<td>Demographics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>211,952</td>
<td>211,952</td>
<td>211,952</td>
</tr>
<tr>
<td>R^2</td>
<td>.072</td>
<td>.085</td>
<td>.062</td>
</tr>
</tbody>
</table>

Notes: Data are from the MCBS. Demographic controls include age-sex dummies (ages sixty-nine to seventy-four, seventy-five to seventy-nine, eighty to eighty-four, eighty-five and over, by gender), year dummies, and a dummy for nonwhite. Standard errors are clustered by individual.

**Significant at the 5 percent level.
Table 5.5 shows the results. The three columns show averages for factors 1, 2, and 3, respectively. New entrants to the survey are less healthy than existing members along factor 1, but healthier in the second dimension. In both cases, the coefficients are relatively small. Furthermore, the factor 1 and 3 coefficients are somewhat increasing over time. That is, health of new entrants is on average deteriorating relative to the health of existing members across the years.

The implication of these transition models is therefore that the improving health of the community-based population is not attributable to changes in the sample of people living in the community, or picked up by the MCBS. By residual, then, it must be the case that the same population is increasingly healthy over time.

5.5 The Evolution of Health among Community Dwellers

In this section, we turn to the evolution of health among the community-dwelling population. Specifically, we estimate the model given by equations (6) and (7). Given the aforementioned results, our primary focus is on the time trend, and how that varies in the early, middle, and later years of the sample.

Table 5.6 shows the models’ health trends. The three columns correspond to models for the three different factors. Within each model, we present the

<table>
<thead>
<tr>
<th>Table 5.6 The evolution of health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent variable</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Average effects</td>
</tr>
<tr>
<td>$r'(1991-1996)$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$r'(1997-2001)$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$r'(2002-2007)$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Standard deviation of average</td>
</tr>
<tr>
<td>$r'(1991-1996)$</td>
</tr>
<tr>
<td>$r'(1997-2001)$</td>
</tr>
<tr>
<td>$r'(2002-2007)$</td>
</tr>
<tr>
<td>Demographics</td>
</tr>
<tr>
<td>Year dummies</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

Notes: Data are from the MCBS. Demographic controls include age-sex dummies (ages sixty-five to sixty-nine, seventy to seventy-four, seventy-five to seventy-nine, eighty to eighty-four, eighty-five and older, by gender) and a dummy for nonwhite. Standard errors are clustered by individual.

** Significant at the 5 percent level.
average aging effect (β_{age}) and the standard deviation of that coefficient. There are also year dummies in the model, and these are shown in figure 5.9.

The averages show considerable decline in health as a person ages. For example, factor 1 increases by .065 each year (.065 standard deviations) during the early phase of the sample, and factor 3 increases by .019 each year.

The rate of decline in health has slowed over time. Relative to the increase in factor 1 of .065 each year, as shown in the first time period, the increase is only .034 in the more recent time period. This reduction, which occurs after 1997, accounts for a large change in health over time. Had the decrement to health stayed the same after 1996 as before 1996, health in 2007 would have been one-third of a standard deviation worse. Another way to show the impact of this change is to consider the year effects in figure 5.9. While there are strong year trends in factors 1 and 2 up through 1996, there are no consistent year trends afterwards.

Health in the third dimension also deteriorates less rapidly over time, with roughly the same pattern. Factor 3 increases by .019 per year in the early time period, and then declines by .016 per year in the later time period. There is an unexplained year trend in the early time period and again between 2001 and 2003. Other than those time periods, there is little aggregate drift.

Not only does the rate of decline in health slow, but health is actually estimated to improve for many people. The standard deviations of health trends, shown in the middle rows of table 5.6, are large. The standard deviation of .19 for factor 1 in the early time period implies that the 95 percent interval
for the impact of aging is -.32 to +.44. There are clearly many people whose health is improving, even while health is deteriorating on average.

5.6 Conclusions and Next Steps

Our results provide important evidence on the well-noted decline in disability in the elderly population. We show that health has several dimensions: one that is largely severe physical and social impairment; a second that is less severe physical limitations; and a third that encompasses sensory impairments. The first and third of these dimensions are improving over time, while the second is not.

The reason for the improvement in health is complex. On the one hand, the health improvement is not a result of sample or demographic changes. Younger people are healthier than younger people used to be, but the same is true of older people. Rather, health is improving because individual health deteriorates less rapidly now than in the past. We do not know exactly why this occurs, but we show that the average trend masks significant heterogeneity. Even as health deteriorates overall as people age, health is improving for a significant minority of people.

The next step is to develop a richer model of the change in health over time. To what extent is the improvement in health a result of fewer new conditions developing, existing problems being cared for better, or changes in the social and environmental circumstances that the elderly face? Considering these questions is a fruitful area for further study.
Fig. 5A.1 Plots of individual health measures
Notes: See table 5.2 for the specific items graphed. All tabulations use weighted data, with the population adjusted for changes in the age/sex mix of the population over time.
References

Comment

David R. Weir

The chapter by Cutler and Landrum is concerned with trends in the health of the elderly population over the past twenty years. Health here is physical functioning and limitations: the chapter does not examine trends in disease prevalence or severity. It is rather an examination of the trend toward declining disability first identified by Kenneth Manton and colleagues using the National Long-Term Care Survey, and subsequently confirmed in a number of analyses. The chapter presents evidence that the decline in disability has continued through the 1990s. The authors also consider the implications of these trends for policy makers, social workers, and health care providers. They argue that policies aimed at improving health care and support systems for elderly Americans are needed to help maintain the trend toward declining disability.

David R. Weir is research professor and director of the Health and Retirement Study at the University of Michigan.

For acknowledgments, sources of research support, and disclosure of the author's material financial relationships, if any, please see http://www.nber.org/chapters/c12438.ack
of other data sets by Linda Martin, Robert Schoeni, and colleagues. This chapter focuses exclusively on the Medicare Current Beneficiary Survey (MCBS) from 1992 to 2007. The MCBS has advantages for some of the chapter’s aims, disadvantages for others, and some unexploited advantages that are discussed later.

The key contribution of the chapter is to consider the appropriate level of aggregation of components of physical functioning to better understand the multidimensionality of this concept of health and in particular to better understand somewhat conflicting time trends of different dimensions. Survey self-reports of physical functioning and disability typically ask about a number of different specific physical actions (e.g., walking, stooping, lifting, hearing) and a number of different activities (e.g., dressing, bathing, managing money). An item-by-item accounting would be unnecessarily detailed, but the authors show that aggregating all of these items into a single index of health misses importantly distinct dimensions.

The authors use factor analysis to identify important higher-order dimensions within the set of items. This analysis largely confirms the conventional groupings into (a) limitations in activities and instrumental activities of daily living, (b) functional limitations, and (c) sensory impairments. This makes the subsequent analysis of trends in these dimensions easily interpretable to most readers familiar with the disability literature but it does not say whether the estimated factors deviate in any significant way from the traditional aggregates. All three factors show declines in the early 1990s, to about 1998. From that point decline continues and perhaps accelerates in sensory impairments, slows down in ADL/IADL difficulties, and essentially stops in functional limitations. These trends are generally similar for all age groups, but an interesting decomposition of the contributions of different age groups to the overall trends shows that the oldest-old (eighty-five and over) contribute disproportionately to the gains.

The authors spend a great deal of effort demonstrating that neither changes in selective recruitment into nor attrition from the MCBS can account for the trends they see. This is comforting but not surprising considering that MCBS can sample from the entire population of Medicare beneficiaries with knowledge of their health from the Medicare claims data. The analysis actually contributes more than a vindication of MCBS. By separating exits from the study into three very distinct events—death, institutionalization, and dropping out of the study—they shed light on population trends as well as survey performance. Sensory impairments have no influence on death and small influence on nursing home entrance but reduce the risk of dropout, which might seem surprising given the need to hear and see to participate. This is not a model of change in impairment affecting participation—it merely says that conditional on having done the study once with an impairment you are less likely to drop out than someone without one. Functional limitations predict death, but not nursing home use or attrition.
The ADL/IADL difficulties predict all three outcomes. More importantly for the topic at hand, the coefficients in these relationships do not change very much over time. That means that the population trend to lower disability is not due to the disabled dying at greater rates, which is a more interesting finding than that MCBS is not getting (much) worse at keeping the disabled in the study.

The final stage of the analysis is to model year trends within time periods. This is given the interpretation of an aging effect even though age itself is in the model, presumably because age is fixed at age at entry into the study. The identification of this aging effect thus comes from the relatively short period of time in which individuals remain in MCBS. The pace of deterioration in health with age slowed across the time periods examined, accounting for a substantial part of the gains in average health by age.

The underlying goal of the chapter is to understand the reasons for changing health and to relate that to policy goals for the health care system. The MCBS had advantages for the basic demonstration of trends in different dimensions because it has similar items over the entire time period and covers the entire community-dwelling sixty-five and over population in each year. It is much less desirable for the kinds of longitudinal analysis the authors put it through to study changes over time in individual trajectories because participants are only in the study for a short time. Other studies, like the Health and Retirement Study (HRS), would be better for that purpose. Ultimately, though, this structure does not really help to narrow the range of explanations, which should include better health behaviors in the population, better environmental accommodation of physical limitations, and better medical care. Both the HRS and the MCBS are linked to Medicare claims, which could be used to identify the disease conditions and health shocks that contribute to disability. With that kind of data, one could ask whether disability decline was related to lower incidence of disability-producing health shocks, or to reduced disability consequences of those health shocks. Similarly, one could ask why the decline in disability seems to have stalled.