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Abstract

Science, Technology, Engineering, and Math (STEM) jobs are a key contributor to
economic growth and national competitiveness. Yet STEM workers are perceived to
be in short supply. This paper shows that the “STEM shortage” phenomenon is ex-
plained by technological change, which introduces new job skills and makes old ones
obsolete. We find that the initially high economic return to applied STEM degrees
declines by more than 50 percent in the first decade of working life. This coincides
with a rapid exit of college graduates from STEM occupations. Using detailed job va-
cancy data, we show that STEM jobs change especially quickly over time, leading to
flatter age-earnings profiles as the skills of older cohorts became obsolete. Our findings
highlight the importance of technology-specific skills in explaining life-cycle returns to
education, and show that STEM jobs are the leading edge of technology diffusion in
the labor market.
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1 Introduction

A vast body of work in economics finds that technological change increases the relative

wages of educated workers by complementing their skills, leading to rising wage inequality

(e.g. Katz and Murphy 1992, Berman et al. 1994, Autor et al. 2003, Acemoglu and Autor

2011). Empirical confirmation of this skill-biased technological change (SBTC) hypothesis

comes from the increasing return to a college education, which is interpreted as a single-

index measure of worker skill.1 Yet despite large differences in the curricular content of

college majors and in returns to field of study, there is little direct evidence linking changes

in skill demands to the specific human capital learned in school.2 Simply put, the process by

which technology changes the returns to skills by altering job tasks remains mostly a “black

box”.3

In this paper, we study the impact of changes in the skill content of work on the labor

market returns to a form of specific human capital—Science, Technology, Engineering, and

Math (STEM) degrees.4 STEM careers are ideal for studying the link between technology
1In the canonical skill-biased technological change (SBTC) framework, technological progress increases

the productivity of high-skilled workers more than low-skilled workers, and so the skill premium increases
when technological change “races ahead” of growth in the supply of skills (Tinbergen 1975, Goldin and Katz
2007). Acemoglu and Autor (2011) develop a task-based framework that allows for a more general type of
technological bias, and they show the replacement of routine “middle-skill” tasks by machines could lead to
polarization of the wage distribution. In both cases, however, there is a single index of skill, and technologies
are not linked to specific job tasks.

2The SBTC literature cited above shows the impact of technological change on the returns to general
skills (e.g. a college education). There is also a large literature studying heterogeneity in returns to field of
study (e.g. Arcidiacono 2004, Pavan 2011, Altonji, Blom and Meghir 2012, Carnevale et al. 2012, Kinsler and
Pavan 2015, Altonji, Arcidiacono and Maurel 2016, Kirkeboen et al. 2016 Few studies connect technological
change to changes in the returns to specific skills. One exception is the literature studying general versus
more vocational educational systems across countries, which generally finds that 1) youth in countries with
a more vocational focus have higher employment and earnings initially, but lower wage growth (Golsteyn
and Stenberg 2017, Hanushek et al. 2017); and 2) that individual differences in the returns to general
vs. vocational education are near zero for the marginal student, with observable differences due mostly to
selection (Malamud 2010, Malamud and Pop-Eleches 2010).

3“Insider econometrics” studies within firms show that technology adoption favors skilled workers, while
also having specific, non-neutral impacts on jobs that vary in their task content and specific skill requirements
(e.g. Autor et al. 2002, Bresnahan et al. 2002, Bartel et al. 2007, Ichniowski and Shaw 2009)

4Field of study is an important mediator for understanding the returns to education. Lemieux (2014)
estimates that occupational choice and matching to field of study can explain about half of the total return
to a college degree, and Kinsler and Pavan (2015) find that science majors who work in science-related jobs
earn about 30% more than science majors working in unrelated jobs.
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and changing skill demands, both because STEM degrees lead to well-defined career paths

and because STEM jobs require specific, verifiable skills. Moreover, as a key contributor

to innovation and productivity growth in most advanced economies, STEM education is

important to study in its own right (e.g. Griliches 1992, Jones 1995, Carnevale et al. 2011,

Peri et al. 2015).

Using a near-universe of online job vacancy data collected between 2007 and 2017 by

the employment analytics firm Burning Glass Technologies (BG), we show that job skill

requirements change significantly over the course of a decade. We use the BG data to calculate

a systematic measure of job skill change, and show that skill demands in STEM occupations

have changed especially quickly. The faster rate of change in STEM is driven both by more

rapid obsolescence of old skills and by faster adoption of new skills. For example, we find

that the share of STEM vacancies requiring skills related to machine learning and artificial

intelligence increased by 460 percent between 2007 and 2017.

To understand the impact of changing skill demands, we develop a simple, stylized model

of education and career choice. In our model, workers learn career-specific skills in school

and are paid a competitive wage in the labor market according to the skills they have

acquired. Workers also learn skills on-the-job. Over time, the productivity gains from on-

the-job learning are lower in careers with higher rates of skill change, because more of the

skills learned in past years become obsolete. Jobs with high rates of change have higher

starting wages and flatter age-earnings profiles, and they disproportionately employ young

workers.

We document several new facts about labor market returns for STEM majors, which

match the predictions of our model. The earnings premium for STEM majors is highest at

labor market entry, and declines by more than 50 percent in the first decade of working life.

This pattern holds for “applied” STEMmajors such as engineering and computer science, but

not for “pure” STEM majors such as biology, chemistry, physics and mathematics. Flatter

wage growth coincides with a relatively rapid exit of STEM majors from STEM occupations.
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These patterns are present in multiple data sources—both cross-sectional and longitudinal—

and are robust to controls for important determinants of earnings such as ability and family

income, selection into graduate school, and other factors.

We also find that high-ability workers choose STEM careers initially, but exit them over

time. Within the framework of the model, this is explained by differences across fields in the

relative return to on-the-job learning. High ability workers are faster learners, in all jobs.

However, the relative return to ability is higher in careers that change less, because learning

gains accumulate. Consistent with this prediction, we find that workers with one standard

deviation higher ability are 8 percentage points more likely to work in STEM at age 24, but

no more likely to work in STEM at age 40. We also show that the wage return to ability

decreases with age for STEM majors.

While the BG data only go back to 2007, we calculate a similar measure of job task change

using a historical dataset of classified job ads assembled by Atalay et al. (2018). We show

that the computer and IT revolution of the 1980s coincided with higher rates of technological

change in STEM jobs, and that young STEM workers were also paid relatively high wages

during this same period. This matches the pattern of evidence for the 2007–2017 period and

confirms that the relationship between STEM careers, job change and age-earnings profiles

is not specific to the most recent decade.

This paper makes three main contributions. First, we introduce new evidence on the

economic payoff to STEM majors and STEM careers, and we argue that it is consistent with

vintage human capital becoming less valuable as new skills are introduced to the workplace.5

Importantly, while STEM jobs do indeed change faster than others, the pattern of declining

relative returns for faster-changing fields is a more general phenomenon that is not unique
5Most existing work focuses on the determinants of college major choice when students have heteroge-

neous preferences and/or learn over time about their ability (e.g. Altonji, Blom and Meghir 2012, Webber
2014, Silos and Smith 2015, Altonji, Arcidiacono and Maurel 2016, Arcidiacono et al. 2016, Ransom 2016,
Leighton and Speer 2017). An important exception is Kinsler and Pavan (2015), who develop a structural
model with major-specific human capital and show that science majors earn much higher wages in science
jobs even after controlling for SAT scores, high school GPA and worker fixed effects. Hastings et al. (2013)
and Kirkeboen et al. (2016) find large impacts of major choice on earnings after accounting for self-selection,
although neither study explores the career dynamics of earnings gains from majoring in STEM fields.
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to STEM.

Second, the results enrich our understanding of the impact of technology on labor mar-

kets. Past work either assumes that technological change benefits skilled workers because

they adapt more quickly, or links a priori theories about the impact of computerization to

shifts in relative employment and wages across occupations with different task requirements

(e.g. Galor and Tsiddon 1997, Caselli 1999, Autor et al. 2003, Firpo et al. 2011, Deming 2017).

We measure changing job task requirements directly and within narrowly defined occupation

categories, rather than inferring it indirectly from changes in relative wages and skill supplies

(Card and DiNardo 2002). A large body of work in economics has shown how technological

change at the macro level leads to fundamental changes in job tasks such as greater use

of computers, more emphasis on lateral communication and decentralized decision-making

with the firm (e.g. Autor et al. 2002, Bresnahan et al. 2002, Bartel et al. 2007). Our results

broadly corroborate the findings of this literature, while also highlighting how STEM jobs

are the leading edge of technology diffusion in the labor market.6

Third, our results provide an empirical foundation for a large body of work in economics

on vintage capital and technology diffusion (e.g. Griliches 1957, Chari and Hopenhayn 1991,

Parente 1994, Jovanovic and Nyarko 1996, Violante 2002, Kredler 2014). In vintage capital

models, the rate of technological change governs the diffusion rate and the extent of economic

growth (Chari and Hopenhayn 1991, Kredler 2014). We provide direct empirical evidence on

this important parameter, and our results match some of the key predictions of these classic

models.7 Consistent with our findings, Krueger and Kumar (2004) show that an increase
6Our paper is also related to a large literature studying the economics of innovation at the technological

frontier (e.g. Wuchty et al. 2007, Jones 2009). STEM jobs may have higher rates of change because they
are heavily concentrated in the “innovation sector” of the economy (Moretti 2012). Stephan (1996)finds a
relatively flat age-earnings profile for academic researchers in science, and notes that this is likely related to
the need to compensate new scientists for risky investments in frontier knowledge production.

7In Chari and Hopenhayn (1991) and Kredler (2014), new technologies require vintage-specific skills,
and an increase in the rate of technological change raises the returns for newer vintages and flattens the
age-earnings profile. However, the equilibria in these models requires newer vintages to have lower starting
wages but faster wage growth. A key difference in our model is that we allow for learning in school, which
helps explain the initially high wage premium for STEM majors. In Gould et al. (2001), workers make
precautionary investments in general education to insure against obsolescence of technology-specific skills.
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in the rate of technological change increases the optimal subsidy for general vs. vocational

education, because general education facilitates the learning of new technologies.

This paper builds on a line of work studying skill obsolescence, beginning with Rosen

(1975).8 Our results are also related to a small number of studies of the relationship be-

tween age and technology adoption. MacDonald and Weisbach (2004) develop a “has-been”

model where skill obsolescence among older workers is increasing in the pace of technological

change, and they use the inverted age-earnings profile of architects as a motivating example.9

Friedberg (2003) and Weinberg (2004) study age patterns of computer adoption in the work-

place, while Aubert et al. (2006) find that innovative firms are more likely to hire younger

workers.

Our findings also help explain why there is a widespread perception that STEM workers

are in short supply, despite the high labor market payoff to majoring in STEM fields (Ar-

cidiacono 2004, Carnevale et al. 2012, Kinsler and Pavan 2015, Cappelli 2015, Arcidiacono

et al. 2016). STEM graduates in applied subjects such as engineering and computer science

earn higher wages initially, because they learn job-relevant skills in school. Yet over time,

new technologies replace the skills and tasks originally learned by older graduates, causing

them to experience flatter wage growth and eventually exit the STEM workforce. Faster

technological progress creates a greater sense of shortage, but it is the new STEM skills that

are scarce, not the workers themselves.

Advanced economies differ widely in the policies and institutions that support school-to-

work transitions for young people (Ryan 2001). Hanushek et al. (2017) find that countries
8McDowell (1982) studies the decay rate of citations to academic work in different fields, finding higher

decay rates for physics and chemistry compared to history and English. Neuman and Weiss (1995) infer skill
obsolescence from the shape of wage profiles in “high-tech” fields, and Thompson (2003) studies changes in
the age-earnings profile after the introduction of new technologies in the Canadian Merchant Marine in the
late 19th century.

9MacDonald and Weisbach (2004) argue that “Advances in computing have revolutionized the
field....Older architects have found it uneconomic to master the complex computer skills that enable the
young to produce architectural services so easily and flexibly...Thus these advances have allowed younger
architects to serve much of the market for architectural services, causing the older generation to lose much of
its business.” Similarly, Galenson and Weinberg (2000) show that changing demand for fine art in the 1950s
caused a decline in the age at which successful artists typically produced their best work.
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emphasizing apprenticeships and vocational training have lower youth unemployment rates

at labor market entry but higher rates later in life, suggesting a tradeoff between general and

specific skills. Our results show that this tradeoff also holds for field of study in U.S. four-

year colleges. Applied STEM degrees provide high-skilled vocational education, which pays

off in the short-run because it is at the technological frontier. However, since technological

progress erodes the value of these skills over time, the long-run payoff to STEM majors is

likely much smaller than short-run comparisons suggest. More generally, the labor market

impact of rapid technological change depends critically on the extent to which schooling and

“lifelong learning” can help build the skills of the next generation.

The remainder of the paper proceeds as follows. Section 2 describes the BG data and

documents changes in the skill requirements of work. Section 3 presents the model and

develops a set of empirical predictions. Section 4 presents the main results and connects

them to the predictions of the model. Section 5 studies job task change in earlier periods.

Section 6 concludes.

2 The Changing Skill Requirements of Work

2.1 Job Vacancy Data

We study changing job requirements using data from Burning Glass Technologies (BG), an

employment analytics and labor market information firm that scrapes job vacancy data from

more than 40,000 online job boards and company websites. BG applies an algorithm to the

raw scraped data that removes duplicate postings and parses the data into a number of fields,

including job title and six digit Standard Occupational Classification (SOC) code, industry,

firm, location, and education and work experience. BG also codes key words and phrases

into a large number of unique skill requirements. More than 93 percent of all job ads have at

least one skill requirement, and the average number is 9. These range from vague and general

(e.g. Detail-Oriented, Problem-Solving, Communication Skills) to detailed and job-specific
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(e.g. Phlebotomy, Javascript, Truck Driving). BG began collecting data in 2007, and our

data span the 2007–2017 period. Hershbein and Kahn (2018) and Deming and Kahn (2018)

discuss the coverage of BG data and comparisons to other sources such as the Job Openings

and Labor Force Turnover (JOLTS) survey. BG data provide good coverage of professional

occupations, especially those requiring a bachelor’s degree, but are less comprehensive for

occupations with lower educational requirements.

We restrict the BG sample to occupation groups in which most jobs require a bachelor’s

degree. Using the 2010 Standard Occupational Classification (SOC) codes, this includes two

digit codes 11 through 29 and 41 through 43—management, business and financial opera-

tions, computer and mathematical, architecture and engineering, life/physical/social science,

community and social service, legal, education and training, art/design/media, healthcare

practitioners, sales, and office and administrative support.10 We also exclude vacancies that

require less than a bachelor’s degree or with missing education requirements, although our

main results are not sensitive to these restrictions. Finally, following Hershbein and Kahn

(2018) we exclude vacancies with missing employers. This leaves us with a total sample of

968,457 vacancies in 2007 and 4,140,469 vacancies in 2017. The higher number of vacancies

in 2017 is due to the increased coverage of BG data (more jobs posted online), as well as a

higher share of vacancies with nonmissing employers and education requirements. There are

13,544 unique skills in our analysis dataset.

We group the large number of distinct skill requirements in the BG data into a smaller

number of distinct and non-exhaustive categories. The Data Appendix provides a full list

of skill categories and the words and phrases we used to construct them. We undertake

this classification exercise partly to make the data easier to understand, but also to avoid

confusing the changing popularity of certain phrases (e.g. “teamwork” vs. “collaboration”)

with true changes in job skills.

Table 1 shows baseline rates of job skill requirements in 2007 by broad occupation groups.
10For the complete list, see https://www.bls.gov/soc/soc_structure_2010.pdf
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Each column is the share of job ads that list at least one skill requirement in the indicated

category. 61 percent of vacancies for management occupations required social skills, compared

to only 54 percent for STEM occupations. For cognitive skills, the pattern is reversed—54

percent for STEM, compared to only 42 percent for management.11

There are four main takeaways from Table 1. First, the pattern of job skill requirements

broadly lines up with expectations as well as external data sources such as the Occupational

Information Network (O*NET). Management occupations are much more likely to list key

words and phrases associated with people management as job skill requirements. Financial

knowledge is more commonly required in management and business occupations. Art, design

and media occupations are much more likely to require skills like writing and creativity, while

sales and administrative support occupations are more likely to require customer service.

Second, three core skills—social, cognitive and character—are required relatively frequently

in all jobs. Third, compared to other occupations, STEM jobs have a distinct profile. While

STEM jobs have higher cognitive skill requirements and are much more likely to require

technical skills such as technical support, data analysis and Machine Learning / Artificial

Intelligence (ML/AI), they are less likely to require social skills, character skills or creativity.

Fourth, both STEM and art/design/media are far more likely than other occupations to list

specific software (e.g. Python, AutoCAD) as job requirements.

2.2 Descriptive Patterns of Job Change, 2007–2017

Vacancy data are ideal for measuring the changing skill requirements of jobs, for two reasons.

First, vacancies directly measure employer demand for specific skills. Second, vacancy data

allow for a detailed study of changing skill demands within occupations over time. Due to

data limitations, most prior work in economics studies changes in demand across occupations.

Autor et al. (2003) show how the falling price of computing power lowered the demand
11We follow Deming and Kahn (2018) in our classification of most skills, including social, cognitive,

character, management, finance, customer service, office software and specific software skills. We also add
a number of new categories, including creativity, business systems, technical support, data analysis, and
Machine Learning / Artificial Intelligence (ML/AI). See the Data Appendix for details.
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for routine tasks, causing the number of jobs that are routine-task intensive to decline.

Deming (2017) conducts a similar analysis studying rising demand for social skill-intensive

occupations since 1980. Both studies rely on certain occupations becoming more or less

numerous over time.

Table 2 shows job skill requirements in 2017. Comparing Table 1 to Table 2 shows how

job skill requirements have changed over a ten year period. There are three main lessons from

Table 2. First, skill requirements have increased for nearly all categories and occupations.

Second, we find particularly large increases—about 10 percentage points each—for social

skills and character skills. Third, we find especially large increases in the share of vacancies

requiring data analysis and ML/AI.12 This increase is heavily concentrated in STEM occu-

pations, where the share of vacancies requiring ML/AI skills increased from 3.9 percent in

2007 to 18 percent in 2017. The growth in ML/AI requirements is consistent with the rapid

diffusion of automation technologies documented by Brynjolfsson et al. (2018).

One concern is that the sample of firms posting online job vacancies has changed over

time. We address this by estimating regressions of the frequency of each skill category on an

indicator for the 2017 year, the total number of skills listed in the vacancy (to control for

any trend in the length and specificity of job ads), education and experience requirements,

and occupation (6 digit SOC) by city (MSA) by employer fixed effects. This compares the

same narrowly defined jobs posted in the same labor market by the same employer, a decade

later. The results—in Appendix Table A1—are qualitatively unchanged when we adjust for

differences in sample composition.

Comparing Table 1 to Table 2 shows that the skill content of jobs changed significantly

over the 2007–2017 period. These changes would largely be missed by analyses that study

across-occupation shifts using available labor market data such as the American Community

Survey (ACS). For example, Deming (2017) shows large increases in employment shares for
12“Data Analysis” includes phrases such “Big Data”, “Data Science”, “Data Modeling”, and “Predictive

Analytics”. ML/AI includes phrases such as “Artificial Intelligence”, “Machine Learning”, “Neural Networks”,
“Deep Learning” and “Automation Tools”, as well as commonly used software such as Apache Hadoop and
TensorFlow. See the Data Appendix for a complete list of key phrases for each skill category.
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social-skill intensive occupations over the 1980–2012 period. However, most of the across-

occupation change occurs between 1980 and 2000. Yet here we find relatively large increases

in skill intensity within occupations.

2.3 Job Change and the Importance of New Skills

Measuring changes in the skill content of work helps us understand the direction of skill

demand. However, the magnitude of change itself has important implications for workers’

careers. When a job is changing rapidly, the skills learned in school or on the job may no

longer be useful. We present an initial look at the turnover of job skill requirements in Figure

1. Figure 1 classifies a small number of the many job skills in BG data as either “old” or

“new”, and studies both the disappearance of old skills and the appearance of new skills

between 2007 and 2017 by occupation category.

We define old skills as those with at least 1,000 appearances in 2007 and that either

no longer exist or are 5 times less frequent in 2017. We define new skills as those with at

least 1,000 appearances in 2017, and that either did not exist in 2007 or were 20 times more

frequent in 2017.13 The results are not sensitive to these somewhat arbitrary definitions of

old and new skills.

Figure 1 shows the change in the share of job ads that requested old skills and new skills

in 2017, by occupation category. To control for changes in sample composition, we present

coefficients from a vacancy-level regression of the frequency of new and old skill requirements

on an indicator for the 2017 year, the total number of skills listed in the vacancy, education

and experience requirements, and occupation-city-employer fixed effects.

There are four main lessons from Figure 1. First, the overall rate of skill “turnover” is

high. Among vacancies posted by the same firm for the same 6 digit occupation, about 20

(13) percent contained at least one new (old) skill requirement in 2017. Second, turnover is
13By these definitions, there are 311 old skills (2.3 percent of the total) and 786 new skills (5.8 percent

of the total). Some of the most common old skills are “IBM Websphere”, “Solaris”, “Lotus Applications”
and “Visual Basic”, and some of the most common new skills are “Social Media”, “Python”, “Scrum” and
“Software as a Service (SaaS)”.
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asymmetric–jobs appear to be adding skills faster than they are subtracting them. Because we

have grouped similar skills into categories and constructed the variables to have a maximum

of one (e.g. two mentions of social skills don’t count more than one), this asymmetry is not

due to job ads becoming longer or more repetitive. Rather, it suggests that jobs may be

increasing in complexity, similar to the “upskilling” phenomenon documented by Hershbein

and Kahn (2018).

Third, STEM occupations have the highest turnover. 35 percent of STEM job vacancies

listed at least one new skill in 2017. The next highest occupation category is media and

design, at 25 percent. Notably, STEM jobs also have the highest rate of decline for old skills.

Social Service (including Education) and Health jobs have the lowest rate of skill turnover.

Finally, while not shown, we find that about half of new and old skill turnover is driven

by specific software requirements, and close to two-thirds for STEM occupations. Software

is a particularly important measure of occupational change.14 Business innovation is increas-

ingly driven by improvements in software, both in the information technology (IT) sector

and in more traditional areas such as manufacturing (Arora et al. 2013, Branstetter et al.

2018). Moreover, software requirements are specific and verifiable, and thus likely to signal

substantive changes in job skills. One concern is that some skill requirements (e.g. “Big

Data”, “Patient Care Monitoring”) simply represent a relabeling of existing job functions.

In contrast, firms will probably only require a specific software program in a job description

if they expect a new hire to use it on the job.
14Specific software and business processes fall in and out of favor. For engineering and architecture oc-

cupations, rapidly growing skill requirements include computer-aided design programs such as AutoCAD
and Revit, and process improvement schema such as Six Sigma and Root Cause Analysis. For computer
occupations, the fastest growing skills are softwares such as Python and JavaScript as well as general terms
related to data analysis (including ML/AI) and data management. Some examples of specific softwares that
became much less frequently required between 2007 and 2017 are UNIX, SAP, Oracle Pro/Engineer and
Adobe Flash.
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2.4 Measuring Changes in the Skill Content of Work

We next construct a formal measure of changes in the skill content of work between 2007 and

2017. For each year, we collect all the skill requirements that ever appear in a job vacancy for

a particular occupation. We then calculate the share of job ads in which each skill appears

in each year. This includes zeroes—skills that are new in 2017 or because they disappear

over the decade. We compute the absolute value of the difference in shares for each skill, and

then sum them up by occupation to obtain an overall measure of change:15

SkillChangeo =
S∑

s=1

{
Abs

[(
Skillso

JobAdso

)
2017

−
(

Skillso
JobAdso

)
2007

]}
(1)

Conceptually, equation (1) measures the amount of net skill change in an occupation.16

Table 3 presents the 3 and 6 digit (SOC) occupation codes with the highest and lowest

measures of SkillChangeo. We restrict the sample to professional occupations with at least

25,000 total vacancies in the 3-digit case and 10,000 total vacancies in the six-digit case.

This is for ease of presentation only, and we include all occupations codes in our analysis.

The vacancy-weighted mean value for SkillChangeo is 1.80, and the standard deviation for

6 (3) digit occupations is 1.14 (0.98).

Overall, STEM jobs have a rate of skill change that is more than one standard deviation

higher than all other occupations (3.06 vs. 1.81 for 3 digit SOCs). Column 1 of Panel A

shows the 3 digit SOC codes with the highest values of SkillChangeo. STEM jobs com-
15To account for differences over the decade in the frequency of job vacancies and skills per vacancy, we

multiply equation (1) by the ratio of total skills in 2007 to total skills in 2017, for each occupation. This
accounts for compositional changes in the BG data and prevents us from confusing changes in the frequency
of job postings with changes in the average skill requirements of any given job posting.

16This approach assigns a greater value to the skill change measure in equation (1) if occupations start
requiring more skills overall. We also consider an alternative measure that scales equation (1) by the average
number of skill requirements per vacancy. This bounds equation (1) between 0 and 1, effectively computing
a replacement rate of skills for each occupation. A value of zero indicates a job that requires exactly the
same skills in 2007 and 2017, while a value of one indicates a job that requires a completely new set of skills.
This downweights instances where SkillChangeo is large because an occupation started requiring more skills
overall. The occupation-level correlation between this measure and the unadjusted measure is 0.95, and our
results are robust to using either version. See Appendix Table A2 for a list of occupations with the highest
and lowest values of change according to this method.
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prise 7 of the 10 professional occupations with the highest rate of skill change over the

2007–2017 period.17 These include Engineers, Physical Scientists, Computer Occupations,

Operations Specialties Managers, and Mathematical Scientists (including Statisticians). The

6 digit SOC codes with the highest values of SkillChangeo shown in Panel B include Com-

puter Programmers, Software Developers, Environmental Engineers, Network and Computer

Systems Administrators, and Mechanical Drafters.

Panels C and D of Table 3 show the 3 and 6 digit professional occupations with the least

skill change between 2007 and 2017.18 The professional occupations with the least amount

of skill change include teachers, health practitioner jobs (including nurses, physicians and

dentists), entertainers and performers, health technologists and technicians, and counselors

and social workers.

At the 6 digit level, the occupations with the lowest values of SkillChangeo include

mostly health and education jobs such as Dentists, Psychiatrists, Physicians, and Teachers.

Many of these jobs require some form of occupational license or certification. In jobs with

formal barriers to entry, skill change might manifest through changes in training rather

than changes in skill requirements. For example, if medical schools change the way they

train doctors over time, it might not be necessary to ask for new skills in job ads because

employers know that younger workers have learned them in school. Thus our approach may

understate job change in cases such as these. As a robustness check, we also recalculate the

SkillChangeo using only software, and find very similar results.19

17The 3 digit non-professional occupations with the highest values of SkillChangeo include Sales Rep-
resentatives, Secretaries and Administrative Assistants, Office and Administrative Support Workers, and
Financial Clerks.

183 digit non-professional occupations with the lowest values of SkillChangeo include Motor Vehicle
Operators, Cooks and Food Preparation, Food Processing Workers, Personal Appearance Workers, and
Materials Moving Workers.

19Most of the fastest growing skills between 2007 and 2017 are software-related. The occupation-level
correlation between the baseline SkillChangeo measure and one that only includes software is 0.72. All of
the main results of the paper are robust to using only software to measure job change, or to excluding specific
software entirely. Appendix Table A3 presents a version of Table 3 that ranks occupations by SkillChangeo
when the calculation is restricted only to software skills. The fastest-changing three digit occupations for
software skills are Architects, Computer Occupations, Drafters and Engineering Technicians, Engineers and
Mathematical Scientists. After that, a number of occupation groups appear that are not in Table 3, such as
Art and Design Workers and Media and Communications Workers. Like Table 3, most of the slowest-changing
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The results in Table 3 suggest that workers in STEM may have to acquire more new

skills over the course of their career than workers in other occupations. To investigate this

further, we study how job skills change with experience requirements. First we replicate

the calculation of the skill change measure in equation (1), restricting the sample to jobs

that require between 0 and 2 years of work experience. As above, we find that 7 of the

10 professional occupations with the highest rate of skill change are in STEM, and the

occupation-level correlation between the two measures is 0.94.

Second, we directly study changes in job skill requirements by work experience. We

estimate a vacancy-level regression of skills on years of experienced required, controlling

for education requirements, the number of skills in each posting, and firm-by-MSA fixed

effects. This approach shows how job skill requirements change with work experience, across

vacancies listed by the same firm in the same labor market.

Figure 2 presents the years of experience coefficients from this regression for new skills

(defined as in Section 2.3 above). As in Figure 1, STEM jobs are more likely than other

professional jobs to require new skills. However, the pattern by experience requirements is also

quite different. The share of STEM jobs requiring new skills holds steady and even increases

slightly from entry level jobs up to 8-9 years of experience. This means that experienced

STEM workers seeking employment in 2017 are often required to possess skills that were

not required when they entered the labor market in 2007 or earlier. In contrast, the share of

other professional jobs requiring new skills declines from 25 percent for entry level jobs to

20 percent for jobs that require 6 or more years of experience.

Summing up, there are three main lessons from the descriptive analyses in Section 2

above. First, the skill requirements of professional occupations vary substantially, and STEM

jobs are more likely than others to require technical skills such as proficiency with specific

software. Second, job skill requirements changed significantly between 2007 and 2017, and

occupations are in health care and education. In results not reported, we compare our list of fastest-growing
software skills to trend data from Stack Overflow, a website where software developers ask and answer
questions and share information. We find a very close correspondence between the fastest-growing software
requirements in BG data and the software packages experiencing the highest growth in developer queries.
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the rate of change was especially high for STEM occupations. Third, STEM jobs are much

more likely than others to require experienced workers to learn new skills on the job that

did not exist when they were in college.

3 Model

Do job skill requirements matter for wages and career dynamics? In this section we develop a

simple, stylized model of educational and career choice. The model takes a standard approach

to career choice and wage determination under perfect competition. The key innovation is

that we allow for differences across careers in the replacement rate of job skills (which we

will sometimes refer to as job “tasks”) over time. Over time, the skills that workers learned

in school and in early years on the job become obsolete, pushing down earnings relative to

careers in which skill requirements change more slowly.

3.1 Model Setup

Consider a large number of perfectly competitive industries or industry-occupation pairs j in

each year t, each of which produces a unique final good Yjt according to a linear technology

that aggregates output over a continuum of tasks spanning the unit interval:

Yjt =

∫ 1

0

yjt(i)di (2)

The “service" or production level yjt (i) of task i in industry or occupation j at time

t is defined as the marginal productivity in each task αjt times the total amount of labor

supplied for each task, ljt (Acemoglu and Autor 2011). Following Neal (1999) and Pavan

(2011), we refer to an occupation-industry pair as a “career” and refer to j as indexing

“careers” throughout the paper.

Each career contains a large number of identical profit-maximizing firms. Labor is the

only factor of production, so profits are just total revenue minus total wages. The zero profit
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condition ensures that workers are paid their marginal product over the tasks they perform

in each career, with market wages that are equal to Yjt times an exogenous output price P ∗.

3.2 Schooling and Labor Supply

There are many individuals, each endowed with ability a and taste parameter u, who graduate

from college and enter the job market at time t = 0.20 Before entering the job market,

individuals choose a field of study s ∈ (0, 1). We conceptualize s as the share of time in

school spent studying technical subjects. Fields of study or “majors” exist along the s ∈ (0, 1)

space, with low values of s representing non-technical fields such as English Literature and

high values representing Engineering or Computer Science. The parameter u represents a

taste for technical fields, and is a random variable that is joint uniformly distributed with a.

After choosing a field of study, individuals enter the job market and supply a single

unit of labor to career j in each subsequent year t ≥ 0.21 As described earlier, workers earn

wages according to their productivity schedule over tasks αjt. Thus we can write the worker’s

problem as:

Max
s,jt

{[
T∑
t=0

PDV

(
Wjt(a, s, αjt)

)]
− C(a, u, s)

}
(3)

Each worker chooses an initial field of study and a career in each year to maximize

the presented discounted value of her lifetime earnings W , minus her field-specific cost of

schooling. Workers of the same (a, u) type make identical schooling and career choices, so

we suppress individual subscripts for convenience. Individuals are perfectly informed about

their own ability and have full knowledge of the profile of future returns, so the initial choice

of s fully determines the profile jt that workers enter over time. Following Spence (1978), we

assume that the cost of schooling is decreasing in ability and that technical fields of study are
20We study a single cohort of job market entrants to simplify the presentation of the model. However, all

of the results generalize to adding multiple cohorts of job market entrants.
21There is no labor supply decision on either the extensive or intensive margin. Workers allocate all of

their labor to a single industry in any year, but can work in different industries over time.
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relatively more costly to study for lower ability individuals, so C > 0, ∂C
∂a

< 0 and ∂2C
∂a∂s

< 0 .

3.3 Task Production Function

An individual’s productivity in task i takes the following general form:

αjt(i) = f (a, s, Fj,∆j) (4)

Productivity depends on individual ability, the schooling choice, and a set of career-

specific parameters Fj and ∆j. Fj represents the amount of career-specific learning that

happens in school. Fj will be higher in some careers than others if learning in those careers

is more rewarded in the labor market. We assume that Fj is increasing in s, so that more

career-specific learning happens in technical fields.

We define careers along the sj ∈ (0, 1) “field of study” space from less to more technical.

Workers learn more career-specific tasks when their schooling choice is more closely aligned

with the technical complexity of their chosen career sj. Specifically, let the worker’s produc-

tivity level after graduating from school be FjS
∗, where S∗ is a loss function that penalizes

learning in fields that are more distant in s space from the worker’s chosen career.22

Workers also learn on the job. Each year that an individual works in career j, her pro-

ductivity in the tasks existing at time t increases by a, the worker’s ability.23 The functional

form of a is arbitrary, and we assume a ≥ 1 for simplicity. It is only necessary that the tenure

premium is increasing in ability, which amounts to assuming that higher ability workers learn

job tasks more quickly (e.g. Nelson and Phelps 1966, Galor and Tsiddon 1997, Caselli 1999).

We define ∆j ∈ [0, 1] as a career-specific rate of task change. At the start of each year,

a fraction ∆j of tasks that were in the production function for Yjt are replaced by new
22For example, we could let S∗ = [1− abs (s− sj)] so that workers learn exactly Fj when the fit between

field of study and industry is exact.
23A natural extension would be to allow for a career-specific rate of on-the-job learning (e.g. add an Lj

to equation (4)). Since we do not have any data that would allow us to measure Lj , any career-specific
differences in learning are collinear with our measure of job skill change, ∆j . We discuss this further in
Section 4.
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tasks in Yjt+1. We refer to the year that a task was introduced as the task’s vintage v, with

t ≥ v ≥ 0. Since tasks are replaced in constant proportions in each year, we can write a

simple expression gjt(v) for the share of tasks coming from each vintage v at any time t:24

gjt(0) = (1−∆j)
t; v = 0 (5)

gjt(v) = ∆j(1−∆j)
(t−v); v > 0 (6)

Equation (5) describes the share of tasks from some initial period v = 0 that are still in

the production function in each future year t > v. Equation (6) gives the same expression for

later vintages. Since tasks are replaced in constant proportions each year, old task vintages

diminish in importance but never totally vanish (Chari and Hopenhayn 1991).

Putting this all together, the worker’s productivity in each task, industry and year is:

αjt (i) =


(FjS

∗) + [a(t+ 1)] = αPRE
jt if v = 0

a(t− v + 1) = α
POST (v)
jt if v > 0.

(7)

The expression for αPRE
jt represents tasks that are learned in school and on the job—these

are from vintages equal to or earlier than the year an individual graduates. Later vintage

tasks—represented by α
POST (v)
jt —are learned only on the job.

24The proportion of tasks from each vintage at a given time t can be written as:

t = 0 i0 ∈ [0, 1]

t = 1 i0 ∈ [0, 1−∆j ] i1 ∈ (1−∆j , 1]

t = 2 i0 ∈ [0, (1−∆j)
2] i1 ∈ ((1−∆j)

2, (1−∆j)] i2 ∈ ((1−∆j), 1]

t = n i0 ∈ [0, (1−∆j)
t] iv ∈ ((1−∆j)

(t−v+1), (1−∆j)
(t−v)] it ∈ ((1−∆j), 1]

with iv just denoting the set of tasks in vintage v. With a constant share of tasks ∆j replaced in each
period, the share of tasks coming from each vintage v at any time t can be written as gjt(v) = (1−∆j)

(t−v)−
(1−∆j)

(t−v+1) = ∆j(1−∆j)
(t−v).
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3.4 Equilibrium Task Prices and Individual Wages

The linear task services production function in (3) combined with the zero profit conditions

means that equilibrium task prices can be written as:

pijt = αijt(a, s). (8)

Equation (8) shows that workers of the same (a, s) type are paid the same price for each

task. We obtain the equilibrium wages paid to each type by integrating over the prices for

tasks performed in career j and time t, with the weights given by gjt(v):

Wjt =

∫ 1

0

pijtdi =

∫ 1

0

αijt(a, s)di

=
{
(1−∆j)

t αPRE
jt

}
+

{
t;t>0∑
v=1

∆j (1−∆j)
t−v α

POST (v)
jt

} (9)

The first term represents the worker’s productivity in task vintages that existed in the

year they graduated.

In the year of job market entry, Wj,t=0 = FjS
∗ + a. In t = 1, the worker becomes more

productive in these initial task vintages through on-the-job learning. However, these learning

gains are offset by the share ∆j of initial tasks being replaced by newer tasks, which the

worker has not had as much time to learn.

The full expression for wages in year one is Wj,t=1 = (1−∆j) (FjS
∗ + 2a) + ∆ja. The

expression for Wjt expands thereafter, with increased productivity in older tasks weighing

against declining task shares and increasing entry of new tasks.

3.5 Key Predictions

The model yields four key predictions:

1. Wage growth is lower in careers with higher rates of skill change ∆j. We show this by

defining wage growth since the beginning of working life as (Wjt −Wj0) and taking
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the derivative of this expression with respect to ∆j. The full proof is in the Model

Appendix. If ∆j = 0, there is no obsolescence and equation (9) reduces to a simple

expression where wages increase linearly with ability over time. As ∆j → 1, both terms

in equation (9) go to zero except in the entry year t = 0. As ∆j increases, a larger share

of skills learned in previous periods becomes obsolete. This diminishes the return to

on-the-job learning, flattening the wage profile and making newer cohorts of workers

(who have learned the new tasks in school) more attractive.

2. Workers sort out of high ∆j careers over time—This is a corollary to the result above.

As t → ∞, the importance of the initial schooling choice diminishes and individuals

may earn more by switching into a lower ∆j career. Empirically, we should observe

workers sorting into careers with lower values of the skill change parameter ∆j as they

age.

3. Technical careers have higher starting wages, and high ability workers are more likely

to begin in technical careers —This follows directly from the model’s assumptions that

the cost of studying technical fields is decreasing in ability and that technical fields

have higher values of the in-school productivity term FjS
∗. We test this prediction

using data on ability and college major choice from the NLSY.

4. High ability workers sort out of high ∆j careers over time—Many other studies have

found that STEM majors are positively selected on ability (e.g. Altonji, Blom and

Meghir 2012, Kinsler and Pavan 2015, Arcidiacono et al. 2016). A less obvious pre-

diction of the model is that high ability workers who start in STEM careers are more

likely to switch out of STEM careers over time. Intuitively, the relative return to ability

is higher in careers where the gains from on-the-job learning accumulate more rapidly,

and so higher-ability workers are more likely to pay the short-run cost of switching out

of STEM in order to recoup longer-run gains. We can see this by taking the derivative

of the expression for wages in year one with respect to a, which is equal to (2−∆j).
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This shows that the return to ability is always positive, but less so in high ∆j careers.

The Model Appendix proves this result and shows the intuition in Figure M.A1.

Section 4 presents empirical evidence that supports each of these predictions.

To develop some intuition for the model’s results, Figure 3 presents a simple simulation of

worker wage profiles, holding different elements of Wjt constant. Panel A shows the impacts

of field of study and career choice at different points in the life cycle. The solid blue line

represents a career with high initial productivity (FjS
∗ = 6) and a relatively high rate of

task change (∆j = 0.2).25 With high starting wages and a high rate of task change, we can

think of the solid blue line as a STEM career.

The dashed red line shows the impact of reducing FjS
∗ by half, holding ∆j constant.

This leads to a large initial difference in wages that narrows over time, with the two curves

converging as t → ∞. Intuitively, tasks learned in school gradually disappear from the

production function, leaving only the newer vintages and diminishing the impact of the

initial schooling choice on earnings later in life.26

The dotted green line in Panel A considers a career with low initial productivity (FjS
∗ = 3),

but also with a low rate of task change (∆j = 0.15). We can think of this as a non-STEM

career. This career has higher earnings growth, because on-the-job learning of a relatively

constant share of initial tasks means that knowledge accumulates more rapidly.27

The tradeoff between high starting wages and slower earnings growth suggests that work-

ers in high ∆j fields might switch careers at some point to maximize lifetime earnings. Panel

B provides an illustration of the determinants of career switching. The solid blue line and
25We fix a = 2 in all three scenarios.
26In the long run, ability is the most important determinant of earnings. Our model yields a similar result

to Altonji and Pierret (2001), who find that education is a more important determinant of earnings early
in life, while ability is more important in the long-run. In Altonji and Pierret (2001) this is true because
education signals ability to employers without directly affecting productivity. In our model, education is
productive but becomes less important over time as the tasks learned in school disappear from the production
function.

27The worker’s earnings trajectory in career j is a horse race between the gains from on-the-job learning
(which is increasing in ability) and the losses from obsolescence. Total wages increases as long as the gains
outweigh the losses, i.e. when a

(FjS∗+a) > ∆j .
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the dotted green line are the same cases as Panel A, with FjS
∗ = 6,∆j = 0.2 (the STEM

career) and FjS
∗ = 3,∆j = 0.15 (the non-STEM career) respectively. The dashed red line

shows earnings in the non-STEM career for workers of higher ability. An increase in ability

(and thus the rate on-the-job learning) moves the optimal switching year forward from t = 5

to t = 3. This is because higher-ability workers can exploit their learning advantage more

fully in careers that change less over time.

4 Results

4.1 Labor Market Data and Descriptive Statistics

Our main data source is the 2009–2016 American Community Surveys (ACS), extracted

from the Integrated Public Use Microdata Series (IPUMS) 1 percent samples (Ruggles et al.

2017). The ACS has collected data on college major since 2009. Following Peri et al. (2015),

we adopt the definition of STEM major used by the U.S. Department of Homeland Security

in determining visitor eligibility for an F-1 Optional Practical Training (OPT) extension.28

This definition is relatively restrictive and excludes majors such as psychology, economics and

nursing used in past work (e.g. Carnevale et al. 2011). We further classify STEM majors into

two groups—“applied” science, which includes computer science, engineering and engineering

technologies, and “pure” science, which includes biology, chemistry, physics, environmental

science, mathematics and statistics. We use the 2010 Census Bureau definition of STEM

occupations in all of our analyses.29

We also use data from the 1993–2013 waves of the National Survey of College Graduates

(NSCG), a survey administered by the National Science Foundation (NSF). The NSCG is

a stratified random sample of college graduates which employs the decennial Census as an
28https://www.ice.gov/sites/default/files/documents/Document/2016/stem-list.pdf. Peri et al. (2015)

create a crosswalk between these codes and those collected by the ACS. We use their crosswalk, except
we further exclude Psychology and some Health Science and Agriculture-related majors.

29The list can be found here: https://www.census.gov/topics/employment/industry-
occupation/guidance/code-lists.html.
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initial frame, while oversampling individuals in STEM majors and occupations. The major

classifications in the NSCG are very similar to the ACS, and we use a consistent definition

of STEM major across the two data sources. For some analyses, we also use data from the

Annual Social and Economic Supplement (ASEC) of the Current Population Survey (CPS).

The CPS covers a longer time period than the ACS, but does not collect data on college

major.

Our main outcome of interest in the ACS is the natural log of wage and salary income

for workers who are employed at the time of the survey and report working at least 40 weeks

in the previous year. The NSCG only asks about annual salary in the current job, and asks

workers who are not paid a salary to estimate their annual earnings. However, the NSCG does

ask about (current) full-time employment, and we restrict the sample to full-time employed

workers in our main results. In both samples we adjust earnings to constant 2017 dollars

using the Consumer Price Index (CPI).

We restrict the main analysis sample to men with at least a bachelor’s degree between

the ages 23 to 50 in the ACS and CPS, and ages 25–50 in the NSCG.30 We are interested

in studying the life-cycle profile of returns to STEM degrees, and large changes across birth

cohorts in educational attainment for women, as well as cohort differences in the age profile of

female labor force participation make comparisons over time difficult (e.g. Goldin et al. 2006,

Black et al. 2017).31 To maximize consistency across data sources, we restrict the sample to

non-veteran US-born citizens who are not living in group quarters and not currently enrolled

in school. Our ACS results are not sensitive to these sample restrictions.

We supplement these two large, cross-sectional data sources with the 1979 and 1997

waves of the National Longitudinal Survey of Youth (NLSY), two nationally representative
30The sample design of the NSCG resulted in very few college graduates age 23–24, so we exclude this

small group from our analysis.
31From 1995 to 2015, the share of women age 25+ with a BA or higher grew from 20.2 percent to 32.7

percent, more than double the rate of growth for men (Digest of Education Statistics, 2017). Appendix
Figures A1 and A2 present results for women, which are broadly similar to results for men over the 23–35
age period. Hunt (2016) finds that women are especially likely to leave engineering over time, mostly due to
their dissatisfaction with pay and promotion opportunities.

23



longitudinal surveys which include detailed measures of pre-market skills, schooling experi-

ences and wages. The NLSY-79 starts with a sample of youth ages 14 to 22 in 1979, while

the NLSY-97 starts with youth age 12–16 in 1997. The NLSY-79 was collected annually

from 1979 to 1993 and biannually thereafter, whereas the NLSY-97 was always biannual. We

restrict our NLSY analysis sample to ages 23–34 to exploit the age overlap across waves. We

use respondents’ standardized scores on the Armed Forces Qualifying Test (AFQT) to proxy

for ability, following many other studies (e.g. Neal and Johnson 1996, Altonji, Bharadwaj

and Lange 2012).32 Our main outcome is the real log hourly wage (in constant 2017 dollars),

and we trim values of the real hourly wage that are below 3 and above 200, following Altonji,

Bharadwaj and Lange (2012). We follow the major classification scheme for the NLSY used

by Altonji, Kahn and Speer (2016). Finally, we generate consistent occupation codes (and

STEM classifications) across NLSY waves using the Census occupation crosswalks developed

by Autor and Dorn (2013).

4.2 Declining Life-Cycle Returns to STEM

We begin by documenting life-cycle returns to STEM careers. Table 4 presents population-

weighted descriptive statistics by college major and age, using the ACS. The odd-numbered

columns show average earnings, while the even-numbered columns show share working in a

STEM occupation. Columns 1 and 2 show results for all non-STEM majors, while Columns 3-

4 and 5-6 show pure” and applied science majors respectively. Earnings increase substantially

over the life-cycle for all college graduates regardless of major. However, STEM majors earn

substantially more at labor market entry and experience slower wage growth over the first

decade of working life.

The age pattern of earnings is starkly different by STEM major type. Applied science

majors such as computer science and engineering earn the highest starting salaries, yet they
32Altonji, Bharadwaj and Lange (2012)construct a mapping of the AFQT score across NLSY waves that

is designed to account for differences in age-at-test, test format and other idiosyncracies. We take the raw
scores from Altonji, Bharadwaj and Lange (2012) and normalize them to have mean zero and standard
deviation one.
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also experience the flattest wage growth. The earnings premium for an applied science major

relative to a non-STEM major is 44 percent at age 24, but drops to 14 percent by age 35.33

In contrast, pure science majors such as biology, chemistry, physics and mathematics earn a

relatively small initial wage premium that grows with time.

This pattern of flatter wage growth for applied science majors closely matches their exit

from STEM occupations over time. The share of applied science majors holding STEM jobs

declines from 63 percent at age 24 to 48 percent at age 35, and continues to decline to

about 40 percent by age 50. The share of pure science majors in STEM jobs declines more

modestly, from 29 percent at age 24 to 21 percent at age 35 and is flat thereafter. The share

of non-STEM majors in STEM jobs stays constant at around 6-7 percent.

To examine these patterns more systematically, we estimate regressions of the following

general form:

ln yit = αit +
A∑
a

βaAit +
A∑
a

γa (Ait ∗ ASit) +
A∑
a

δa (Ait ∗ PSit) + ζXit + θt + ϵit (10)

where ait is an indicator variable that is equal to one if respondent i in year t is either age

in two year bins a, going from ages 23–24 to ages 49–50. ait∗ASit and ait∗PSit are interactions

between age bins and indicators for applied science or pure science majors respectively. The

γ and δ coefficients can be interpreted as the wage premium for applied science and pure

science majors relative to all other college majors, for each age group. The X vector includes

controls for race and ethnicity and years of completed education, θt represents year fixed

effects, and ϵit is an error term.

Figure 4 presents population-weighted estimates of equation (10) for full-time working

men ages 23–50 with at least a bachelor’s degree. Panel A presents results using the ACS,
33The ACS does not collect information about the type of college attended. Thus one explanation for part

of the high initial earnings premium for STEM majors is that they are drawn heavily from more selective
colleges, which also have higher on-time graduation rates and (by implication) full-time workers by age 23
(e.g. Hoxby 2017).
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and Panel B presents results using the NSCG. Each point in Figure 4 is a γ or δ coefficient

and associated 95 percent confidence interval. The ACS and NSCG are both nationally

representative, but for different years, with the ACS covering 2009–2016 and the NSCG

covering 1993–2013.

We find a strong life-cycle pattern in the labor market payoff to applied science degrees. In

the ACS, college graduates with degrees in engineering and computer science earn about 39

percent more than non-STEM degree holders at ages 23–24. This earnings premium declines

to about 26 percent by age 30 and 17.5 percent by age 40, leveling off thereafter. In contrast,

the return to a pure science degree is near zero initially but start to grow beginning in the

mid 30s, reaching 12 percent at 40 and 16 percent at age 50. This is largely explained by

the high rate of graduate degree attainment—52 percent by age 35, compared to 28 percent

and 32 percent for applied science and non-STEM degrees respectively.34

Panel B shows very similar patterns in the NSCG sample. Applied science majors earn

a premium of about 46 percent at ages 25–26. This declines to 27 percent by age 30 and 21

percent by age 40, and again levels off over the next decade. The returns to a pure science

degree in the NSCG are initially near zero but grow modestly over time. In results not

reported, we find no significant differences over time or across cohorts in the share of college

graduates acquiring STEM degrees, alleviating concerns about supply-driven differences in

returns (e.g. Freeman 1976, Card and Lemieux 2001).

Overall, the payoff to Engineering and Computer Science degrees is initially very high,

but declines by more than 50 percent in the first decade of working life.

The results in Figure 4 are robust to a variety of alternative specifications and sample

definitions.35 Appendix Figures A4, A5 and A6 present results that include part-time workers,
34Appendix Figure A3 shows that excluding workers with graduate degrees flattens the return to pure

science degrees, suggesting that part of the growth in Figure 4 reflects selection into graduate school over
time. Appendix Table A4 studies selection into graduate school using the NLSY. We find that while graduate
school attendance is overall more common in later years, selection into graduate school by ability has not
changed over time. While high-ability college graduates are more likely to attend graduate school, this is
modestly less true for STEM majors.

35Hanson and Slaughter (2016) document the rising share of high-skilled immigrants in U.S. STEM fields.
Hunt (2015) finds a wage penalty for immigrants relative to natives within engineering that is linked to En-
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that add industry fixed effects, and that separate out engineering and computer science

respectively. These all yield very similar results.

Figure 5 presents estimates of equation (10) where age is interacted with indicators for

working in a STEM occupation, using the ACS, the NSCG and the CPS (which does not

include information on college major). Despite the fact that each data source spans different

years and has a different sampling frame, each shows the same pattern of declining life-cycle

returns to working in a STEM occupation.

Is declining returns an inherent feature of STEM jobs, or is it something about the

characteristics of students who choose to major in STEM? To disentangle majors from occu-

pations, we estimate a version of equation (10) that adds interactions between age categories

and indicators for being employed in a STEM occupation, as well as three-way interactions

between age, an applied science major and STEM employment.36 This allows us to sepa-

rately estimate the relative earnings premia for applied science degree-holders working in

non-STEM jobs, for other majors working in STEM jobs, and for applied science majors in

STEM jobs.

The results are in Figure 6. Declining relative returns to STEM is a feature of the job, not

the major. Applied science degree holders working in non-STEM occupations earn around

15 percent more than those with other majors, and this premium is relatively constant

throughout their working life. The STEM major premium could reflect differences in un-

observed ability across majors, or differences in other job characteristics (e.g. Kinsler and

Pavan 2015).37

glish language proficiency, and argues that imperfect English may be a barrier to occupational advancement.
To the extent that immigrants are a better substitute for younger workers, rising immigration over time will
tend to depress relative wages for younger workers, which works against our findings. Additionally, we find
that the share of college graduates in STEM fields has not changed very much over the cohorts we study in
the ACS.

36The results for applied science are very similar when we also include similar interactions for pure
science majors and STEM occupations, although we exclude these interactions for simplicity. Unfortunately,
the measures of occupation are too coarse and non-standard in the NSCG to estimate equation (2) in a way
that is comparable to the ACS.

37Appendix Figure A7 adds industry fixed effects to the results in Figure 6, which produces generally
similar results except that the return to applied science majors in non-STEM occupations drops by about
50 percent.
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In contrast, we find a strong life-cycle earnings pattern for STEM workers with other

majors. The earnings premium for non-STEM majors in STEM occupations is about 32

percent at ages 23–24 but declines rapidly to 7.5 percent within a decade. The pattern is

similar for applied science majors in STEM jobs, with earnings premia declining from 59

percent to around 17 percent by age 40. Within a decade of college graduation, Applied

science majors have similar earnings in STEM and non-STEM occupations.

Figure 6 yields three key insights. First, STEM jobs pay relatively higher wages to younger

workers, and this is true for applied science degree holders but also for other majors as well.

Second, this benefit dissipates within 10–15 years after labor market entry, after which time

there is little or no payoff to working in a STEM job regardless of one’s college major. Third,

the flatter age-earnings profile holds for STEM occupations, not STEM majors.

Where do STEM majors go when they exit STEM occupations? Figure 7 shows results

from two estimates of equation (10), restricting the sample to applied science majors and

with indicators for working in STEM and management occupations as the outcome variables.

At ages 23–24, 62.5 percent of applied science majors are working in STEM occupations.

By age 50 this has declined to about 41 percent, with about half of the decline occurring in

the first 10 years after college. Over the same period, the share of applied science majors in

management occupations increases from 6.5 percent to 27.5 percent, again with about half

of the increase occuring in the first decade. Thus all of the declining employment in STEM

occupations for STEM majors is accounted for by a shift into management.38

Non-STEM majors also shift into management over time, with the share increasing from

10 percent at ages 23–24 to 26 percent at ages 49–50. Overall, the mix of jobs held by STEM

and non-STEM majors looks more and more similar as they age.
38Appendix Figure A8 presents a parallel set of results using the smaller NLSY sample, where we can

control for ability. We find that the share of applied science majors working in STEM drops by 36 percentage
points between the ages of 25–26 and ages 49–50. This is closely paralleled by a 37 percentage point increase
in employment in management occupations over the same period.
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4.3 Job Skill Change and Life-Cycle Earnings

The results in Section 4.2 are consistent with the predictions of the model. College students

majoring in applied STEM fields such as computer science and engineering have higher

starting wages than non-STEM majors, but they also experience slower wage growth over

time. Next we show that our measure of job skill change (SkillChangeo, as measured in the

BG data discussed in Section 2.4, corresponding to ∆j in the model) directly predicts wage

growth across occupations. We estimate:

ln (earn)it = αit +
A∑
a

βaait +
A∑
a

γa (ait ∗ SkillChangeoit) + δXit + θt + ϵit (11)

This follows a similar format to equation (10) and Figure 6, except that instead of using

indicators for STEM major we directly interact SkillChangeo with two-year age bins. The

results are in Figure 8. As in Figure 4, the γ coefficients can be interpreted as the relative

earnings return to jobs with higher rates of technological change, for each age group.

Jobs with higher rates of skill change have flatter age-earnings profiles. The estimates

imply that occupations with a one standard deviation higher value of SkillChangeo (1.14)

pay 24 percent higher wages at ages 23–24 but only 13 percent higher wages at ages 39–

40. Appendix Figures A9 and A10 present the results separately for STEM and non-STEM

occupations. While the levels are different, the same declining life-cycle pattern holds in

both cases. Thus the relationship between technological change and higher relative wages for

recent college graduates appears to be a general phenomenon that is not limited to STEM.

Figure 9 tests the second prediction of the model by studying occupational sorting di-

rectly. We estimate:

SkillChangeoit = αit +

a=49,50∑
a=23,24

βaait + δXit + θt + ϵit (12)

Occupations with higher values of SkillChangeo have younger workforces. The estimates

imply that workers age 23–24 are in jobs that are about 0.2 standard deviations higher
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on average in terms of SkillChangeo than workers age 39–40. In results not reported, we

also find that this pattern holds separately for STEM workers vs. all other professional

occupations. Overall, we find strong evidence of higher employment and relative wages for

young workers in jobs with higher rates of skill change.

One concern with this analysis is that other features of STEM jobs might by systemat-

ically correlated with SkillChangeo. For example, employers may not create career ladders

for STEM workers because they see them as lacking managerial training, or because of the

availability of high-skilled immigrants from other countries. More generally, the patterns we

show above may be due to some other factor that is highly correlated with job skill change.

While we cannot fully address this concern, we can explore whether our results are

predicted by a different measure—the amount of skill change that occurs within-careers, but

between jobs with different experience requirements. In other words, how similar is the skill

mix of an entry level job in a given field, compared to a more senior position? To test this,

we construct an alternative measure of SkillChangeo as in equation (1), except with the

absolute value of the difference in job skill shares between vacancies in an occupation that

require 0–2 years versus 6 or more years of experience in 2017.

We indeed find that STEM occupations have lower rates of skill change across experience

categories, which is consistent with the evidence shown in Figure 2. To see whether this

matters for our results, we re-estimate the models in equations (11) and (12) while also

controlling for occupation-level differences in skill change by years of experience. The results

are in Appendix Figures A11 and A12. Our main results are robust to controlling for skill

change by years of experience, even though this measure strongly predicts age patterns in

wages and employment as well.
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4.4 Accounting for Ability Differences by Major

We find that STEM majors are positively selected on ability, in both waves of the NLSY.39

This suggests that the high labor market return to a STEM degree might be confounded

by differences in academic ability across majors (e.g. Arcidiacono 2004, Kinsler and Pavan

2015). To account for ability differences, we estimate regressions of log wages on major choice,

using microdata from both waves of the NLSY:

ln (earn)it = αit + βASi + γPSi + δXit + ϵit (13)

The Xit vector includes controls for race, years of completed education, an indicator variable

for NLSY wave, and age and year fixed effects. The unit of observation in the NLSY is a

person-year, with standard errors clustered at the individual level. The sample is restricted

to ages 23–34 to ensure comparability across survey waves.

Column 1 of Table 5 presents results from the basic model in equation (13). Applied

science majors earn about 18 percent more per year than non-STEM majors, while pure

science majors earn 10 percent less. Column 2 adds controls for cognitive skills (i.e. AFQT

score), social skills and “non-cognitive” skills.40 While each skill measure strongly and inde-

pendently predicts wages, adding them as controls does notchange the earnings premia for

both types of STEM majors. This suggests that higher wages in STEM careers cannot be

explained only by ability sorting.

Column 3 adds an indicator variable for employment in a STEM occupation. Earnings are

about 24 percent higher for STEM workers, regardless of major. Controlling for occupation

choice lowers the return to holding an applied science degree from 18 percent to 7 percent.

Column 4 adds industry fixed effects, which further shrinks the premium for applied science

majors to 3.4 percent.
39Appendix Table A5 presents results that regress AFQT score on indicators for major type and major

interacted with NLSY wave. We find that STEM majors of both type score about 0.08 standard deviations
higher on the AFQT than non-STEM majors, but that this has not changed significantly across NLSY waves.

40We adopt the measures of social and “non-cognitive” skills from Deming (2017).
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Column 5 adds interactions between STEM majors and STEM occupations. After con-

trolling for ability, applied science majors in non-STEM jobs earn only about 1.3 percent

more than non-STEM majors, and the difference is statistically insignificant. Non-STEM

majors in STEM jobs continue to earn a premium of about 12 percent (p<0.001), compared

to 19 percent for applied science majors in STEM jobs. The interaction term is statistically

insignificant, suggesting that wages in STEM jobs are similar for workers with different

majors. Finally, Column 6 estimates the return to college major controlling for ability and

occupation-by-industry fixed effects, yielding coefficients on both STEM major types that

are statistically indistinguishable from zero. Our results are consistent with Lemieux (2014)

and Kinsler and Pavan (2015), who show that most of the return to a science major is driven

by the higher return to working in a closely-related job.

We also test whether the pattern of declining returns for STEM majors shown in Figures

4–6 holds when controlling for worker skills. The results are in Figure 10. Across both NLSY

waves, applied science majors earn about 21–24 percent more than non-STEM majors at

ages 23–26, compared to only about 5–12 percent at ages 31–34, a difference that is jointly

significant at the 5 percent level (p=0.041) despite the relatively small sample sizes in the

NLSY.

4.5 High ability workers sort out of STEM over time

The final prediction of the model is that high-ability workers will sort out of STEM careers

over time. The intuition is that the return to being a fast learner is greater in jobs with

lower rates of skill change. Put another way, jobs with high rates of skill change erode the

advantage gained by learning more skills in each period on the job. Empirically, we should

observe high ability workers sorting into STEM careers initially, but sorting out of STEM

careers later in life. We test this by using the NLSY to estimate regressions of the form:

yit = αit + AGEit + βSTEMi + γAFQTi + θAGEi ∗ AFQTi + δXit + ϵit (14)
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where AGEit is a linear age control for worker i in year t (scaled so that age 23=0, for

ease of interpretation), STEMi is an indicator for STEM major, and AGEi ∗AFQTi is the

interaction between age and cognitive ability. The Xit vector includes controls for race, years

of completed education, an indicator variable for NLSY wave, year fixed effects and cognitive,

social and non-cognitive skills. As with other results using the NLSY, the age range is 23–34,

observations are in person-years and we cluster standard errors at the individual level.

The results are in Table 6. The outcome in Column 1 is an indicator for working in

a STEM occupation. Column 1 presents the baseline estimate of equation (14). We find a

positive and statistically significant coefficient on AFQTi but a negative and statistically

significant coefficient on the interaction term AGEi ∗ AFQTi. This confirms the prediction

that high-ability workers sort into STEM jobs initially but sort out over time. The results

imply that a worker with cognitive ability one standard deviation above average is 8.4 per-

centage points more likely to work in STEM at age 23, but only 3 percentage points more

likely to be working in an STEM job by age 34.

Columns 2 and 3 of Table 6 repeat the pattern above, except with log wages as the

outcome. Column 2 shows that there is a positive overall return to ability and that it is

increasing in age, consistent with the basic framework of the model. Column 3 adds the

interactions above. We find that the the coefficient on the key triple interaction term AGEit∗

STEMi ∗ AFQTi is large and negative, implying that the return to ability is much flatter

over time for STEM majors.

Summing the coefficients in Column 3 suggests that for a worker with cognitive ability one

standard deviation above average, STEM majors earn about 21 percent more than average at

age 23 and 40 percent more at age 35. In contrast, non-STEM majors of equal ability earn a

2 percent return at age 23 that grows rapidly to a 39 percent premium at age 35, completely

erasing the earnings advantage for STEM majors. Similar computations for AFQTi > 1

imply an earlier crossing point, an empirical result that is predicted by the stylized model

simulation in Figure 3B.
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Thus the results in Table 6 confirm the fourth prediction of the model that high-ability

college graduates will choose STEM fields initially and exit for lower ∆j careers over time.

5 Job Skill Change in Earlier Periods

Our model predicts that increases in the rate of skill change ∆j should flatten the age-

earnings profile of careers. Section 4 compares earnings over time in STEM and non-STEM

careers, but the prediction should also hold within careers over time. Specifically, periods of

relatively rapid technological change such as the IT revolution of the 1980s should correspond

to an increase in the rate of skill change and a rising relative return for young workers in

STEM careers.

The BG data only allow us to calculate detailed measure of job skill changes for the 2007–

2017 period. We study the impact of technological change in earlier years using data from

Atalay et al. (2018). Atalay et al. (2018) assemble the full text of job advertisements in the

New York Times, Wall Street Journal and Boston Globe between 1940 and 2000, and they

create measures of job skill content and relate job title to SOC codes using a text processing

algorithm. They then map words and phrases to widely-used existing skill content measures

such as the Dictionary of Occupational Titles (DOT) and the Occupational Information

Network (O*NET), as well as the job task classification schema used in past studies such as

Autor et al. (2003), Spitz-Oener (2006), Firpo et al. (2011) and Deming and Kahn (2018).

We estimate a version of SkillChangeo from equation (2) using the Atalay et al. (2018)

data and job skill classifications.41 Since there is no natural mapping between our BG data

and the classified ads collected by Atalay et al. (2018), we cannot create a directly comparable

measure. Our preferred approach is to use all of the skill measures computed by Atalay et al.

(2018), although the results are not sensitive to other choices. We calculate SkillChangeo

for 5 year periods starting with 1973–1978 and ending with 1993–1998. Finally, to account
41The data and programs can be found on the authors’ public data page—

https://occupationdata.github.io/
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for fluctuations in the data we smooth each beginning and end point into a 3 year moving

average (e.g. 1998 is actually 1997–1999). 5 year bins starting with 1973–1978 and through

1993–1998.

We calculate SkillChangeo for each time period and occupation (6 digit SOC code),

and then compute the vacancy-weighted average in each period for STEM and non-STEM

occupations. The results—in Panel A of Figure 11—show three main findings. First, the rate

of skill change for non-STEM occupations is relatively constant at around 0.4 in each period.

Second, the rate of skill change in STEM occupations fluctuates markedly, with peaks

that occur during the technological revolution of the 1980s. The SkillChangeo measure

more than doubles from 0.26 to 0.53 between the 1973–1978 and 1978–1983 periods, and

then increases again to 0.73 for 1983–1988 before falling again during the 1990s. Card and

DiNardo (2002) date the beginning of the “computer revolution” to the introduction of the

IBM-PC in 1981, and Autor et al. (1998) document a rapid increase in computer usage at

work starting in the 1980s.

Third, while 2007–2017 cannot be easily compared to earlier periods in levels due to

differences in the data, it is notable that the relatively higher value of SkillChangeo for

STEM occupations holds for the 2007–2017 period and the 1980s, but not the late 1970s

or 1990s. This suggests that new technologies may diffuse first through STEM occupations

before spreading gradually throughout the rest of the economy.

Our model predicts that periods with higher rates of skill change will yield relatively

higher labor market returns for younger workers, especially in STEM occupations. We test

this by lining up the evidence in Panel A of Figure 11 with wage trends for young work-

ers in STEM jobs over the same period, using the CPS for years 1974–2016. We estimate

population-weighted regressions of the form:

ln (earn)it = αit+
C∑
c

γc (cit ∗ Yit)+
C∑
c

ζc (cit ∗ STit)+
C∑
c

ηc (cit ∗ Yit ∗ STit)+δXit+ϵit (15)
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where cit is an indicator variable that is equal to one if respondent i is in each of the

five-year age bins starting with 1974–1978 and extending to 2009–2016 (with the last period

being slightly longer to maximize overlap with the BG data). Yit is an indicator variable

that is equal to one if the respondent is “young”, defined as between the ages of 23 and 26

in the year of the survey, and STit is an indicator for whether the respondent is working

in a STEM occupation. The X vector includes controls for race and ethnicity, years of

completed education, and age and year fixed effects, as well as controls for the main effects

cit and STEMit. Thus the γ and ζ coefficients represent the wage premium for young workers

and older STEM workers relative to the base period of 1974–1978, while the η coefficients

represent the earnings premium for young STEM workers relative to older STEM workers

in each period.

The results are in Panel B of Figure 11. Each bar displays coefficients and 95% confidence

intervals for estimates of γ, ζ and η in equation (15). Comparing the timing to Panel A, we

see that the relative return to STEM for young workers is highest in periods with the highest

rate of skill change. The premium for STEM workers age 23–26 relative to ages 27–50 is small

and close to zero during the 1974–1978 period (when SkillChangeo in Panel A was low), but

jumps up to 18 percent and 24 percent in the 1979–1983 and 1983–1988 periods respectively.

It then falls to 16 percent for 1989–1993 and 8 percent for 1994–1998, exactly when the rate

of change falls again in Panel A.

The results in Figure 11 show that young STEM workers earn relatively higher wages

during periods of rapid skill change.42 In contrast, we do not find similar patterns of fluc-

tuating wage premia for older STEM workers (the second set of bars) or for young workers

in non-STEM occupations. The main effect of STEMit implies an overall wage premium of

around 24 percent for STEM occupations, but this changes very little over the 1974–2016
42One limitation of the CPS is that we do not know college major, and so it is possible that the patterns

we find are driven by selection of high-ability workers (including those who did not major in STEM) into
STEM jobs. However, this would not by itself explain why selection would only occur among younger workers.
Grogger and Eide (1995) show that about 25 percent of the rise in the college premium during the 1980s
can be accounted for by an increase in the STEM skills acquired in college.
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period.

Similarly, we find no consistent evidence that wages for young non-STEM workers move

in any systematic way with the rate of occupational skill change. Finally, although we do

not have the data to calculate SkillSChangeobetween 2000 and 2007, we find that a very

high return for young STEM workers during the 1999–2003 period, which coincides with the

technology boom of the late 1990s (e.g. Beaudry et al. 2016).

6 Conclusion

This paper studies the impact of changing skill demands on the life-cycle returns to STEM

careers. STEM graduates earn higher starting wages because they have learned job-relevant

skills in school. Yet over time, employers require new skills and older skills become obsolete.

This leads to flatter wage growth among more experienced STEM graduates, who eventually

exit the STEM workforce.

In addition to providing important evidence on employment and wage profiles for STEM

careers, this paper also contributes to the broader literature on how technology affects la-

bor markets. We show how job vacancy data—with detailed measures of employer skill

demands—can be used to study the process by which technology changes the returns to

skills learned in school. Future research can use vacancy data to understand other changes

in job skill requirements at a much more detailed level than has previously been possible.

For example, our approach uncovers the rapid increase in skill requirements for new artificial

intelligence technologies.

We formalize the key mechanism of job skill change with a simple model of education

and career choice. Intuitively, on-the-job learning is more difficult in careers where the job

functions themselves are constantly changing. Although STEM majors gain an initial earn-

ings advantage because they learn job-relevant skills in school, the advantage is eroded over

time. Our model predicts that the highest-ability individuals will major in STEM and enter
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STEM careers initially, but that they will be more likely to exit STEM over time. We find

strong support for this prediction using longitudinal data from the NLSY.

Using historical data on job vacancies collected by Atalay et al. 2018, we test the pre-

dictions of our framework in earlier periods such as the IT revolution of the 1980s. We find

large increases in the rate of skill change for STEM jobs during the 1980s, a period that

coincides closely with important technological developments such as the introduction of the

personal computer. We also show that relative wages spiked during this period for young

STEM workers.

This paper contributes to the ongoing policy debate over the “STEM shortage” by show-

ing that it is the new job-relevant skills that are scarce, not necessarily the STEM workers

themselves. In fact, faster technological progress contributes directly to the perception of

shortage by hastening skill obsolescence among older workers.

Finally, our results inform policy tradeoffs between investment in specific and general edu-

cation. The high-skilled vocational preparation provided by STEM degrees paves a smoother

transition for college graduates entering the workforce. Yet at the same time, rapid techno-

logical change can lead to a short shelf life for technical skills. The rise of coding bootcamps,

stackable credentials and other attempts at “lifelong learning” can be seen as a market re-

sponse to anticipated skill obsolescence. This tradeoff between technology-specific and gen-

eral skills is an important consideration for policymakers and colleges seeking to educate the

workers of today, while also building the skills of the next generation.

References

Acemoglu, D. and Autor, D.: 2011, Skills, tasks and technologies: Implications for employ-

ment and earnings, Handbook of labor economics, Vol. 4, Elsevier, pp. 1043–1171. 1, 3.1

Altonji, J. G., Arcidiacono, P. and Maurel, A.: 2016, The analysis of field choice in college and

38



graduate school: Determinants and wage effects, Handbook of the Economics of Education,

Vol. 5, Elsevier, pp. 305–396. 2, 5

Altonji, J. G., Bharadwaj, P. and Lange, F.: 2012, Changes in the characteristics of american

youth: Implications for adult outcomes, Journal of Labor Economics 30(4), 783–828. 4.1,

32

Altonji, J. G., Blom, E. and Meghir, C.: 2012, Heterogeneity in human capital investments:

High school curriculum, college major, and careers, Annu. Rev. Econ. 4(1), 185–223. 2, 5,

4

Altonji, J. G., Kahn, L. B. and Speer, J. D.: 2016, Cashier or consultant? entry labor market

conditions, field of study, and career success, Journal of Labor Economics 34(S1), S361–

S401. 4.1

Altonji, J. G. and Pierret, C. R.: 2001, Employer learning and statistical discrimination, The

Quarterly Journal of Economics 116(1), 313–350. 26

Arcidiacono, P.: 2004, Ability sorting and the returns to college major, Journal of Econo-

metrics 121(1-2), 343–375. 2, 1, 4.4

Arcidiacono, P., Aucejo, E. M. and Hotz, V. J.: 2016, University differences in the gradu-

ation of minorities in stem fields: Evidence from california, American Economic Review

106(3), 525–62. 5, 1, 4

Arora, A., Branstetter, L. G. and Drev, M.: 2013, Going soft: How the rise of software-based

innovation led to the decline of japan’s it industry and the resurgence of silicon valley,

Review of Economics and Statistics 95(3), 757–775. 2.3

Atalay, E., Phongthiengtham, P., Sotelo, S. and Tannenbaum, D.: 2018, The evolving us

occupational structure. 1, 5, 6

39



Aubert, P., Caroli, E. and Roger, M.: 2006, New technologies, organisation and age: firm-level

evidence, The Economic Journal 116(509). 1

Autor, D. and Dorn, D.: 2013, The growth of low-skill service jobs and the polarization of

the us labor market, American Economic Review 103(5), 1553–97. 4.1

Autor, D. H., Katz, L. F. and Krueger, A. B.: 1998, Computing inequality: have computers

changed the labor market?, The Quarterly Journal of Economics 113(4), 1169–1213. 5

Autor, D. H., Levy, F. and Murnane, R. J.: 2002, Upstairs, downstairs: Computers and skills

on two floors of a large bank, ILR Review 55(3), 432–447. 3, 1

Autor, D. H., Levy, F. and Murnane, R. J.: 2003, The skill content of recent technological

change: An empirical exploration, The Quarterly journal of economics 118(4), 1279–1333.

1, 2.2, 5

Bartel, A., Ichniowski, C. and Shaw, K.: 2007, How does information technology affect pro-

ductivity? plant-level comparisons of product innovation, process improvement, and worker

skills, The quarterly journal of Economics 122(4), 1721–1758. 3, 1

Beaudry, P., Green, D. A. and Sand, B. M.: 2016, The great reversal in the demand for skill

and cognitive tasks, Journal of Labor Economics 34(S1), S199–S247. 5

Berman, E., Bound, J. and Griliches, Z.: 1994, Changes in the demand for skilled labor

within us manufacturing: evidence from the annual survey of manufactures, The Quarterly

Journal of Economics 109(2), 367–397. 1

Black, S. E., Schanzenbach, D. W. and Breitwieser, A.: 2017, The recent decline in women’s

labor force participation, Driving Growth through Women’s Economic Participation p. 5.

4.1

Branstetter, L. G., Drev, M. and Kwon, N.: 2018, Get with the program: Software-driven

innovation in traditional manufacturing, Management Science . 2.3

40



Bresnahan, T. F., Brynjolfsson, E. and Hitt, L. M.: 2002, Information technology, workplace

organization, and the demand for skilled labor: Firm-level evidence, The Quarterly Journal

of Economics 117(1), 339–376. 3, 1

Brynjolfsson, E., Mitchell, T. and Rock, D.: 2018, What can machines learn, and what does it

mean for occupations and the economy?, AEA Papers and Proceedings, Vol. 108, pp. 43–47.

2.2

Cappelli, P. H.: 2015, Skill gaps, skill shortages, and skill mismatches: Evidence and argu-

ments for the united states, ILR Review 68(2), 251–290. 1

Card, D. and DiNardo, J. E.: 2002, Skill-biased technological change and rising wage in-

equality: Some problems and puzzles, Journal of labor economics 20(4), 733–783. 1, 5

Card, D. and Lemieux, T.: 2001, Can falling supply explain the rising return to college for

younger men? a cohort-based analysis, The Quarterly Journal of Economics 116(2), 705–

746. 4.2

Carnevale, A. P., Cheah, B. and Strohl, J.: 2012, College Majors, Unemployment and Earn-

ings: Not all college degrees are created equal, Georgetown University Center on Educaiton

and the Workforce. 2, 1

Carnevale, A. P., Smith, N. and Melton, M.: 2011, Stem: Science technology engineering

mathematics., Georgetown University Center on Education and the Workforce . 1, 4.1

Caselli, F.: 1999, Technological revolutions, American economic review 89(1), 78–102. 1, 3.3

Chari, V. V. and Hopenhayn, H.: 1991, Vintage human capital, growth, and the diffusion of

new technology, Journal of political Economy 99(6), 1142–1165. 1, 7, 3.3

Deming, D. J.: 2017, The growing importance of social skills in the labor market, The Quar-

terly Journal of Economics 132(4), 1593–1640. 1, 2.2, 40

41



Deming, D. and Kahn, L. B.: 2018, Skill requirements across firms and labor markets: Evi-

dence from job postings for professionals, Journal of Labor Economics 36(S1), S337–S369.

2.1, 11, 5

Firpo, S., Fortin, N. and Lemieux, T.: 2011, Occupational tasks and changes in the wage

structure. 1, 5

Freeman, R. B.: 1976, A cobweb model of the supply and starting salary of new engineers,

ILR Review 29(2), 236–248. 4.2

Friedberg, L.: 2003, The impact of technological change on older workers: Evidence from

data on computer use, ILR Review 56(3), 511–529. 1

Galenson, D. W. and Weinberg, B. A.: 2000, Age and the quality of work: The case of modern

american painters, Journal of Political Economy 108(4), 761–777. 9

Galor, O. and Tsiddon, D.: 1997, Technological progress, mobility, and economic growth,

The American Economic Review pp. 363–382. 1, 3.3

Goldin, C. and Katz, L. F.: 2007, The race between education and technology: the evolution

of us educational wage differentials, 1890 to 2005, Technical report, National Bureau of

Economic Research. 1

Goldin, C., Katz, L. F. and Kuziemko, I.: 2006, The homecoming of american college women:

The reversal of the college gender gap, Journal of Economic perspectives 20(4), 133–156.

4.1

Golsteyn, B. H. and Stenberg, A.: 2017, Earnings over the life course: General versus voca-

tional education, Journal of Human Capital 11(2), 167–212. 2

Gould, E. D., Moav, O. and Weinberg, B. A.: 2001, Precautionary demand for education,

inequality, and technological progress, Journal of Economic Growth 6(4), 285–315. 7

42



Griliches, Z.: 1957, Hybrid corn: An exploration in the economics of technological change,

Econometrica, Journal of the Econometric Society pp. 501–522. 1

Griliches, Z.: 1992, Introduction to” output measurement in the service sectors”, Output

measurement in the service sectors, University of Chicago Press, pp. 1–22. 1

Grogger, J. and Eide, E.: 1995, Changes in college skills and the rise in the college wage

premium, Journal of Human Resources pp. 280–310. 42

Hanson, G. H. and Slaughter, M. J.: 2016, High-skilled immigration and the rise of stem

occupations in us employment, Technical report, National Bureau of Economic Research.

35

Hanushek, E. A., Schwerdt, G., Woessmann, L. and Zhang, L.: 2017, General education,

vocational education, and labor-market outcomes over the lifecycle, Journal of Human

Resources 52(1), 48–87. 2, 1

Hastings, J. S., Neilson, C. A. and Zimmerman, S. D.: 2013, Are some degrees worth more

than others? evidence from college admission cutoffs in chile, Technical report, National

Bureau of Economic Research. 5

Hershbein, B. and Kahn, L. B.: 2018, Do recessions accelerate routine-biased technological

change? evidence from vacancy postings, American Economic Review 108(7), 1737–72.

2.1, 2.3

Hunt, J.: 2015, Are immigrants the most skilled us computer and engineering workers?,

Journal of Labor Economics 33(S1), S39–S77. 35

Hunt, J.: 2016, Why do women leave science and engineering?, ILR Review 69(1), 199–226.

31

Ichniowski, C. and Shaw, K. L.: 2009, Insider econometrics: Empirical studies of how man-

agement matters, Technical report, National Bureau of Economic Research. 3

43



Jones, B. F.: 2009, The burden of knowledge and the “death of the renaissance man”: Is

innovation getting harder?, The Review of Economic Studies 76(1), 283–317. 6

Jones, C. I.: 1995, R & d-based models of economic growth, Journal of political Economy

103(4), 759–784. 1

Jovanovic, B. and Nyarko, Y.: 1996, Learning by doing and the choice of technology, Econo-

metrica 64(6), 1299–1310. 1

Katz, L. F. and Murphy, K. M.: 1992, Changes in relative wages, 1963–1987: supply and

demand factors, The quarterly journal of economics 107(1), 35–78. 1

Kinsler, J. and Pavan, R.: 2015, The specificity of general human capital: Evidence from

college major choice, Journal of Labor Economics 33(4), 933–972. 2, 4, 5, 1, 4, 4.2, 4.4,

4.4

Kirkeboen, L. J., Leuven, E. and Mogstad, M.: 2016, Field of study, earnings, and self-

selection, The Quarterly Journal of Economics 131(3), 1057–1111. 2, 5

Kredler, M.: 2014, Experience vs. obsolescence: A vintage-human-capital model, Journal of

Economic Theory 150, 709–739. 1, 7

Krueger, D. and Kumar, K. B.: 2004, Skill-specific rather than general education: A reason

for us–europe growth differences?, Journal of economic growth 9(2), 167–207. 1

Leighton, M. and Speer, J.: 2017, Labor market returns to college major specificity. 5

Lemieux, T.: 2014, Occupations, fields of study and returns to education, Canadian Journal

of Economics/Revue canadienne d’économique 47(4), 1047–1077. 4, 4.4

MacDonald, G. and Weisbach, M. S.: 2004, The economics of has-beens, Journal of Political

Economy 112(S1), S289–S310. 1, 9

44



Malamud, O.: 2010, Breadth versus depth: the timing of specialization in higher education,

Labour 24(4), 359–390. 2

Malamud, O. and Pop-Eleches, C.: 2010, General education versus vocational training: Evi-

dence from an economy in transition, The review of economics and statistics 92(1), 43–60.

2

McDowell, J. M.: 1982, Obsolescence of knowledge and career publication profiles: Some

evidence of differences among fields in costs of interrupted careers, The American Economic

Review 72(4), 752–768. 8

Moretti, E.: 2012, The new geography of jobs, Houghton Mifflin Harcourt. 6

Neal, D.: 1999, The complexity of job mobility among young men, Journal of Labor Eco-

nomics 17(2), 237–261. 3.1

Neal, D. A. and Johnson, W. R.: 1996, The role of premarket factors in black-white wage

differences, Journal of political Economy 104(5), 869–895. 4.1

Nelson, R. R. and Phelps, E. S.: 1966, Investment in humans, technological diffusion, and

economic growth, The American economic review 56(1/2), 69–75. 3.3

Neuman, S. and Weiss, A.: 1995, On the effects of schooling vintage on experience-earnings

profiles: Theory and evidence, European economic review 39, 943–955. 8

Parente, S. L.: 1994, Technology adoption, learning-by-doing, and economic growth, Journal

of economic theory 63(2), 346–369. 1

Pavan, R.: 2011, Career choice and wage growth, Journal of Labor Economics 29(3), 549–587.

2, 3.1

Peri, G., Shih, K. and Sparber, C.: 2015, Stem workers, h-1b visas, and productivity in us

cities, Journal of Labor Economics 33(S1), S225–S255. 1, 4.1, 28

45



Ransom, T.: 2016, Selective migration, occupational choice, and the wage returns to college

majors. 5

Rosen, S.: 1975, Measuring the obsolescence of knowledge, Education, income, and human

behavior, NBER, pp. 199–232. 1

Ruggles, S., Genadek, K., Goeken, R., Grover, J. and Sobek, M.: 2017, Integrated public use

microdata series: Version 6.0 [dataset]. minneapolis: University of minnesota, 2015. 4.1

Ryan, P.: 2001, The school-to-work transition: a cross-national perspective, Journal of eco-

nomic literature 39(1), 34–92. 1

Silos, P. and Smith, E.: 2015, Human capital portfolios, Review of Economic Dynamics

18(3), 635–652. 5

Spence, M.: 1978, Job market signaling, Uncertainty in Economics, Elsevier, pp. 281–306.

3.2

Spitz-Oener, A.: 2006, Technical change, job tasks, and rising educational demands: Looking

outside the wage structure, Journal of labor economics 24(2), 235–270. 5

Stephan, P. E.: 1996, The economics of science, Journal of Economic literature 34(3), 1199–

1235. 6

Thompson, P.: 2003, Technological change and the age–earnings profile: Evidence from the

international merchant marine, 1861–1912, Review of Economic Dynamics 6(3), 578–601.

8

Tinbergen, J.: 1975, Income distribution: Analysis and policies. 1

Violante, G. L.: 2002, Technological acceleration, skill transferability, and the rise in residual

inequality, The Quarterly Journal of Economics 117(1), 297–338. 1

46



Webber, D. A.: 2014, The lifetime earnings premia of different majors: Correcting for selection

based on cognitive, noncognitive, and unobserved factors, Labour economics 28, 14–23. 5

Weinberg, B. A.: 2004, Experience and technology adoption. 1

Wuchty, S., Jones, B. F. and Uzzi, B.: 2007, The increasing dominance of teams in production

of knowledge, Science 316(5827), 1036–1039. 6

47



Figure 1 

 
Notes: The bars show the share of jobs in each occupation category that required an “old” skil l  in 2007 (the l ight 
gray bars) and a “new” skil l in 2017 (the dark gray bars). Old skil ls are defined as those with at least 1,000 
appearances in 2007 but are either five times less frequent or do not exist in 2017. New skil ls are defined as those 
with at least 1,000 appearances in 2017 that either did not exist in 2007 or are 20 times more frequent in 2017 
than 2007. The values of each bar are coefficients from a vacancy-level regression of the frequency of old and new 
skil l requirements on an indicator for the 2017 year, the total number of skil ls l isted in each vacancy, education 
and experience requirements, and occupation-city-employer fixed effects. 
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Figure 2 

 
Notes: This figure shows how new skil l requirements change along with required years of experience – in STEM, 
compared to other professional occupations. Each point in the figure is the coefficient (and associated 95 percent 
confidence interval) on the relevant experience category from a vacancy-level regression of the frequency of new 
skil l requirements on experience categories, the total number of skil ls l isted in the vacancy, education 
requirements, and employer-by-MSA fixed effects. New skil ls are defined as those with at least 1,000 appearances 
in 2017 that either did not exist in 2007 or are 20 times more frequent in 2017 than 2007.  
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Figure 3A 

 

Notes: This Figure simulates earnings growth from the model in Section 3 of the paper when 𝐹𝐹𝑗𝑗 𝑆𝑆∗ = 6 (high in-school productivity) or 𝐹𝐹𝑗𝑗𝑆𝑆∗ = 3 (low 
in-school productivity) and the rate of task change ∆𝑗𝑗 is equal to 0.20 or 0.15. See the text for details. 
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Figure 3B 

 

Notes: This Figure simulates earnings growth from the model in Section 3 of the paper when 𝐹𝐹𝑗𝑗 𝑆𝑆∗ = 6 (high in-school productivity) or 𝐹𝐹𝑗𝑗𝑆𝑆∗ = 3 (low 
in-school productivity), the rate of task change ∆𝑗𝑗 is equal to 0.20 or 0.15, and for a high vs. low abil ity worker. See the text for details.
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Figure 4 

 
Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of the returns to majors 
over time, following equation (10) in the paper.  "Pure" Science includes biology, chemistry, physics, mathematics 
and statistics, while "Applied" Science includes engineering and computer science.
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Figure 5 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from three separate estimates of equation (10) in the paper, except we 
interact age bins with indicators for working in a STEM occupation rather than earning a STEM degree. STEM occupations are defined using the 2010 
Census Bureau classification. The three data sources are the 2009-2016 American Community Survey, the 1993-2013 National Survey of College 
Graduates, and the 1973-2016 Current Population Survey. 
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Figure 6 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of the returns to majors over time, following equation (10) in 
the paper, but adding occupation and major interactions.  "Applied" Science majors include engineering and computer science. 
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Figure 7 

 
Notes: The figure plots coefficients and 95 percent confidence intervals from two separate estimates of equation (10) in the paper, restricting the 
sample to Applied Science majors and with indicators for working in STEM and management occupations as the outcome variables. STEM occupations 
are defined using the 2010 Census Bureau classification.  
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Figure 8 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (11) in the paper, a regression of log wages on 
interactions between two-year age bins and the skil l change measure ∆𝑗𝑗 that is estimated using 2007-2017 online job vacancy data from Burning Glass 
Technologies. The standard deviation of ∆𝑗𝑗 is 1.14, indicating that jobs with a 1 SD higher skil l  change pay 24 percent higher wages at ages 23-24 but 
only 13 percent higher at ages 49-50. STEM occupations are defined using the 2010 Census Bureau classification. See the text for details. 
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Figure 9 

 
Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (12) in the paper, a regression of the task change 
measure ∆𝑗𝑗 (which is constructed using 2007-2017 online job vacancy data from Burning Glass Technologies) on occupation by age group interactions. 
The standard deviation of ∆𝑗𝑗 is 1.14, indicating that workers age 23-24 are in jobs that score about 0.2 standard deviations higher on the job skil l 
change measure than workers age 49-50. STEM occupations are defined using the 2010 Census Bureau classification. See the text for details. 
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Figure 10 

 

Notes: The figure plots coefficients and 95 percent confidence intervals from an estimate of equation (10) in the paper, which regresses log wages on 
major-by-age group interactions. "Applied" Science includes engineering and computer science majors. The regression is estimated at the person-year 
level and standard errors are clustered at the individual level. The sample is restricted to ages 23-34 to ensure comparabil ity across NLSY waves. 
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Figure 11 

 
Notes: Panel A presents estimates of the task change measure ∆𝑗𝑗 calculated using data from Atalay et al (2018) on the text of classified job ads 
between the years of 1977 and 1999. Panel B presents coefficients and 95 percent confidence intervals from a regression of log wages on age (23-26 
vs. 27-50) by STEM occupation interactions for successive five year periods that match the job ad data, using the CPS. STEM occupations are defined 
using the 2010 Census Bureau classification. See the text for details. 
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Table 1: Skill Requirements by Occupation Category in 2007

Panel A Social Cognitive Character Creativity Writing Management Finance
(1) (2) (3) (4) (5) (6) (7)

Management 0.606 0.421 0.453 0.077 0.172 0.382 0.402
STEM 0.540 0.536 0.345 0.063 0.208 0.170 0.167
Business 0.651 0.551 0.463 0.100 0.182 0.258 0.475
Social Science / Service 0.362 0.356 0.220 0.062 0.158 0.147 0.081
Art/Design/Media 0.585 0.397 0.502 0.256 0.465 0.138 0.160
Health 0.331 0.238 0.190 0.021 0.063 0.136 0.053
Sales and Admin 0.626 0.321 0.423 0.073 0.127 0.180 0.222

Total 0.566 0.458 0.386 0.077 0.177 0.213 0.269

Panel B
Business 
Systems

Customer 
Service

Office 
Software

Technical 
Support

Data 
Analysis

Specialized 
Software ML and AI

Management 0.243 0.315 0.296 0.115 0.057 0.209 0.005
STEM 0.260 0.207 0.254 0.328 0.092 0.593 0.039
Business 0.272 0.340 0.394 0.123 0.083 0.260 0.006
Social Science / Service 0.045 0.134 0.151 0.053 0.023 0.094 0.003
Art/Design/Media 0.125 0.195 0.337 0.153 0.029 0.396 0.009
Health 0.022 0.392 0.139 0.037 0.026 0.048 0.002
Sales and Admin 0.193 0.763 0.331 0.126 0.040 0.156 0.011

Total 0.218 0.354 0.296 0.177 0.067 0.320 0.017

Notes: Each cell  in this table presents the share of postings in an occupation category that requires at least one skil l  in 
the categories indicated in each column. The occupations are grouped based on 2010 Standard Occupation Classification 
(SOC) codes. Data come from online job vacancies collected by Burning Glass Technologies in 2007. See the Data Appendix 
for detailed descriptions of how each skil l  category is constructed.  

  



Table 2: Skill Requirements by Occupation Category in 2017

Panel A Social Cognitive Character Creativity Writing Management Finance
(1) (2) (3) (4) (5) (6) (7)

Management 0.715 0.515 0.552 0.117 0.221 0.447 0.461
STEM 0.659 0.644 0.448 0.112 0.252 0.208 0.189
Business 0.766 0.642 0.606 0.147 0.243 0.299 0.487
Social Science / Service 0.516 0.382 0.336 0.096 0.197 0.184 0.080
Art/Design/Media 0.700 0.476 0.610 0.365 0.497 0.162 0.189
Health 0.438 0.299 0.284 0.032 0.070 0.163 0.051
Sales and Admin 0.758 0.444 0.613 0.098 0.173 0.235 0.312

Total 0.661 0.531 0.489 0.114 0.214 0.253 0.278

Panel B
Business 
Systems

Customer 
Service

Office 
Software

Technical 
Support

Data 
Analysis

Specialized 
Software ML and AI

Management 0.292 0.363 0.370 0.094 0.084 0.253 0.021
STEM 0.304 0.220 0.284 0.329 0.170 0.679 0.180
Business 0.362 0.397 0.488 0.092 0.119 0.351 0.029
Social Science / Service 0.043 0.157 0.190 0.040 0.049 0.110 0.015
Art/Design/Media 0.136 0.195 0.372 0.105 0.055 0.472 0.024
Health 0.031 0.558 0.154 0.028 0.040 0.099 0.005
Sales and Admin 0.274 0.760 0.429 0.076 0.058 0.237 0.016

Total 0.249 0.381 0.335 0.145 0.104 0.367 0.065

Notes: Each cell  in this table presents the share of postings in an occupation category that requires at least one skil l  in 
the categories indicated in each column. The occupations are grouped based on 2010 Standard Occupation Classification 
(SOC) codes. Data come from online job vacancies collected by Burning Glass Technologies in 2017. See the Data Appendix 
for detailed descriptions of how each skil l  category is constructed.  

  



SOC code Occupation Title
Rate of Task 

Change
SOC code Occupation Title

Rate of Task 
Change

172 Engineers 3.53 151131 Computer Programmers 6.69
192 Physical Scientists 3.48 151133 Software Developers, Systems Software 5.99
191 Life Scientists 3.25 172081 Environmental Engineers 5.49
151 Computer Occupations 3.24 151142 Network / Computer Systems Administrators 4.71
113 Operations Specialties Managers 3.20 173013 Mechanical Drafters 4.49
152 Mathematical Scientists 3.19 172041 Chemical Engineers 4.37
171 Architects and Surveyors 3.13 152041 Statisticians 4.29
112 Advertising, Marketing and Sales Managers 3.00 151141 Database Administrators 3.98
132 Financial Specialists 2.71 151134 Web Developers 3.96
173 Drafters and Engineering Technicians 2.61 151152 Computer Network Support Specialists 3.77

SOC code Occupation Title
Rate of Task 

Change
SOC code Occupation Title

Rate of Task 
Change

252 Pre-K, Primary and Secondary School Teachers 0.74 291021 Dentists 0.32
253 Other Teachers and Instructors 0.79 291066 Psychiatrists 0.38
291 Health Diagnosing and Treating Practitioners 0.86 193031 Clinical Psychologists 0.41
272 Entertainers and Performers 1.12 291069 Physicians and Surgeons, All Other 0.41
259 Other Education, Training and Library Occupations 1.15 291062 Family and General Practitioners 0.41
292 Health Technologists and Technicians 1.29 291171 Nurse Practitioners 0.44
251 Postsecondary Teachers 1.36 252059 Special Education Teachers, All Other 0.46
193 Social Scientists and Related Workers 1.40 252031 Secondary School Teachers 0.51
211 Counselors and Social Workers 1.51 292052 Pharmacy Technicians 0.54
274 Media / Communications Equipment Workers 1.76 272022 Coaches and Scouts 0.63

Notes: This table uses online job vacancy data from Burning Glass Technologies (BG) to calculate the rate of skil l  change between 2007 and 2017 for each 3- and 6-digit 
Standard Occupational Classification (SOC) code. The average value of the task change measure is 2.10 - see the text for details. Professional Occupations are SOC codes that 
begin with a 1 or a 2.

Table 3: Occupations with the Highest and Lowest Rates of Task Change
Panel A: Fastest-Changing Professional Occupations (3-digit) Panel B: Fastest-Changing Professional Occupations (6-digit)

Panel C: Slowest-Changing Professional Occupations (3-digit) Panel D: Slowest-Changing Professional Occupations (6-digit)



Age Wages Share in 
STEM Job

Wages Share in 
STEM Job

Wages Share in 
STEM Job

(1) (2) (3) (4) (5) (6)
23 32,236 0.074 32,840 0.269 47,007 0.616
24 36,632 0.076 35,909 0.286 52,727 0.631
25 43,354 0.076 44,849 0.258 58,188 0.620
26 46,918 0.075 49,472 0.282 61,558 0.616
27 51,722 0.075 53,181 0.247 66,286 0.626
28 54,856 0.074 57,243 0.231 69,590 0.585
29 58,389 0.073 62,651 0.238 73,765 0.584
30 62,787 0.074 69,109 0.224 76,309 0.569
31 67,567 0.074 79,274 0.220 80,546 0.539
32 71,933 0.074 79,894 0.212 83,536 0.536
33 74,608 0.072 91,085 0.211 89,109 0.525
34 79,971 0.069 98,442 0.206 91,542 0.515
35 85,897 0.069 105,914 0.205 98,291 0.482
36 89,875 0.070 111,807 0.198 99,114 0.487
37 93,259 0.073 114,927 0.206 103,804 0.472
38 94,453 0.072 117,943 0.194 108,081 0.463
39 99,481 0.065 121,372 0.189 110,477 0.461
40 99,952 0.069 123,224 0.199 111,678 0.429
41 103,447 0.066 123,281 0.187 113,388 0.425
42 104,068 0.067 122,578 0.199 113,511 0.439
43 106,122 0.068 132,626 0.194 120,005 0.422
44 108,777 0.064 129,115 0.194 122,278 0.419
45 111,802 0.061 136,001 0.204 121,420 0.427
46 111,235 0.062 141,341 0.179 121,746 0.399
47 112,430 0.060 136,539 0.199 125,350 0.418
48 112,002 0.058 136,772 0.206 126,601 0.410
49 112,347 0.059 139,118 0.204 126,111 0.403
50 111,754 0.060 137,439 0.204 126,606 0.399

Notes: This table presents population-weighted average annual wage and salary income and 
employment shares in Science, Technology, Engineering and Mathematics (STEM) occupations by 
age, using the 2009-2016 American Community Survey Integrated Public Use Microdata Series 
(IPUMS, Ruggles et al 2017). The sample is restricted to men with at least a college degree who 
were employed at the time of the survey and worked at least 40 weeks during the year. Earnings 
are in constant 2016 dollars. STEM majors are defined following Peri, Shih and Sparber (2015), 
and STEM jobs are defined using the 2010 Census Bureau classification. "Pure" Science includes 
biology, chemistry, physics, mathematics and statistics, while "Applied" Science includes 
engineering and computer science.

Table 4:  Life-Cycle Earnings and Employment for STEM Majors
Non-STEM Major "Pure" Science "Applied" Science

 
  



Table 5: Labor Market Returns to STEM Majors in the NLSY
Outcome is Log Hourly Wage (2016$) (1) (2) (3) (4) (5) (6)

Applied Science Major 0.179*** 0.180*** 0.072* 0.034 0.013 0.046
[0.035] [0.036] [0.037] [0.034] [0.041] [0.044]

Pure Science Major -0.099 -0.103 -0.141* -0.107* -0.110 -0.037
[0.079] [0.074] [0.073] [0.058] [0.067] [0.063]

STEM Occupation 0.241*** 0.143*** 0.119***
[0.028] [0.027] [0.029]

Applied Science * STEM Occupation 0.057
[0.051]

Pure Science * STEM Occupation 0.031
[0.112]

Cognitive Skills (AFQT, standardized) 0.129*** 0.113*** 0.076*** 0.076*** 0.063
[0.025] [0.024] [0.021] [0.021] [0.031]

Social Skills (standardized) 0.042*** 0.048*** 0.033*** 0.033*** 0.009
[0.015] [0.014] [0.012] [0.012] [0.015]

Noncognitive Skills (standardized) 0.060*** 0.058*** 0.045*** 0.045*** 0.041
[0.016] [0.016] [0.013] [0.013] [0.016]

Demographics and Age/Year FE X X X X X X
Industry Fixed Effects X X
Occupation-by-Industry Fixed Effects X
R-squared 0.225 0.244 0.259 0.397 0.397 0.649
Number of Observations 8,634 8,634 8,634 8,634 8,634 8,634
Notes: Each column reports results from a regression of real log hourly wages on indicators for college major, 
occupation and/or industry (in columns 3 through 5), individual skil ls, indicator variables for race and years of 
completed education, age and year fixed effects, and additional controls as indicated. The data source is the 
National Longitudinal Survey of Youth (NLSY) 1979 and 1997, and the sample is restricted to men with at least a 
college degree. The waves are pooled and an indicator for sample wave is included in the regression. Science, 
Technology, Engineering and Mathematics (STEM) occupations are defined using the 2010 Census Bureau 
classification. "Pure" Science majors include biology, chemistry, physics, mathematics and statistics, while 
"Applied" Science includes engineering and computer science. Cognitive skil ls are measured by each respondent's 
score on the Armed Forces Qualifying Test (AFQT). We normalize scores across NLSY waves using the crosswalk 
developed by Altonji, Bharadwaj and Lange (2012). Social and noncognitive skil l  definitions are taken from Deming 
(2017). All  skil l  measures are normalized to have a mean of zero and a standard deviation of one. Person-year is the 
unit of observation, and all  standard errors are clustered at the person level. The sample is restricted to ages 23-34 
to maximize comparabil ity across survey waves. *** p<0.01, ** p<0.05, * p<0.10.  
  



Table 6: STEM Majors, Relative Wages and Ability Sorting in the NLSY
In a STEM Job

(1) (2) (3)

STEM Major 0.352*** 0.116*** 0.005
[0.035] [0.034] [0.120]

AFQT (Standardized) 0.084*** 0.063* 0.017
[0.016] [0.033] [0.032]

Age (Linear) 0.002 0.013 0.007
[0.005] [0.008] [0.009]

Age * AFQT -0.005** 0.013*** 0.024***
[0.002] [0.005] [0.005]

Age * STEM Major 0.027*
[0.014]

STEM Major * AFQT 0.187*
[0.097]

STEM Major * AFQT * Age -0.041***
[0.013]

R-squared 0.183 0.237 0.242
Number of Observations 11,214 8,685 8,685

Notes: Each column reports results from a regression of indicators for working 
in a STEM occupation (Column 1) or real log hourly wages (Columns 2 and 3)  
on indicators for majoring in a Science, Technology, Engineering and 
Mathematics (STEM) field, cognitive, social and noncognitive skil ls, indicator 
variables for race and years of completed education, year fixed effects, and 
additional controls as indicated. The data source is the National Longitudinal 
Survey of Youth (NLSY) 1979 and 1997, and the sample is restricted to men with 
at least a college degree. The waves are pooled and an indicator for sample 
wave is included in the regression. STEM majors are defined following Peri, 
Shih and Sparber (2015), and STEM occupations are defined using the 2010 
Census Bureau classification. Cognitive skil ls are measured by each 
respondent's score on the Armed Forces Qualifying Test (AFQT). We normalize 
scores across NLSY waves using the crosswalk developed by Altonji, 
Bharadwaj and Lange (2012). Social and noncognitive skil l  definitions are 
taken from Deming (2017). All  skil l  measures are normalized to have a mean of 
zero and a standard deviation of one. Person-year is the unit of observation, 
and all  standard errors are clustered at the person level. The sample is 
restricted to ages 23-34 to maximize comparabil ity across survey waves. *** 
p<0.01, ** p<0.05, * p<0.10. 
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