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Abstract—Glottal inverse filtering aims to estimate the glottal
airflow signal from a speech signal for applications such as
speaker recognition and clinical voice assessment. Nonetheless,
evaluation of inverse filtering algorithms has been challenging
due to the practical difficulties of directly measuring glottal
airflow. Apart from this, it is acknowledged that the performance
of many methods degrade in voice conditions that are of great
interest, such as breathiness, high pitch, soft voice, and running
speech. This paper presents a comprehensive, objective, and
comparative evaluation of state-of-the-art inverse filtering algo-
rithms that takes advantage of speech and glottal airflow signals
generated by a physiological speech synthesizer. The synthesizer
provides a physics-based simulation of the voice production
process and thus an adequate test bed for revealing the temporal
and spectral performance characteristics of each algorithm.
Included in the synthetic data are continuous speech utterances
and sustained vowels, which are produced with multiple voice
qualities (pressed, slightly pressed, modal, slightly breathy, and
breathy), fundamental frequencies, and subglottal pressures to
simulate the natural variations in real speech. In evaluating the
accuracy of a glottal flow estimate, multiple error measures are
used, including an error in the estimated signal that measures
overall waveform deviation, as well as an error in each of
several clinically relevant features extracted from the glottal flow
estimate. Waveform errors calculated from glottal flow estimation
experiments exhibited mean values around 30% for sustained
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vowels, and around 40% for continuous speech, of the amplitude
of true glottal flow derivative. Closed-phase approaches showed
remarkable stability across different voice qualities and subglottal
pressures. The algorithms of choice, as suggested by significance
tests, are closed-phase covariance analysis for the analysis of
sustained vowels, and sparse linear prediction for the analysis of
continuous speech. Results of data subset analysis suggest that
analysis of close rounded vowels is an additional challenge in
glottal flow estimation.

Index Terms—Performance evaluation, glottal flow estimation,
inverse filtering, speech synthesis, glottal excitation, voice pro-
duction, speech analysis.

I. INTRODUCTION

H
UMAN voice is the result of the glottal airflow exciting

the vocal tract to produce the airflow through the lips

and nostrils. Since the glottal airflow is modulated by the

diaphragm and the vocal folds, which are in turn coordinated

by the brain through motor control, an accurate estimate of

the glottal airflow from a speech signal may provide salient

information related to the speaker’s identity, vocal function,

emotions, etc. This makes glottal flow estimation desirable for

speaker identification [1], voice quality assessment [2], anal-

ysis of emotional and neurological disorders [3], and clinical

voice assessment [4], [5]. Nevertheless, true glottal airflow

signals have been elusive not only in ecological applications,

but also in experimental settings. As a result, it has been

difficult for researchers to evaluate the performance of a glottal

flow estimator with confidence.

This paper presents an evaluation for a special class of

glottal flow estimation methods, which we refer to as inverse

filtering algorithms. An inverse filtering algorithm typically

estimates the vocal tract filter and applies the inverse of

filter estimate to the speech signal to give a glottal flow

estimate. It does not constrain the waveform estimate with

a glottal flow model, e.g., the Liljencrants-Fant model [6];

rather, less constrained glottal-flow assumptions are made as

with a typical manual inverse filtering procedure [7], [8] where

an inverse filter (with user-specified formant frequencies and

formant bandwidths) is manually adjusted to give an estimate

of the glottal airflow that is ripple-free in the closed phase

and has a smooth spectrum envelope. Owing to this, inverse

filtering algorithms are free from a performance limitation

resulting from any deviation of real glottal flow characteristics

from a glottal flow model, provided that an optional glottal

flow modeling procedure following inverse filtering (such as
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the one presented in [1]) is not performed. In addition, for

the glottal flow estimation techniques that are based on a

glottal flow model (and thus not considered to be inverse

filtering algorithms), the objective is typically to estimate only

a subset of all the parameters required for glottal flow recon-

struction, leaving a glottal airflow estimate not well-defined.

Consequently, among all the existing approaches to glottal

flow estimation, only inverse filtering algorithms are tested

in this study. In the evaluation, we aim to use synthesized

glottal airflow signals as a reference, test inverse filtering

algorithms on corresponding speech signals, and produce an

objective assessment of the overall accuracy of each glottal

airflow estimate.

In the experiments presented in this paper, both continu-

ous speech and sustained vowels are used for performance

evaluation. The specific synthesis procedures adopted to gen-

erate these test materials are physiologically based, not only

simulating the voice production mechanisms at the vocal fold

and vocal tract levels, but also providing the ground-truth

glottal airflow signals needed for the evaluation as part of

the simulation. For sustained vowels, the data set includes

synthesized speech utterances for various voice qualities and

subglottal pressure levels. The resulting glottal airflow esti-

mates are compared to the simulated glottal airflow signals

by measuring errors in time sample values, as well as in

several types of feature values extracted from the waveform.

Moreover, for the inverse filtering algorithms that make use

of glottal closure instants detected from the speech signal, we

evaluate the robustness to the errors in glottal closure detection

with a simulation, where glottal closure instants are extracted

from the synthesized glottal airflow signals, perturbed with

controlled errors, and used to test these algorithms. In this

paper, glottal closure instant is defined for each glottal closure

event as the time sample at which the glottal-flow derivative

signal starts to assume the value of zero. This definition is

used in the YAGA algorithm [9].

Our contribution is presented in the subsequent sections as

follows. Related works are surveyed in Section II. The tested

algorithms are reviewed in Section III. In Section IV, details

are provided on how the sustained-vowel and continuous-

speech data sets are constructed, and the performance mea-

sures used in the evaluation are also described. In Section

V, results of our glottal flow estimation experiments are

documented and analyzed for the tested algorithms. These

results include examples that illustrate the ground-truth and es-

timated glottal airflow signals, as well as performance statistics

calculated at the data-set level. Concluding remarks are given

in Section VI.

II. BACKGROUND

Glottal flow estimation is an important task in speech

analysis for which performance evaluation or literature survey

has been conducted in some dedicated works. Drugman et al.

[14] evaluated three inverse filtering algorithms on real speech

data with voice quality labels, as well as on synthetic speech

data. Chu et al. [15] tested two closely-related inverse filtering

algorithms with a sound-producing instrument modeled after

the glottis and vocal tract. More recently, Guðnason et al. [16]

evaluated the performance of five inverse filtering algorithms

with sustained vowels generated by an articulatory speech

synthesizer, VocalTractLab [17]. Concerning literature survey,

Alku [18] reviewed the literature in the topics of glottal

inverse filtering, parameterization of glottal flow estimates,

and applications of inverse filtering, thereby concluding that

the main current limitations of most inverse filtering methods

are in high-pitch, running-speech, and pathological scenarios.

Drugman et al. [19] presented a review of works on the glottal

processing of speech, covering the aspects of synchronization,

estimation, parameterization, and applications.

In the case of inverse filtering algorithms, the glottal flow

is defined with a representation more general than a param-

eterized waveform. Alku [20] presented a method for glottal

flow estimation that is based on representing the glottal flow

with a low-order linear-predictive spectrum envelope. Wong

et al. [21] conducted linear-predictive covariance analysis

in the closed phase of glottal-flow pulse, and showed that

the analysis implements least-squares estimation of the vocal

tract filter, and that the closed phase can be located with a

normalized error energy. Alku et al. [22] performed a closed-

phase analysis where the inverse filter is constrained in terms

of DC gain and minimum phase. They carried out performance

evaluation with the vowel /a/ synthesized by a physical model

of voice production that allows for simulation of the interaction

between glottal source and vocal tract. To achieve better

robustness to the errors in closed phase detection, Airaksinen

et al. [23] estimated the vocal tract from both closed- and

open-phase time samples with more weight on the closed-

phase samples, and also evaluated their approach with physical

modeling. Airaksinen et al. [24] recently modified the tradi-

tional closed-phase analysis by introducing an additional 1-

norm term in the objective function of linear prediction. Based

on the assumption of a maximum-phase signal for the open

phase of glottal airflow as well as minimum-phase signals for

the return phase of glottal airflow and the vocal tract impulse

response, Drugman et al. [13] were able to estimate the open-

phase glottal airflow by a causal-anticausal separation in the

complex-cepstrum domain that had been applied earlier to a

spectrum-envelope type of speech analysis and resynthesis by

Oppenheim et al. [25]. In a different but related approach,

Zañartu et al. [26] presented a non-parametric scheme to

remove subglottal resonances in order to obtain glottal airflow

estimates from a neck surface accelerometer. This case differs

from the others in that it was designed for a different sensor

and sensing position, and thus could be considered in a future

evaluation.

In contrast to inverse filtering algorithms, alternative ap-

proaches jointly estimate the parameters of a glottal flow

model with the parameters of a vocal tract filter. In an algo-

rithm presented by Ding et al. [27], parameters were estimated

from speech waveforms for the Rosenberg-Klatt (RK) glottal

flow model and a time-varying pole-zero-filter vocal tract

model, by Kalman filtering and simulated annealing. Lu and

Smith [28] estimated parameters of the KLGLOTT88 glottal

flow model and an all-pole vocal tract filter by solving a

convex optimization problem that depends on detected glottal
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closure instants. In an analysis method presented by Funaki

et al. [29], several models are adopted, including the RK

glottal flow model, a white-Gaussian random process for the

aspiration noise, and a time-varying pole-zero filter for the

vocal tract. They used the genetic algorithm as well as the tech-

nique of simulated annealing to fit these models to a speech

signal, with phase distortion compensated by an all-pass filter.

Fröhlich et al. [30] estimated parameters of an exponential-

trigonometric (Liljencrants-Fant) glottal flow derivative model

with a modified discrete all-pole modeling technique that op-

timizes the quality of inverse filtering. Vincent et al. [31] used

the Liljencrants-Fant model and a time-varying all-pole-filter

model for the vocal tract, with some parameters prioritized in a

low-frequency analysis. Degottex et al. [32] used a minimum-

phase vocal tract model to estimate the shape parameter and

time position of the transformed Liljencrants-Fant model, and

evaluated the resulting estimates with a digital vocal tract

simulator. Model-based glottal flow estimation can also be

achieved by fitting a glottal flow model to the glottal flow

estimate given by an inverse filtering algorithm, as presented

by Plumpe et al. [1].

In many of the above-mentioned works, glottal flow esti-

mation experiments were conducted on synthetic audio data

that is based on a shape-descriptive glottal flow model and

an autoregressive vocal tract filter. Indeed, simplifications

involved in such a model of voice production can result

in inadequate synthesis, which in turn can give rise to a

substantial performance gap between synthesized speech and

real speech. This performance gap is especially relevant when

many analysis approaches are actually based on the same

models as the typical data synthesis procedure. In view of this,

a small number of studies have drawn on physical modeling

(either with numerical methods [16], [22], [23], [32]–[34] or

with physical materials [15]) to fulfill realistic simulations of

sustained vowels for the evaluation. In this work, we take a

further step in enhancing the reality of test speech materials,

by generating test data with VocalTractLab, which is capable

of synthesizing continuous speech by simulating user-specified

articulatory movements. Furthermore, this study also expands

on [16] by 1) including multiple voice qualities and subglottal

pressure levels in the test data, 2) adopting several feature-

based measures in performance evaluation, and 3) performing

a robustness analysis with respect to the errors in glottal

closure detection.

III. TESTED ALGORITHMS

In terms of methodology, inverse filtering algorithms can be

divided into three important categories, which are covariance-

analysis approaches, complex-cepstrum approaches, and pitch-

asynchronous approaches. In this evaluation, a small number

of representative algorithms are selected from each category to

provide an adequate coverage of the methodological diversity.

In covariance-analysis approaches, the analysis uses a certain

amount of timing information estimated for the glottal closed

phase to find time samples at which a best fit of the linear

prediction model is expected. At one extreme, both the esti-

mated beginning and ending instants of the closed phase are

utilized, which is the case of closed-phase covariance analysis

(CPCA) [21]. At the other extreme, only an estimated glottal

closure instant is utilized, and the linear prediction model is

fitted in a weighted manner to the speech signal around the

estimated instant to reduce the dependence on accurate timing

information, which is represented in this study by the two

different weighting schemes implemented in sparse linear pre-

diction (SLP) [11] and weighted linear prediction (WLP) [12].

The above three algorithms are thus selected for covariance-

analysis approaches. Complex-cepstrum approaches are com-

pletely independent of linear prediction, for which complex

cepstrum decomposition (CCD) [13] is adequately representa-

tive. To the best of our knowledge, iterative adaptive inverse

filtering (IAIF) [20] is the only algorithm that does not require

identification of glottal closure or opening instants, which is

selected for the pitch-asynchronous category.

The descriptions in this section are specific to a custom

implementation of each algorithm.1 Our implementation of

CCD is based on Drugman’s implementation,2 with the es-

timate of glottal flow derivative post-processed by removing

its DC component. All the algorithms operate at the sam-

pling frequency of 20 kHz in our implementation, with all

synthesized signals resampled from their original sampling

frequency of 44.1 kHz. To ensure proper measurement of

performance, the same sampling frequency is used across

the input, output, and ground-truth signals. Each algorithm is

applied to a uniformly spaced sequence of time frames in the

analyzed utterance. Since no glottal-flow cycle exists within

a non-voiced time interval in the utterance, the glottal airflow

estimated at a non-voiced time frame will be ignored by a

cycle-synchronous performance measure when the accuracy

of glottal flow estimation is evaluated at the utterance level.

A. Closed Phase Covariance Analysis (CPCA)

At each analysis time position, say the τ th position n = nτ ,

the vocal tract filter can be estimated by a linear-predictive

covariance analysis that minimizes residual energy at closed-

phase time samples [21]. Let the speech signal be denoted by

s[n], and let the vocal tract filter take the following form:

V (z) =
1

1 +
∑p

k=1 akz
−k

, (1)

where p is set to 20 to model 10 formants below the Nyquist

frequency of 10 kHz. The analysis calculates

ak = −([bi,j ]
+
N×(p+1)[ci]N×1)k+1, k = 1, ..., p, (2)

where (·)k+1 denotes the (k+1)th element of a vector, N is the

window length (32 ms), and (·)+ denotes the pseudoinverse

of a matrix. The matrix [bi,j ]N×(p+1) is defined by

bi,j =

{

w[nτ + i− 1], if j = 1;
s[nτ + i− j]w[nτ + i− 1], otherwise,

(3)

(i, j) ∈ {1, ..., N} × {1, ..., p+ 1}, (4)

1Source code is available for each custom implementation at https://
languageandvoice.files.wordpress.com/2017/03/egifa.zip.

2http://tcts.fpms.ac.be/~drugman/Toolbox/GLOAT.zip.
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where w[n] is unity if n is within the closed phase or within a

non-voiced time interval, otherwise assuming the value zero.

The vector [ci]N×1 is defined by

ci = s[nτ + i− 1]w[nτ + i− 1], i = 1, ..., N. (5)

Once the vocal tract filter is estimated, the estimate of glottal

flow derivative ǫ̂[n] can be calculated by applying the inverse

filter to the speech signal:

ǫ̂[n] = s[n] +

p
∑

k=1

aks[n− k], n = nτ , ..., nτ +N − 1. (6)

Closed-phase boundaries are derived from glottal closure

and opening instants estimated with the YAGA algorithm [9].

The ending time of glottal closed phase is directly given by the

glottal opening instant, which refers to the instant at which the

linear-predictive residual starts to grow from zero. YAGA aims

to estimate this instant along with the glottal closure instant.

The starting time of each glottal closed phase is estimated by

adding a guarding delay value to the glottal closure instant

to ensure that linear-predictive residual is not minimized over

any open-phase time samples. In the implementation, the delay

value is 0.9 ms, except that when the difference between

glottal opening and closure instants is less than 4.5 ms, 0.2

times the time difference is used for the delay. The delay

value of 0.9 ms was chosen as 1.5 times the root-mean-square

error of estimates produced by YAGA. Note that whereas

the definition of glottal opening instant adopted by YAGA

is based on linear prediction, the definition adopted by some

other algorithms, e.g., [35], is based on the electroglottograph

signal. An algorithm of the latter type can lead to substantial

error in glottal flow estimation when used with CPCA.

For CPCA (and for SLP and WLP as well), analysis time

positions are spaced with a hop size of 16 ms. The hop size

used in [21] was unspecified. In [21], the setting for the filter

order was p = 8, with the sampling frequency unspecified.

Since a filter of order 8 is typically used to model 4 formants

for frequencies below 4 kHz, the sampling frequency there

could have been 8 kHz. The window length used in [21]

was 4.75 ms if a sampling frequency of 8 kHz was used.

This ensured a time resolution that was sufficiently high for

identifying the closed phase from linear-predictive residuals.

B. Sparse Linear Prediction (SLP)

As with CPCA, SLP estimates the vocal tract filter by a

linear-predictive covariance analysis. However, this analysis

minimizes a weighted sum of residual energy at all the time

samples, with higher weights allocated to time samples farther

from glottal closure instants [11]. Also using the equations (2),

(3), and (5), the analysis defines its own weighting as follows:

w[n] = 1− κ ·
L
∑

l=1

exp
−(n− γl)

2

2(σfs)2
, (7)

where γl denotes the lth of a total of L glottal closure

instants detected from the speech signal [9], fs denotes the

sampling frequency in Hz, and κ and σ are parameters fixed

to predefined constants (0.9 and 0.25 ms, respectively). The

value of σ used in [11] was 4.42 ms. Note that glottal closure

instants were detected in [11] by the algorithm of Drugman

and Dutoit [10].

C. Weighted Linear Prediction (WLP)

The WLP algorithm differs from SLP only in that its

weighting is defined by a piecewise-linear function [12], rather

than by a sum of upside-down, shifted Gaussian functions. The

weighting is characterized by two distinct levels of weight (1.0

and 0.05), with the higher-level value taken by all the time

samples that are at a distance from glottal closure instants.

Shortly before each glottal closure instant, the weight begins

to ramp down, reaching the lower-level value before the glottal

closure instant. After retaining the low value (for 0.4 times

the fundamental period) past the glottal closure instant, the

weight starts to ramp up (for 0.45 ms), going back to the

higher level shortly after the glottal closure instant. Ramping

down takes 0.45 ms, and the lower level is reached 0.32 times

the fundamental period before the glottal closure instant. The

value used in [12] for the lower level of weight was 0.01,

determined from a synthetic development data set with true

glottal closure instants.

D. Iterative Adaptive Inverse Filtering (IAIF)

Prior to estimating the vocal tract filter, the spectral contri-

bution of glottal flow derivative can be estimated and removed

from the speech signal with a low-order linear predictive anal-

ysis [20]. IAIF is a two-pass procedure based on this concept.

In the first pass, a first-order linear predictive autocorrelation

analysis is applied to the speech signal to give an estimate of

the glottal-flow spectrum envelope. After applying an inverse

filter of this envelope to the speech signal, a 20th-order linear

predictive autocorrelation analysis is applied to the filtered

signal to give an estimate of the vocal tract filter, according to

which a second inverse filtering procedure yields the estimated

glottal flow derivative for the first pass. In the second pass,

low-order (4th-order) linear predictive analysis is again used

to estimate the source contribution, but applied to the glottal

flow estimated in the first pass. Similarly to the first pass, two

inverse filtering steps follow to give the final estimate of glottal

flow derivative. All the linear predictive analyses in IAIF are

carried out with a window length of 32 ms and a hop size of

16 ms. In [20], the higher order of linear prediction was set

to 10 with a sampling frequency of 8 kHz.

E. Complex Cepstrum Decomposition (CCD)

At each analysis time position, say the lth position n = γl
which coincides with the lth glottal closure instant detected

from the speech signal (by the algorithm of Drugman and

Dutoit [10]), the glottal flow can be estimated directly by

separating a maximum-phase component from the speech

signal, without first estimating a vocal tract filter [13]. The

CCD algorithm approaches the separation by calculating the

complex cepstrum of the speech signal:

x̂ = DFT−1{log |DFT{x}|+ j∠DFT{x}}, (8)
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where DFT{·} denotes the discrete Fourier transform, ∠(·)
denotes the unwrapped phase of a complex number, and x

denotes a time frame of the speech signal s[n] centered at n =
γl, spanning 1.8 cycles, multiplied by a Blackman window,

and zero-padded to 102.4 ms (a default setting in Drugman’s

implementation that ensures a sufficiently high spectral res-

olution needed for phase unwrapping). The maximum-phase

component is represented by the anti-causal component x̂′ in

the complex cepstrum:

(x̂′)i =







1
2 (x̂)1, if i = 1;
0, if 2 ≤ i ≤ N0/2;
(x̂)i, if N0/2 < i ≤ N0,

(9)

where N0 denotes the length of x. The time-domain represen-

tation of the glottal flow estimate is then given by inverting

the complex-cepstral calculation:

x
′ = DFT−1{exp(DFT{x̂′})}, (10)

from which an estimate of the glottal flow derivative can

be calculated by taking the differences between adjacent

elements.

IV. EXPERIMENTAL PROCEDURE

A. Data Sets

All the utterances used in our experiments are generated

by the software VocalTractLab 2.1 [17]. The synthesis of

vowels performs time-domain, finite-difference simulation of

acoustic wave motion for a two-mass, triangular-glottis model

of the vocal folds [36] and a transmission-line model of the

vocal tract. Despite the fact that the glottal area waveforms

simulated from the vocal-fold model may deviate to a certain

degree from the waveforms measured with, e.g., high-speed

digital imaging [37], the simulation reproduces the nonlinear,

time-varying coupling between glottal source and vocal tract

[38] by coupling an external force in the vocal-fold model

to the vocal-tract acoustics through the supraglottal pressure.

Another physiological advantage of this glottis model is its

capability of simulating a continuum of voice qualities from

pressed voice to breathy voice. Voice quality concerns the

degree of glottal closure within each glottal-flow cycle, which

can vary both within the same utterance and among different

speakers. The pressed voice is characterized by a relatively

long phase for closed vocal folds, whereas the vocal folds

can lack a complete closure in the case of breathy voice. By

being self-oscillating, the model promises more realistic glottal

flow simulations than geometric approaches. The synthesizer

includes a subglottal system, where the trachea is modeled

by 23 tube sections up to 24 cm below the glottis, with a

cross-sectional area around 2.5 square cm for most of the

sections. A short-circuit termination impedance is used to

simulate the bronchi and lungs [39]. The output sampling

frequency of the synthesizer is 44.1 kHz. The approach is not

currently capable of simulating pathological voices; therefore,

we limit our analysis to the conditions currently included in

VocalTractLab 2.1.
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Figure 1. Area functions realizing the 6 sustained vowel types in the
experiments. Each function represents the position-varying cross-sectional
area of vocal tract, with the glottis being the positional origin.

To evaluate the performance of inverse filtering algorithms

under various controlled conditions, we carried out sustained-

vowel time-domain simulation of voice production with Vo-

calTractLab, giving a structured set of 750 speech utterances

along with a corresponding set of glottal flow signals.3 These

samples consisted of all the combinations of 5 target funda-

mental frequencies (for controlling vocal-fold tension; 90 Hz,

120 Hz, 150 Hz, 180 Hz, and 210 Hz), 5 subglottal pressure

levels (500 Pa, 708 Pa, 1,000 Pa, 1,414 Pa, and 2,000 Pa),

5 voice qualities (pressed, slightly pressed, modal, slightly

breathy, and breathy), and 6 vowel types (/i/, /e/, /E/, /ä/, /o/,

and /u/; see Fig. 1). Each sample is a sustained-vowel utterance

that lasts for 0.6 seconds.

A second data set is constructed for the continuous-speech

experiments, which is generated by simulating manually

planned movements in vocal-tract and vocal-fold configura-

tions with VocalTractLab.4 All the utterances in this data set

are derived from a prototype score of glottal and articulatory

movements, which was composed by the author of Vocal-

TractLab for the German sentence “Lea und Doreen mögen

Bananen.” The score describes 8 types of vocal movements,

each of which is defined by a sequence of target configu-

rations. Among the 8 movement types, three concern glottal

movements (the other five types all concerning vocal-tract

movements), i.e., target fundamental frequency (continuous-

valued), subglottal pressure (continuous-valued), and voice

quality (pressed, slightly pressed, modal, slightly breathy, or

breathy). To generate utterances that exhibit different con-

ditions of phonation, we adapted this prototype score by

introducing various translations to the three glottal configura-

tion sequences, such that each translated glottal configuration

sequence has a new median value. The resulting adaptations

consist of the 125 combinations of 5 median target fundamen-

tal frequencies, 5 median pressure levels, and 5 median voice

qualities, which share specifications with the sustained-vowel

data. The 125 new movement scores were used to synthesize

125 speech utterances, which make up our continuous-speech

3The sustained-vowel data set is available at https://languageandvoice.files.
wordpress.com/2017/03/vowel.zip.

4The continuous-speech data set is available at https://languageandvoice.
files.wordpress.com/2017/03/speech.zip.
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Table I
ERROR (MEAN ± STANDARD DEVIATION) OF GLOTTAL FLOW ESTIMATES ACROSS THE SUSTAINED-VOWEL AND CONTINUOUS-SPEECH DATA SETS. THE

SUFFIX S REPRESENTS THE SIGNED VARIANT OF AN ERROR MEASURE. THE SUFFIXES LP AND HP REFER TO LOW- AND HIGH-PASS FILTERED VARIANTS

OF MAE-WAVE. THE ERROR GIVEN BY THE BEST-PERFORMING ALGORITHM IS SHOWN IN BOLDFACE FOR EACH COMBINATION OF DATA SET AND

MEASURE. AS DEFINED IN SECTION IV-B, THE MEASURES MAE-H1H2 AND MAE-HRF (AND THEIR VARIANTS) ARE IN DB, AND THE OTHER

MEASURES ARE UNIT-LESS.

Measure Data CPCA SLP WLP IAIF CCD

MAE-Wave
vowel 0.27 ± 0.19 0.29 ± 0.18 0.29 ± 0.17 0.32 ± 0.20 0.34 ± 0.24

speech 0.40 ± 0.11 0.39 ± 0.12 0.39 ± 0.12 0.43 ± 0.11 0.41 ± 0.21

MAE-Wave-S
vowel 0.000 ± 0.05 0.000 ± 0.06 0.001 ± 0.07 −0.008 ± 0.07 0.041 ± 0.11

speech −0.016 ± 0.03 −0.017 ± 0.03 −0.018 ± 0.03 −0.022 ± 0.03 −0.012 ± 0.13

MAE-Wave-LP
vowel 0.24 ± 0.19 0.26 ± 0.18 0.26 ± 0.17 0.29 ± 0.20 0.34 ± 0.22

speech 0.34 ± 0.10 0.33 ± 0.10 0.34 ± 0.10 0.38 ± 0.10 0.42 ± 0.18

MAE-Wave-LP-S
vowel 0.014 ± 0.06 0.014 ± 0.06 0.012 ± 0.07 0.002 ± 0.07 −0.009 ± 0.10

speech 0.000 ± 0.03 −0.003 ± 0.03 −0.002 ± 0.03 −0.011 ± 0.03 −0.095 ± 0.15

MAE-Wave-HP
vowel 0.09 ± 0.054 0.10 ± 0.055 0.10 ± 0.056 0.10 ± 0.057 0.10 ± 0.056

speech 0.16 ± 0.089 0.16 ± 0.087 0.16 ± 0.089 0.16 ± 0.089 0.15 ± 0.090

MAE-Wave-HP-S
vowel 0.000 ± 0.004 0.000 ± 0.005 0.000 ± 0.005 0.000 ± 0.005 −0.002 ± 0.005

speech 0.000 ± 0.002 0.000 ± 0.002 0.000 ± 0.002 0.000 ± 0.002 −0.001 ± 0.002

MAE-NAQ
vowel 0.035 ± 0.027 0.031 ± 0.023 0.032 ± 0.024 0.029 ± 0.023 0.049 ± 0.045

speech 0.035 ± 0.017 0.034 ± 0.017 0.035 ± 0.016 0.033 ± 0.015 0.045 ± 0.030

MAE-NAQ-S
vowel 0.030 ± 0.032 0.024 ± 0.029 0.026 ± 0.030 0.020 ± 0.030 −0.045 ± 0.048

speech 0.026 ± 0.026 0.026 ± 0.026 0.025 ± 0.027 0.024 ± 0.024 −0.039 ± 0.033

MAE-H1H2
vowel 3.3 ± 4.0 3.4 ± 4.1 3.2 ± 3.9 4.2 ± 4.9 5.8 ± 5.0

speech 3.1 ± 1.7 3.0 ± 1.6 3.1 ± 1.7 3.6 ± 1.7 5.6 ± 3.8

MAE-H1H2-S
vowel −0.9 ± 5.0 −2.5 ± 4.7 −2.1 ± 4.6 −3.2 ± 5.6 −5.6 ± 5.2

speech −0.6 ± 1.6 −0.5 ± 1.6 −0.5 ± 1.5 −1.5 ± 1.6 −5.2 ± 3.9

MAE-HRF
vowel 3.0 ± 2.9 3.0 ± 3.0 2.7 ± 2.8 3.8 ± 4.3 5.7 ± 4.9

speech 2.7 ± 1.6 2.7 ± 1.6 2.7 ± 1.6 3.3 ± 1.7 6.7 ± 4.6

MAE-HRF-S
vowel 0.5 ± 4.1 2.2 ± 3.6 1.4 ± 3.6 2.9 ± 4.9 5.6 ± 5.0

speech 0.4 ± 1.7 0.4 ± 1.7 0.3 ± 1.7 1.6 ± 1.6 6.6 ± 4.6

data set. In the adaptation, a translation by δ is introduced to

the sequence of M voice quality values on the linear scale

(with the 5 possible voice qualities encoded by the integers

1, ..., 5):

φ(δ)
m = φ(0)

m + δ, m = 1, ...,M, (11)

where φ
(0)
m and φ

(δ)
m denote the mth prototype and translated

voice quality values, respectively, such that the new sequence

of voice quality values {φ
(δ)
m }Mm=1 has one of the five desired

median values while preserving the sequential variations in

the prototype. Target fundamental frequencies (in Hz) and

subglottal pressures (in Pa) are similarly adapted, except that

these are adapted on the logarithmic scale.

B. Performance Measures

Consider an utterance for which a glottal airflow estimate

has been produced by an inverse filtering algorithm. We

assess the accuracy of the estimate in a cycle-synchronous

fashion, accumulating cycle-wise error measurements over the

whole utterance to give an overall error measurement for

the utterance. The utterance is segmented automatically into

cycles according to a glottal area signal derived from the

synthesis process. At each time point, the area between the

upper (superior) vocal-fold sections, and that between the

lower (inferior) vocal-fold sections, are available from the

speech synthesizer as part of the simulation. With the glottal

area defined as the smaller of these two areas, the utterance

is segmented whenever the glottal area waveform drops below

a threshold value that indicates glottal closure. The threshold

value is set to an area that is 10−6 m2 larger than the minimum

area over the utterance. Note that the instant when the glottal

area goes to zero does not typically coincide exactly with the

instant when the negative peak of glottal flow derivative occurs

[8]. The glottal area signals exhibit simple trends without

impulse-like events, lending themselves to reliable detection

of glottal closure events.
1) Waveform Errors: To determine the extent to which the

estimated waveform deviates from the true glottal flow deriva-

tive, we calculate the normalized median absolute waveform

error (MAE-Wave). The first step in this calculation is time-

alignment of the ground-truth waveform with the estimated

waveform. Although the acoustic propagation delay in the

voice transmission through the vocal tract can ideally be

canceled by the inverse filter, the acoustic propagation delay

in voice radiation cannot be modeled by an inverse filtering

algorithm in general, which leads to a time delay between

the estimated and ground-truth glottal flow signals that needs

to be compensated with an alignment. This alignment is

implemented by a 0.65-ms delay of the ground-truth waveform

relative to the estimated waveform, which corresponds to a 22-

cm radiation distance. Within a particular cycle, let the true

and estimated glottal flow derivative signals be denoted by
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Figure 2. Waveform error evaluation for a particular cycle identified from
the synthesized glottal area signals. The median of all cycle-level waveform
errors in an utterance is calculated to give an MAE-Wave.

ǫc[n] and ǫ̂c[n], respectively. For pulse shape comparison, we

calculate a scaled version of the estimate whose amplitude

is aligned with the true signal, with a scaling factor that

minimizes the Euclidean distance between the scaled version

and the true signal (i.e., by an orthogonal projection):

ǫ̃c[n] =

∑Nc−1
i=0 ǫc[i]ǫ̂c[i]
∑Nc−1

i=0 ǫ̂2c [i]
· ǫ̂c[n], n = 0, ..., Nc − 1, (12)

where Nc denotes the length of this cycle. As shown in

Fig. 2, a cycle-level waveform error is calculated by taking

the error magnitude of ǫ̃c[n] with respect to ǫc[n] for each

time sample, taking the median of error magnitudes over all

time samples in the cycle, and normalizing the median value

by the utterance-wide root-mean-square amplitude of the true

signal. The utterance-level waveform error, i.e., the MAE-

Wave error measure, is calculated by taking the median of

all cycle-level errors. The utterance-level waveform error is

not equivalent to a median calculated over all time samples in

an utterance because the number of time samples within each

cycle can vary from one cycle to another. Here the median-

based measurement ensures that the resulting error accounts

for a majority of its components, both on the cycle level and

on the utterance level.

In the early days of voice production studies, inverse

filtering used to be performed with dedicated hardware that

came with no capability of optimization or matrix computation

for formant frequency estimation, but allowed the user to

assess glottal flow waveforms that resulted from various (user-

specified) formant frequency settings [7]. The analysis imple-

mented on a legacy inverse filtering device is typically limited

to a bandwidth that only accounts for the first formant of vocal-

tract frequency response. In the present study, to evaluate the

accuracy of an estimated waveform in terms of what would

have been given by single-formant processing, a variant of

the aforementioned waveform error is calculated by applying

the same error evaluation procedure to a low-pass filtered

version of the true signal and a low-pass filtered version of

the estimated signal. The low-pass filter is a 10th-order digital

Butterworth filter with a cut-off frequency of 1 kHz [7]. On

the other hand, to measure the higher-formant error component

that could not be observed from single-formant processing,

Figure 3. Error evaluation for a particular cycle (identified from the synthe-
sized glottal area signals) and each of the features NAQ, H1-H2, and HRF. For
each feature, the median of all cycle-level errors in an utterance is calculated
to give a median absolute feature error.

another variant of MAE-Wave is similarly calculated with a

high-pass filter cut off at 1 kHz.
2) Feature Errors: The accuracy of a glottal flow estimate

can also be assessed in terms of important waveform features

that traditionally represent voice quality. To that end, we

use the normalized amplitude quotient (NAQ) [40], the H1-

H2 feature [41], and the harmonic richness factor (HRF)

[42], calculating the median absolute NAQ, H1-H2, and HRF

errors (MAE-NAQ, MAE-H1H2, and MAE-HRF). For each

cycle of the true signal ǫc[n], an NAQ is evaluated by di-

viding the peak-to-peak glottal flow amplitude by the product

of fundamental period and maximum flow declination rate.

The maximum flow declination rate refers to the maximum

magnitude of negative slope on the pulse shape of glottal

flow (i.e., magnitude of the lowest point in the derivative

pulse shape), which apparently varies with the fundamental

frequency and signal amplitude. The NAQ feature eliminates

this variance by normalizing the maximum rate by the diagonal

slope of the rectangle spanned by the single-cycle pulse shape

of the glottal flow. The features H1-H2 and HRF are also

extracted from the true glottal flow as spectral descriptors of

the single-cycle pulse shape. H1-H2 subtracts the amplitude of

the second harmonic (in decibels) from the amplitude of the

first harmonic. HRF measures the total power (in decibels) of

overtones, i.e., the harmonics with an order greater than one,

relative to the power of the fundamental. Here the harmonic

amplitudes of the true glottal flow (integral of ǫc[n]) are

calculated by taking the absolute value of its discrete Fourier

transform (without zero-padding before the transform) and

extracting the consecutive frequency bins that correspond to

harmonic frequencies greater than 0 Hz and less than 3 kHz.

Both NAQ and H1-H2 could be regarded as a measure of

voice breathiness, while HRF is negatively correlated with

breathiness [40]–[42]. The same features are also extracted

from the glottal flow derivative estimate ǫ̂c[n]. As shown

in Fig. 3, to evaluate the error in glottal flow estimation,

three error magnitudes are calculated respectively for the

three features for each cycle, and an utterance-level error is

calculated by taking the median of all cycle-level errors for

each of the three features.

C. Simulation of Glottal Closure Instants

To evaluate the susceptibility of inverse filtering algorithms

to the errors in glottal closure detection, we extract all the
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glottal closure instants from each true glottal flow signal in

the data set, use these true instants to simulate estimated

instants of a certain accuracy, and substitute these simulated

estimates for the real detector-produced estimates in a glottal

flow estimation experiment.

To extract glottal closure instants from a true glottal flow

signal and its derivative, the signals are first segmented into

cycles with the same area-based procedure as described in

Section IV-B. For each cycle, in order to identify closed-

phase time samples, the maximum value of glottal flow is

calculated. Time samples with a glottal-flow value below 0.1

times the maximum value are considered to be within the

closed phase. Among the closed-phase time samples, the one

with the minimum derivative value is extracted as a true glottal

closure instant. In case that no closed-phase time sample can

be found (which can sometimes occur for breathy voice), the

minimum-flow time sample is taken as a true glottal closure

instant.

The error in an estimated glottal closure instant can be

measured in relation to the instantaneous fundamental period,

as a phase error in the quasi-periodic structure of glottal

closure instants. To see the effect that this phase error has

on the performance of glottal flow estimation, we simulate

estimates of glottal closure instants that have a constant phase

error of θ radians throughout an utterance:

γ̃l =

⌊

γ̄l + (γ̄l+1 − γ̄l) ·
θ

2π
+ 0.00065fs + 0.5

⌋

, (13)

l = 1, ..., L− 1, (14)

γ̃L =

⌊

γ̄L + (γ̄L − γ̄L−1) ·
θ

2π
+ 0.00065fs + 0.5

⌋

, (15)

where γ̃l denotes the lth simulated glottal closure instant in

samples, γ̄l denotes the lth true glottal closure instant in

samples, fs denotes the sampling frequency in Hz, and a

rounding to the nearest integer and a 0.65-ms delay give the

simulated estimate.

To test in this simulation an algorithm that also uses glottal

opening instants, such as CPCA, the instants are derived

from the simulated glottal closure instants without a separate

simulation procedure. To that end, the YAGA algorithm is used

to generate candidates for the glottal opening instants, from

which a sequence of glottal opening instants can be chosen

with reference to the simulated sequence of glottal closure

instants.

V. RESULTS

A. Results on Sustained Vowel and Continuous Speech Data

Results of the sustained-vowel and continuous-speech glot-

tal flow estimation experiments are presented in Table I. For

sustained vowels, all the five algorithms gave normalized

waveform errors around 0.3, with standard deviations around

0.2, which shows no substantial performance difference among

the algorithms. Listed on the row titled “MAE-Wave-S” are

results obtained with a signed variant of the waveform er-

ror, where a signed error is calculated in place of an error

magnitude for each time sample to reveal any systematic bias

in the signal estimate. This shows that CCD tends more to

overestimate glottal flow derivative values than to underes-

timate them, whereas there is a slight tendency for IAIF to

underestimate glottal flow derivative values. Still, even for

these two algorithms the bias does not predominantly account

for the unsigned waveform error.

The similarity between the low-pass filtered and unfiltered

waveform errors (measured as described in Section IV-B1)

suggests a consistency of the present performance measure-

ment with earlier research. Although large signal value errors

could occur in the return phase (because of the typically abrupt

change in glottal flow derivative) and thus be captured by

the high-pass filtered measure, such errors would be confined

within a small number of time samples in each cycle and have

no substantial impact on the median-based high-pass measure.

This explains why the low-pass error component dominates the

waveform errors.

The NAQ results again show a similarity of performance

among the algorithms, but reveal that errors in NAQ are

overwhelmingly either underestimations (with a large, negative

signed error for CCD) or overestimations (with a large, posi-

tive signed error for the other algorithms) within an algorithm.

This suggests the possibility of improving NAQ estimates

given by a specific algorithm by canceling the bias observed

here. The results for the spectral features H1-H2 and HRF

show relatively poor performance for CCD with average errors

around 6 dB, and substantial biases (underestimations of H1-

H2 and overestimations of HRF) for all the algorithms except

CPCA.

Regarding the continuous-speech results, mean MAE-Wave

was again similar (approximately 0.40) across all the algo-

rithms, and comparison of the MAE-Wave results with those

obtained with the variant measures exhibits an absence of

substantial bias, as well as a consistency of unfiltered results

with low-pass filtered results. The NAQ results reveal the

biasedness of all NAQ estimates. CCD produced H1-H2 and

HRF estimates with a bias that resulted in an average error

around 6 dB.

Although the five algorithms exhibited similar performance

in terms of MAE-Wave, a statistically significant performance

difference between any two algorithms may be detected by a

hypothesis test. To ascertain the best-performing algorithm, the

paired, left-tailed Wilcoxon signed rank test was applied to the

pairs (750 for sustained vowels, or 125 for continuous speech)

of MAE-Wave values produced by each pair of algorithms.

The test operates on a pair of sample data, producing a p-value

for the null hypothesis that the median difference between

the first sample data and the second sample data is zero,

against the alternative hypothesis that the median difference

is negative. Results of the significance tests are presented

in Tables II and III, from which we can conclude 1) that

CPCA performs the best in terms of MAE-Wave and sustained

vowels, and 2) that SLP performs the best in terms of MAE-

Wave and continuous speech if CCD is excluded from the

comparison.

B. Results on Data Subsets
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Table II
MATRIX OF p-VALUES FOR SUSTAINED VOWELS. EACH p-VALUE WAS

GIVEN BY A PAIRED LEFT-TAILED WILCOXON SIGNED RANK TEST

CONDUCTED BETWEEN TWO INVERSE FILTERING ALGORITHMS ON THE

MAE-WAVE ERROR. THE ROW AND COLUMN LABELS IDENTIFY THE

FIRST AND SECOND SAMPLE DATA, RESPECTIVELY. A p-VALUE LESS THAN

0.05 (SHOWN IN BOLDFACE) INDICATES THAT THE ROW ALGORITHM

TENDS TO GIVE A LOWER MAE-WAVE THAN THE COLUMN ALGORITHM

AT THE 5% SIGNIFICANCE LEVEL.

CPCA SLP WLP IAIF CCD

CPCA 1.00 0.00 0.00 0.00 0.00

SLP 1.00 1.00 1.00 0.00 0.00

WLP 1.00 0.00 1.00 0.00 0.00

IAIF 1.00 1.00 1.00 1.00 0.12

CCD 1.00 1.00 1.00 0.88 1.00

Table III
MATRIX OF p-VALUES FOR CONTINUOUS SPEECH. EACH p-VALUE WAS

GIVEN BY A PAIRED LEFT-TAILED WILCOXON SIGNED RANK TEST

CONDUCTED BETWEEN TWO INVERSE FILTERING ALGORITHMS ON THE

MAE-WAVE ERROR. THE ROW AND COLUMN LABELS IDENTIFY THE

FIRST AND SECOND SAMPLE DATA, RESPECTIVELY. A p-VALUE LESS THAN

0.05 (SHOWN IN BOLDFACE) INDICATES THAT THE ROW ALGORITHM

TENDS TO GIVE A LOWER MAE-WAVE THAN THE COLUMN ALGORITHM

AT THE 5% SIGNIFICANCE LEVEL.

CPCA SLP WLP IAIF CCD

CPCA 1.00 1.00 1.00 0.00 0.65

SLP 0.00 1.00 0.00 0.00 0.35

WLP 0.00 1.00 1.00 0.00 0.43

IAIF 1.00 1.00 1.00 1.00 0.96

CCD 0.35 0.65 0.57 0.04 1.00

0

0.5

1

M
A

E
-W

av
e

CPCA SLP WLP IAIF CCD

0

0.05

0.1

M
A

E
-N

A
Q

0

5

10

M
A

E
-H

1
H

2

Vowel Type

0

5

10

M
A

E
-H

R
F

/i/

/i/

/i/

/i/

/e/

/e/

/e/

/e/

/E/

/E/

/E/

/E/

/ä/

/ä/

/ä/

/ä/

/o/

/o/

/o/

/o/

/u/

/u/

/u/

/u/

Figure 4. Subset error averages for vowel types.

1) Vowel Types: It has been observed by some researchers

that some vowels with a low first formant frequency cannot be

adequately analyzed by an inverse filtering algorithm, whereas

the vowel /ä/ has a first-formant frequency that is sufficiently

high to avoid interference with the primarily low-frequency
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Figure 5. Subset error averages for voice qualities. Only utterances of vowel
/ä/ in the sustained-vowel data set are used.

energy distribution of glottal source [20]. To see the impact

of vowel type on the performance of algorithms, we took

a separate average of errors for each vowel-specific subset

of the sustained-vowel data. As shown in Fig. 4, the close

rounded vowels /o/ and /u/ are associated with substantially

higher errors than other vowels. This confirms that the analysis

of close rounded vowels remains difficult as far as inverse

filtering algorithms are concerned. Throughout the rest of this

paper, we will move on to explore some other factors that

could also have an effect on algorithm performance, while

factoring out the effect of vowel types by testing the algorithms

on utterances of the vowel /ä/ only.

2) Voice Qualities: The performance of algorithms on

utterances of different voice qualities is examined in Fig. 5.

For CCD, the breathy voice quality is associated with a sub-

stantially higher average error than the pressed voice quality

with respect to every performance measure, which suggests

that the maximum phase property assumed for the glottal-flow

open phase may not be as valid for breathy voice as for pressed

voice. All the other algorithms demonstrate roughly constant

performance over the voice qualities with respect to several

measures. This is remarkable for the closed-phase approaches

in particular, for which only a small number of time samples

are available in each analysis time frame for the estimation of

vocal tract filter in the case of breathy voice. An exception

to this constant performance is the NAQ error, for which

the pressed and slightly pressed voice qualities have slightly

higher errors. This resulted from the narrow negative peaks

in pressed glottal flow derivative waveforms, which are not

represented accurately by the 20-kHz signal sampling in our

experiments. Accurate performance evaluation in terms of the

NAQ feature would require a sampling frequency higher than
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Figure 6. Subset error averages for subglottal pressure levels. Only utterances
of vowel /ä/ in the sustained-vowel data set are used.

44.1 kHz because even the un-resampled derivative waveforms

from the synthesizer for pressed voice, exhibit maximum

flow declination rates that vary substantially between adjacent

cycles.

3) Subglottal Pressure Levels: Sustained-vowel utterances

of a particular subglottal pressure are also isolated to give

an average error specific to the pressure level. These errors

are plotted in Fig. 6, where the only remarkable effect of the

pressure level occurs with the waveform and NAQ errors given

by the CCD algorithm. The raised error for low pressure could

be an effect similar to that of breathiness observed for CCD

in Section V-B2; i.e., low subglottal pressure tends to result

in a glottal-flow pulse shape typical of a breathy voice.

4) Target Fundamental Frequencies: Inverse filtering algo-

rithms typically involve the estimation of vocal tract filter,

which explicitly or implicitly relies on the harmonic ampli-

tudes of speech signal as observable samples of the spectrum

envelope. As the fundamental frequency increases, the observ-

able harmonics become sparser in the spectrum, which can

gradually turn the envelope estimation problem into an under-

determined one. The degradation of glottal flow estimation

performance under increasing fundamental frequency has been

well documented and discussed in the literature, which is

also observed on our data set as a general trend of MAE-

Wave in Fig. 7. In comparison to the other algorithms, the

evidently inferior performance of CCD presumably results

from the limited validity of its assumption on the maximum-

phase open-phase glottal flow, given that none of the others is

based on the assumption.

C. Examples

To demonstrate the performance of each inverse filtering

algorithm, consider the utterance for which median perfor-
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Figure 7. Subset error averages for target fundamental frequencies. Only
utterances of vowel /ä/ in the sustained-vowel data set are used.
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Figure 8. Cycle-level errors in a sustained-vowel example utterance, which
has a slightly pressed glottal flow, a vowel type of /ä/, a target fundamental
frequency of 150 Hz, and a subglottal pressure of 500 Pa. The suffix C refers
to the cycle-level errors underlying an utterance-level measure. Marked with
a vertical green line is the cycle with the 25th lowest error among the 49
cycles in terms of the CPCA algorithm and the cycle-level components of
MAE-Wave.

mance was observed among all the utterances concerned. The

median-performance utterance is determined in terms of the

MAE-Wave measure and the CPCA algorithm. The utterance
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Figure 9. Glottal flow and derivative (ǫ̃c[n]) estimates generated by the tested
algorithms at the median cycle marked in Fig. 8. The endpoints of the cycle
are marked with vertical green lines.

is selected such that its error is the 63rd lowest (0.099) among

all the 125 utterances of vowel /ä/. For this example utterance,

results can be examined not only in terms of MAE-Wave and

CPCA, but also in terms of other measures and algorithms.

Cycle-level errors are plotted for this utterance in Fig. 8,

which shows that the best-performing algorithm varies on the

utterance level, depending on the error measure used: When

the waveform error is used, CPCA gave the lowest error. When

the NAQ error is used, the lowest error was given by CCD.

When either of the two spectral-feature errors is used, IAIF

and SLP performed the best.

Physiologically based speech synthesis could simulate a

“ripple effect” in the glottal airflow that is beyond the rep-

resentation of a typical glottal flow model. It consists in some

ripples in the open-phase glottal flow derivative waveform that

result from the nonlinear coupling between vocal tract and

glottis [38]. To see how well these ripples can be captured

by an inverse filtering algorithm, we assess the accuracy of

glottal flow estimation also at the cycle level. To that end, we

apply the same median selection strategy to the cycles in the

example utterance, illustrating with the median-performance

cycle determined in terms of the cycle-level components of

MAE-Wave and the CPCA algorithm. The example cycle is

selected such that its error is the 25th lowest (0.099) among all

the 49 cycles in the example utterance. The estimates given by

the five algorithms for the selected cycle are shown in Fig. 9.

In the derivative plot, CPCA slightly deviates from the ground

truth during the closed phase, but closely matches the ground

truth during the open phase, where the ripples are evident.

In contrast, CCD deviates considerably from the ground truth

during the open phase. The latter deviation is so severe that

spectral-feature errors reach 2 dB for CCD. Given a ground-

truth value of 0.07 for this cycle, NAQ is underestimated
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Figure 10. Performance of four algorithms under various amounts of error in
each simulated glottal closure instant (GCI) estimate used by the algorithms.
Only utterances of vowel /ä/ in the sustained-vowel data set are used in these
experiments.

by CCD at 0.06 and overestimated by the other algorithms

(at 0.11 by IAIF and at 0.10 by the 3 covariance-analysis

algorithms).

D. Robustness to Errors in Glottal Closure Detection

Results for the simulated glottal closure detection are pre-

sented in Fig. 10. As intended by the weighted minimization

of residual energy, the dependence of performance on the

accuracy of glottal closure detection is minimal for SLP under

every performance measure. The strong dependence for the

other three algorithms is evident in terms of the waveform

error. Despite this, the zero-phase-error MAE-Wave values in

Fig. 10 (resulting from the use of true glottal closure instants)

are fairly close to the MAE-Wave values in Fig. 4 for the vowel

/ä/. This implies that the errors in (non-simulated) glottal

closure detection do not constitute a primary factor that limited

the evaluated performance of analyzing this vowel, leaving

high target fundamental frequencies as the only important

limiting factor. Note that IAIF does not rely on glottal closure

detection.

VI. CONCLUSIONS

In this paper, the performance of several inverse filtering

algorithms has been evaluated with synthesized test data.

These algorithms aim to provide accurate glottal flow estimates

without assuming a glottal flow model. With the test data

generated with a physiologically relevant, articulatory speech

synthesizer that simulates articulatory movement as well as

voice production, the resulting evaluation serves to predict the

performance of these algorithms in analyzing real speech.
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The fundamental techniques that underlie the tested methods

include linear-predictive covariance analysis, linear-predictive

autocorrelation analysis, and the complex cepstrum. The ex-

periments showed that each method gives an average MAE-

Wave around 0.3 over the sustained-vowel data, and an average

error of the same type around 0.4 over the continuous-speech

data. Significance tests identified CPCA as the algorithm that

gives the lowest MAE-Wave in sustained-vowel analysis. SLP

was shown by significance tests to outperform CPCA, WLP,

and IAIF in the case of continuous speech analysis. The

average waveform errors evaluated over the close rounded

vowel subsets of the sustained-vowel data are above 0.4 for

all the methods, which confirmed that the methods are not as

effective for close rounded vowels as for open vowels. Com-

parison among data subsets of an open vowel and of different

voice qualities revealed that CCD does not produce glottal

flow estimates as accurately for breathy voice as for pressed

voice, which suggests that the validity of the maximum-

phase assumption on open-phase glottal flow is questionable

in the case of breathy voice. According to the robustness

analysis performed with respect to the errors in glottal closure

detection, the algorithm of choice for the analysis of vowel /ä/

is IAIF or SLP when accurate glottal closure instants are not

available.

Results of the experiments suggest that the difficulty in

analyzing close rounded vowels remains a major factor that

limits the applicability of inverse filtering algorithms to ac-

curate glottal flow estimation from continuous speech. This

difficulty could have resulted from the first-formant resonance

in close rounded vowels coinciding with the frequency band

where glottal source energy is primarily distributed. It would

be an important direction for future research to inquire models

of voice production that are effective for the analysis of close

rounded vowels. Other challenges in glottal flow estimation

also merit further investigation, including high-pitched phona-

tion, disordered speech, and estimation from non-audio signals

such as oral airflow and neck-surface accelerometry. Regarding

biometric and clinical applications, it will be of great interest

to evaluate the impact of current limitations of inverse filtering

algorithms in a specific application, as well as to explore how

the application should be approached to make the most of

the information revealed by an inverse filtering algorithm. For

instance, a relevant clinical application is the discrimination

between normal and hyperfunctional voices. Espinoza et al.

[43] presented an approach to this type of discrimination,

which is based on a set of glottal-flow measures extracted

from the output of an inverse filtering algorithm. Future efforts

can thus look into the accuracy of clinical discrimination

achievable with the best-performing algorithm identified in this

study.
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