Estimating Subglottal Pressure During Phonation with a Neck-Surface Accelerometer Sensor

Amanda S. Fryd1,2; Jarrad H. Van Stan1,2; Robert E. Hillman1,2,3; Daryush D. Mehta1,2,3

1Institute of Health Professions, Massachusetts General Hospital; 2Ctr. for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital; 3Dept. of Surgery, Harvard Medical School

Purpose

The purpose of this study was to evaluate the potential for the noninvasive estimation of subglottal air pressure using a neck-surface accelerometer and to compare the accuracy of accelerometer-derived subglottal pressure relative to accelerometer-derived sound pressure level.

Methods

Indirect estimates of subglottal pressure (P_g) were obtained from 10 vocally-healthy adults (5 female, 5 male) during loud-to-soft repetitions of /p/-vowel gestures at three pitch levels (low, comfortable, high) in three vowel contexts (/a/, /i/, /u/) in the modal voice register. Simultaneous recordings were made of subglottal neck-surface acceleration (ACC), intraglottal pressure (IOP), and radiated acoustic pressure (MIC).

- **Vowel:** root-mean-square (RMS) amplitude of ACC and MIC
- **/p/:** P_g, from average of IOP plateaus before and after vowel

Results

Illustrative scatter plots for female subject F3

- P_g-ACC: ACC-derived P_g exhibits lower uncertainty than with MIC signal amplitude.
- Linear regressions were performed to examine the effects of vowel context and pitch condition on slopes and intercepts.
- 95% prediction interval (PI_{95}) computed uncertainty in estimating P_g using ACC and MIC signal amplitudes.

Discussion

- Correlation of ACC signal amplitude P_g was stronger than with MIC signal amplitude.
- PI_{95} for ACC-derived P_g: $r^2 = 0.68–0.93$
- PI_{95} for MIC-derived P_g: $r^2 = 0.46–0.81$
- Vowel context and phonatory pitch both contributed to the uncertainty in estimating SPL using ACC signal amplitude.
- Sensitivity to vowel and pitch when estimating P_g with ACC signal amplitude.
- Results support the continued estimation of P_g using an ACC sensor due to the reduced uncertainty associated with ACC-derived P_g versus the uncertainty associated with ACC-derived SPL.

Conclusions and Future Work

This study demonstrated the potential for non-invasively estimating subglottal air pressure using a neck-surface accelerometer. Modal register data obtained from ten vocally-healthy participants revealed that accelerometer signal amplitude correlated better with estimates of subglottal air pressure than with acoustic SPL.

Acknowledgments

This work was supported by the Voice Health Institute and the National Institutes of Health (NIH) National Institute on Deafness and Other Communication Disorders under Grant R33 DC011588. Contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

References