Impact of congestive heart failure on voice and speech production: A pilot study

Olivia Murton1,2, Daryush Mehta2,3, Maureen Daher4, Karla Verkouw4, Sara Tabtabai4, Johannes Steiner4, Thomas Cunningham4, Robert Hillman1–3, G. William Dec4, Dennis Ausiello4, Marc Semigran4,5

1Speech and Hearing Bioscience & Technology, Division of Medical Sciences, Harvard Medical School; 2Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital; 3Department of Surgery–MGH, Harvard Medical School; 4Institute for Heart, Vascular and Stroke Care, Massachusetts General Hospital; 5Department of Medicine, Harvard Medical School

Motivation

Noninvasive identification of volume overload is critical to maintaining stability of chronic heart failure (HF) patients. Current methods (e.g., weight monitoring) have limited reliability and only reflect changes that occur shortly before the onset of symptoms.

The goal of this study was to determine whether voice and speech changes in chronic HF patients hospitalized for acute decompensation during diuresis are correlated with measures of volume status such as weight, NT-proBNP, and symptoms.

Hypotheses

- Vocal fold edema lowers pitch and increases acoustic perturbation
- Volume overload increases the frequency of breaths during continuous speech

Methods

Ten HF patients with acute decompensation were studied. The following voice and cardiac-related assessments were performed:

Daily
- Physical exam
- Sustained vowels
- Standard reading passage (Rainbow Passage)

Admission and discharge
- Plasma NT-proBNP
- Dyspnea visual analog scale (DVAS)
- Global symptoms visual analog scale (GVAS)

Voice and speech measures computed from a vowel’s most stable 1-second segment:
- (A) waveform (jitter)
- (B) spectrum (energy ratio)
- (C) cepstrum (CPP)

Respiratory
- ΔWeight (kg)
- ΔNT-proBNP (pg/ml)
- ΔDVAS

Cardiac
- ΔBaseline BNP (pg/ml)
- ΔBaseline weight (kg)

Acoustic
- ΔPitch stdev (Hz)
- ΔJitter (pts)
- ΔCPP (dB)

Time Course of Changes in Physiologic Markers of Heart Failure Decompensation

Results

Patient number

<table>
<thead>
<tr>
<th>Patient number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)/Sex</td>
<td>62/F; 76/M</td>
<td>65/M; 68/M</td>
<td>68/M</td>
<td>70/M</td>
<td>76/M</td>
<td>84/M</td>
<td>69.5 ± 12.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline BNP (pg/ml)</td>
<td>3712</td>
<td>2201</td>
<td>3766</td>
<td>1919</td>
<td>2900</td>
<td>11521</td>
<td>6866</td>
<td>31601</td>
<td>7204 ± 9040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline weight (kg)</td>
<td>88.0</td>
<td>79.0</td>
<td>116.6</td>
<td>61.4</td>
<td>122.5</td>
<td>104.9</td>
<td>119.7</td>
<td>127.7</td>
<td>78.5</td>
<td>90.6</td>
<td>98.8 ± 22.5</td>
</tr>
</tbody>
</table>

Δ Measure

<table>
<thead>
<tr>
<th>Measure</th>
<th>ΔPitch stdev (Hz)</th>
<th>ΔJitter (pts)</th>
<th>ΔCPP (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>0.73 ± 0.20</td>
<td>-0.12 ± 0.06</td>
<td>-1.05 ± 5.46</td>
</tr>
<tr>
<td># improved</td>
<td>8 of 10</td>
<td>8 of 10</td>
<td>6 of 10</td>
</tr>
</tbody>
</table>

Total changes in selected measures from admission to discharge

<table>
<thead>
<tr>
<th>Measure</th>
<th>ΔMeasure</th>
<th># improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔPitch</td>
<td>1.50</td>
<td>7 of 10</td>
</tr>
<tr>
<td>ΔPhonemes per phrase (maximum)</td>
<td>4</td>
<td>7 of 10</td>
</tr>
</tbody>
</table>

Discussion

Measures of voice stability and respiratory capacity correlate with improvements in HF patients after diuresis:

- Overall acoustic irregularity (CPP)
- Pitch instability (pitch standard deviation, jitter)
- Respiratory stress (phonemes per phrase)

Future work

Current data analysis:
- Analyze measures from neck-surface accelerometer
- During-stay changes in weight vs. voice measures
- Computation of additional voice and speech measures

Future data collection:
- Laryngeal endoscopy to image HF impact on vocal fold tissue
- Enroll healthy controls matched for age and comorbidities
- Additional speech and respiratory assessment tasks

Future Work

Acknowledgments

This project is supported by the NIH National Institute on Deafness and Other Communication Disorders (T32 DC000038) and the Center for Assessment Technology and Continuous Health at Massachusetts General Hospital.

References

