Creating Climate Coalitions: Mass Preferences for Compensating Vulnerability in the World’s Two Largest Democracies*

Nikhar Gaikwad† Federica Genovese‡ Dustin Tingley§

This draft: June 8, 2021

Abstract

Combating climate change requires large economic adjustments with significant distributional implications. To build coalitions of support, scholars and policymakers propose compensating individuals who will bear decarbonization’s costs. What are the determinants of public opinion regarding climate compensation and investment? We present theory to explicate how distinct sources of vulnerability influence preferences for different types of climate policy. Fielding original surveys in the United States and India, we show that people who reside in coal-producing regions prefer compensation for lost jobs. The general public privileges diffuse redistribution mechanisms and investments, somewhat discounting compensation to targeted groups. Those who are both physically and economically vulnerable have cross-cutting preferences. We connect coal country’s distinctive compensatory preferences to a logic of shared identity. Our findings have implications for the ‘just energy’ transition and for the study of embedded liberalism and redistributive policymaking in the global economy.

Key Words: climate change, compensation, investment, vulnerability, United States, India, fossil fuels, decarbonization

*We thank Anustubh Agnihotri, Patrick Bayer, Michael Bechtel, Ricky Clark, Rohit Chandra, Anirvan Chowdhury, Alicia Cooperman, John Ferejohn, Jennifer Hadden, Erum Haider, Lisa McKay, Matto Mildenberger, Nicholas Obradovich, Adam Przeworski, Shanker Satyanath, Kenneth Scheve, Resul Umit, Johannes Urpelainen, Noah Zucker, Robert Keohane, Jonah Vorspan-Stein and participants at the Center for Advanced Study in the Behavioral Sciences’ Comparative Politics of Climate Change Workshop, Stanford University’s Comparative Politics of Environmental Policymaking Workshop, the Political Economy of Energy Transitions Workshop, the London School of Economics’ International Relations Workshop, the 2019 American Political Science Association, the 2019 International Political Economy Society conference, and the 2020 Global Research in International Political Economy webinar for helpful feedback. Research for this paper, and discussion at several research meetings, was made possible by generous funding from the Balzan Foundation under the terms of a prize awarded in 2017 to Professor Robert O. Keohane and administered by Princeton University and the Center for Advanced Study in the Behavioral Sciences under his supervision. Darrin Gilkerson, Diana Ding, Kylan Rutherford, and Aura Gonzalez provided excellent research assistance.

†Assistant Professor, Political Science, Columbia University, Email: nikhar.gaikwad@columbia.edu.
‡Senior Lecturer, Department of Government, University of Essex, Email: fgenov@essex.ac.uk.
§Professor of Government, Harvard University, Email: dtingley@gov.harvard.edu.
Decarbonization is one of the most pressing and complex challenges facing governments around the world. It requires international coordination across countries seeking to ratify effective emissions reductions agreements (Keohane and Victor, 2016). At the same time, it necessitates convincing domestic audiences to support national policies that will facilitate meaningful reductions in emissions (Bechtel and Scheve, 2013; Meckling et al., 2015). Because these policies have significant distributional implications, they are poised to generate vigorous opposition from adversely affected communities (Stokes, 2016; Breetz, Mildenberger and Stokes, 2018; Jenkins, 2019). To alleviate these “carbon transition” costs for the vulnerable and create momentum for climate policy cooperation, governments increasingly propose compensation and investment policies.

While existing work explicates the determinants of support and opposition for climate action (e.g. Aldy, Kotchen and Leiserowitz, 2012; Tingley and Tomz, 2014; Cooper, Kim and Urpelainen, 2018; Bechtel and Scheve, 2013), there is currently a dearth of theory and evidence to clarify how individuals develop preferences regarding compensation and investment in climate policy. These policies can include transfers to individuals likely to lose their jobs when carbon-intensive industries shut down, investments in infrastructure to protect individuals from the deleterious ecological effects of climate change, investments in green energy technologies, or carbon taxes equally redistributed to all citizens. Given the key role that compensation plays in legislative action on environmental regulation (Hatch, 1995; Kono, 2020) as well as in normative debates regarding climate cooperation and the ‘just energy’ transition (Carley, Evans and Konisky, 2018), elucidating how compensatory/investment mechanisms can shift public opposition into support for climate action is a matter of pressing scholarly and public policy concern.

What forms of compensation and investment are preferred by different politically relevant voter coalitions? To the extent that compensatory mechanisms and investment choices activate policy buy-in from ‘climate losers,’ answers to these questions shed light on the linkages between different types of vulnerability, forms and targets of compensation policy, and climate action support among pivotal electoral coalitions in democracies seeking to implement meaningful emissions reductions.

\[\textbf{[cut or move]}\] Such compensatory programs are currently in play or being considered across countries ranging from Australia, Germany, and Spain, to South Africa and the Ukraine.
This paper provides a theoretical framework and a series of empirical tests to explain the determinants of individual preferences for compensation/investment related to climate change policy. Individuals may be sensitive to the material costs of addressing climate change, which we term their *policy vulnerability*. We focus on one cost: employment-related costs associated with the implementation of decarbonization policies (Meckling, 2011; Genovese, 2019; Kennard, 2020). We expect regions with a critical mass of voters linked to policy vulnerable sectors to be supportive of policies compensates fossil fuel workers at risk.

We conjecture that *climate change vulnerability* may crosscut policy vulnerability when individuals susceptible to employment-related costs also face physical threats from climate change. Physical stresses due to climate change (Brody et al., 2007; Egan and Mullin, 2012) can also drive preferences. We expect cross-pressured groups to support more mixed types of compensation compared to policy-vulnerable groups in regions less affected by climate change. These communities likely value more investments in adaptation.

We test these theoretical predictions with new survey data from the United States and India, the world’s two largest democracies and major emitters of greenhouse gases, to shed light on climate related policy preferences. We implemented nationally-representative surveys to benchmark preferences. Then, for each country we conducted the same surveys in targeted samples of citizens residing in fossil fuel-producing regions that are either physically vulnerable, and thus cross-pressured, or less physically vulnerable (i.e., coal producing regions with specific physical conditions). Our respondents were asked to allocate the revenue raised from carbon taxes to different forms of compensation and investments. By examining how voters prefer to spend proceeds from costs imposed on carbon emissions, we place a lens squarely on the distributional politics of climate policy (Aklin and Mildenberger, 2020; Bayer and Urpelainen, 2016; Colgan, Green and Hale, 2020; Bergquist, Mildenberger and Stokes, 2020).

We find that people in regions exposed to fossil fuel jobs but not particularly physically vulnerable (e.g., coal country) prefer policies that direct resources to those who are economically vulnerable to climate change.

2[cut, mention in conclusion] In this study, we bracket considerations of how governments can choose to impose direct or indirect carbon taxes that incentivize decarbonization among citizens and firms in the domestic economy (e.g., payments to private employers in return for not laying off workers) or across different countries (e.g. funding from rich to developing countries). We focus instead on examining the possible public channels by which governments can use the proceeds from such revenue schemes to compensate vulnerable communities.
policy. These groups of voters have less appetite for broad-based instruments such as investments in green technologies or egalitarian payouts of carbon tax funds to all citizens. This finding is stable across the US and India. Individuals in cross-pressured regions mix adaptation spending in more. The general population prefers mixing in less targeted spending around investment in green technologies and broad based redistribution.

We then focus on how compensatory transfers to the policy-vulnerable can be directed either at individual fossil fuel workers poised to lose jobs or at broader communities (e.g., in the trade context, see Rickard 2020). We theorize that fossil fuel communities prefer more community-oriented compensatory mechanisms to individual transfers than the general public. This is because fossil fuel communities such as coal country are geographically concentrated, occupationally specialized, racially/ethnically homogeneous, and intergenerationally dependent on the carbon economy. Drawing on theories of social identity (cf. Shayo, 2009), we argue that perceived similarities between individuals in coal-producing regions create strong group-based affiliations, in turn influencing policy preferences regarding the disposition of compensation (Bliuc et al., 2015). By contrast, the general public pays relatively less attention to community issues. In both countries, the average voter is less favorable to community-level compensatory mechanisms and less concerned about decarbonization threatening the identities of coal communities.

Taken together, our findings underline how both the content of compensatory policies and the mechanisms by which they target households and communities can impact popular support for climate action in emissions-rich democracies. Our approach is the first to focus attention on the compensatory preferences of critical groups that lie at the center of climate policy decisions yet remain understudied in public opinion work. Analysis of these preferences elucidates how governments can build coalitions of support for decarbonization in large, heterogeneous societies.

Vulnerability and Compensation Preferences

Compensation is a mechanism for allocating resources to the losing parties of a redistributive economic policy. As a burden-sharing tool, its distinctiveness stems from its goal to redress past or future costs.
Compensation can have important feedback effects on support for public policy for it can foster belief in the government’s credibility in protecting vulnerable individuals and communities (Autor et al., 2014; Ruggie, 1982). At the same time, compensation may fail to achieve policy goals if it is not judiciously calibrated or implemented (Carattini, Kallbekken and Orlov, 2019; Jenkins, 2019). How the public views compensation is critical for successful policy enactment and compliance.

For our theoretical framework, the issue area of climate change is instructive because the politics of emissions mitigation and climate adaptation are deeply rooted in distributive conflicts. ‘Climate losers’ constitute a compelling group that may demand economic redress as a condition for supporting credible policy (Bechtel and Scheve, 2013).

Forms of Compensation and Investment in Climate Policy

We first outline a range of policy instruments that provide compensation to either focused groups or to broad sections of society. These policy instruments correspond to the main tools that policy-makers and scholars have surfaced (see Appendix B for more details and the conclusion for discussion of other tools).

First, climate change action implies costly mitigation, bearing particularly on regions where socio-economic activities contribute disproportionately to greenhouse gases, such as those with fossil-fuel producing industries. Given the direct impact of decarbonization on job losses and household incomes in these industries, governments may choose to address vulnerability by providing *direct fiscal transfers* to affected workers. More generally, these directed transfers could benefit the individuals in these geographically concentrated areas beyond displaced workers.

Second, climate change disrupts the livelihoods of those who are exposed to events such as floods, droughts, hurricanes, and wildfires. Adaptation-related costs could be addressed by *protective infrastructural investments*. These can materialize, for example, as seawalls in low-lying coastal communities made by governments to protect exposed communities from the adverse effects of climate change (Barbier, 2014).

3 Parallel political economy research is largely understood in the context of individual attitudes towards taxation, economic inequality, and trade adjustment (e.g. Margalit, 2011; Autor et al., 2014).

4 Based on surveys we fielded in 2016 and 2017, providing compensation to workers that lose jobs due to climate regulations has broad bipartisan support among American voters. Details are reported in Appendix A.
While some individuals in these regions may be able to afford building their own protections, these vulnerable communities would benefit from higher levels of adaptation spending.

While the policy levers discussed above concentrate compensation in the hands of a few, governments may wish to also design compensatory instruments that spread benefits to citizens across broader sections of society. *Investments in clean energy and green technologies* are redistributive to the extent that they contribute both to carbon mitigation and economic revitalization in the form of new jobs and the accompanying local economic growth that follows (Jenkins, 2019). However, it is more diffused mechanism because green energy infrastructure can be built out in many places and the generation and distribution of renewable energy often spill over beyond specific locales where infrastructure resides, therefore creating collective goods for the mass public (Bayer and Urpelainen, 2016). Finally, *rebates* for all citizens who directly or indirectly contribute to carbon taxes may also be considered an equitable and credible instrument of redress that immediately compensates large sections of society for the costs that they must pay to support decarbonization efforts (Jagers, Martinsson and Matti, 2019). This instrument is much more diffuse in nature.

Types of Vulnerability and Compensation Preferences

Support for these policies depends both on the type and degree of vulnerability experienced by targeted groups and on how vulnerability is perceived by affected communities and society at large. Here we investigate two dimensions of vulnerability and, therefore, two different sources of individuals’ preferences related to the compensatory/investment mechanisms introduced above.

First, we consider *policy vulnerability*, which affects individuals whose economic well-being (notably their wages and employment) depends on carbon-intensive industries. Our focus on these concerns stems from prior work that highlights policy vulnerability as a catalyst of public opposition to climate cooperation (Bechtel, Genovese and Scheve, 2019; Carley, Evans and Konisky, 2018; Kono, 2020; Bergquist, Mildenberger and Stokes, 2020). Second, we consider physical *climate change vulnerability*. The scholarship on public behavior has underlined this type of concern as an important source of political activism.
What preferences for compensatory/investment climate policy does each form of vulnerability generate?

We next theorize the determinants of preferences for individuals residing in regions with different exposures to vulnerability. We begin with policy vulnerability and then consider whether policy vulnerability can be moderated by physical climate change vulnerability, and therefore if being exposed to both risks changes preferences. We also discuss the setting where individuals and communities face neither risk or only physical climate change vulnerability.

Policy Threatened but Climate Change Not Threatened
We begin by considering those who are exposed to the costs of carbon policy but who do not face immediate physical threats from climate change. This group includes people pressured by the anxiety of losing jobs, wages or welfare were the government to pass stringent climate action legislation. Conceptually, two types of individuals may be affiliated with the fossil fuel industry: those directly employed in jobs that contribute to fossil fuel production and those dependent on the industry’s affiliated sectors. In line with research that identifies a powerful effect of employment-based concerns in climate politics (Meckling et al., 2015; Bechtel, Genovese and Scheve, 2019; Bergquist, Mildenberger and Stokes, 2020), we predict that these individuals (both those directly and indirectly employed in fossil fuel jobs) are most eager to integrate employment-based compensation in climate policy. Consequently, individuals in employment-vulnerable environments should be most supportive of compensatory payments that offset potential wage or job losses. We expect these individuals to support policies that emphasize transfers to affected households and communities rather than other investments (such as, for example, investments in adaptation infrastructure, green technologies, or tax rebates).

Policy Threatened and Climate Change Threatened
We next consider individuals who are exposed to the costs of carbon policy and who face clear and immediate physical threats from climate change. We classify this group as ‘cross-pressured’ (Sprinz and Vaahtoranta, 1994). Cross-pressured individuals may be inclined to support both transfers to affected individuals as well as more adaptation-oriented measures (e.g., infrastructural investments), since each compensatory instrument addresses a distinct category of
vulnerability. We expect those exposed to high costs on both dimensions to express support for policies that entail a mix of instruments, such as a combination of payments to offset workers’ costs stemming from climate mitigation policy as well as infrastructural investments designed to offset the environmental costs of climate change.

Neither Policy Threatened Nor Climate Change Threatened As a benchmark, we consider individuals who are neither policy vulnerable nor physically climate change vulnerable—in other words, the general public. We expect both the economic and physical dimensions of climate change to be less salient for these individuals than for the other two groups. Consequently, we expect these individuals to be less supportive of climate-related compensation in the form of transfers to vulnerable workers or investments in adaptation infrastructure. Instead, these individuals are predicted to favor more spatially diffused allocations of compensation, i.e. spending on projects that would benefit their collective interests. Specifically, we expect that individuals in the general public will on average support policies that emphasize investments in green technologies or the equal redistribution of public funds to tax-paying citizens more than compensatory schemes targeted at specific groups.

Climate Change Threatened but Not Climate Policy Threatened Finally there is a fourth category of individuals—those who are only climate change vulnerable. Individuals and communities in these regions should weight adaptation spending more than the other groups. Empirically focus much less on this group due to our focus on policy vulnerability and due to space and resource constraints. However, in the results section we briefly discuss some results for this important population for the US.

Individual versus Community Impacts In the preceding discussion we discuss how these vulnerabilities impact individuals and the communities they live in. Ultimately, individuals living in regions with a high degree of vulnerability can be more or less vulnerability compared to others. For example, wealthy individuals in climate vulnerable regions can build their own adaptations or purchase expensive insurance. However, the effects of these vulnerabilities can produce broader effects. For example, damage to others in the area can have externalities, or broader infrastructural damage is difficult to avoid. Additionally,
for example, negative policy effects can deteriorate the broader community. Jobs and social institutions outside of the policy impacted sectors can erode, as can broader social ties and senses of collective identity. Section engages with these considerations directly.

Recognizing these things, As such, our empirical design discussed below does three things: 1) we carefully and at great expense sample individuals living in regions exposed, or not, to these vulnerabilities (e.g., Malhotra, Margalit and Mo, 2013, use a similar targeting strategy) 2) we collect individual level covariates such that we can control for differences in things like resources and 3) we investigate preferences for community rather than individual level investments in the case of policy vulnerability in Section.

Hypotheses The preceding discussion leads to a set of straightforward hypotheses:

1. Individuals in communities facing greater climate policy vulnerability will support climate policies that compensate material losses from climate policy more highly than other samples. We use samples of coal producing regions facing less climate change vulnerability to investigate this group.

2. Individuals in communities facing both climate policy vulnerability and climate change vulnerability will prefer a mix of both targeted instruments (compensation and adaptation spending). Support for adaptation spending will thus be higher than in either sample, and support for compensation higher than the general population, but lower than in the policy vulnerable only sample. We use samples of coastal fossil fuel producing regions, or coal producing regions with climate vulnerability, to investigate this group.

3. Individuals in communities facing neither climate policy vulnerability nor climate change vulnerability will support more the targeted investments less and instead prefer more diffuse forms of investment. Least climate policies that compensate material losses from climate policy or climate policies that compensate or protect against material losses from climate change. We use general population samples to investigate this group.

4. Individuals in communities facing greater climate change vulnerability will support climate policies that protect against material losses from climate change at levels higher than in the other samples.
We do not focus on this hypothesis in this paper, but do provide empirical evidence from a separate research design in the US.

Research Design and Sampling Strategy

To test the predictions outlined above, we collected new survey data from voting-age citizens in the US and India in 2019 and 2020. We selected these two countries for both substantive and methodological reasons. The importance of the US to global decarbonization efforts is widely acknowledged in the climate politics literature, and we chose this country to situate our analysis with other studies of climate policy and public opinion (e.g. Aldy, Kotchen and Leiserowitz, 2012; Bechtel and Scheve, 2013). India is the world’s most populous democracy, third largest emitter of greenhouse gases, and an influential country in global climate negotiations (Dubash, 2012). It is also highly vulnerable to climate change. As the country undergoes rapid industrialization, addressing the physical and economic downsides of climate inaction has become a pressing task, yet one that is politically fraught (Gaikwad, Nellis and Wilkinson, 2020; Úrpelainen and Pelz, 2020).

Methodologically, our research design allows us to interrogate the theoretical determinants of preferences on climate policy across a set of distinct regions within each country. We further leverage the paired two-country comparison to study whether coalitions of voters in similar sets of regions in two very different cases have congruent preferences regarding distributive climate policy. While the US and India are democracies—serving as important cases for the study of voter preferences—they have markedly varying social, economic, cultural, and political milieus.\(^5\) This allows us to make a controlled comparison, ruling out the role of country-specific factors in shaping policy preferences that are similar across the two cases.

In what follows we describe how we identified each of the three politically relevant groups theorized above in both countries. We then illustrate the questions asked to measure respondents’ compensation choices and analyze the extent to which preferences vary across the samples.\(^6\)

\(^5\)Apart from levels of economic development, the two countries differ in terms of their types of climate vulnerability and in terms of the socio-economic characteristics of the sub-national regions within the two jurisdictions, among other factors.

\(^6\)A statement on research ethics is provided in Appendix C. We thank [redacted organization] and [redacted organization]
United States Sampling Strategy

In the US, we focused on the following samples: First, to capture the preferences of the average voter who is less exposed to policy and climate vulnerability, we fielded the survey on a nationally representative (“General Population”) sample. Our second sample included individuals from coal country communities (“Coal Country”), which are US regions populated by a relative high density of individuals with little physical vulnerability to climate change but high risks of job and wage losses due to climate policy (measured as per capita fossil fuel employment). Third, we concentrated on a sample of coastal fossil fuel communities with objective physical vulnerability to climate change due to their proximity to the coast as well as risk of job losses related to climate policy due to their reliance on the fossil fuel industry (“Cross-Pressured”).

Our General Population sample was fielded in two waves by the survey firm Lucid (Coppock and McClellan, 2019). Setting aside participants with particularly high response speeds, this sample includes 3,702 American adults. The Cross-Pressured survey and the Coal Country survey were fielded by Qualtrics, and include 1,428 and 516 individuals each, respectively. The identification of the counties to be included in the Cross-Pressured and Coal Country samples was done using zip-code level measures of fossil fuel employment from the U.S. Bureau of Economic Analysis. For the Cross-Pressured sample, our sampling strategy identified communities mostly in the coastal south (mainly Louisiana and Texas) and Alaska. For the Coal Country sample, the communities represented in our sample come for the most part from West Virginia, Virginia, Kentucky, Wyoming, and Pennsylvania. Polling the two targeted samples required intensive resources, and our sample sizes reflect the maximum number of respondents surveyors could reach in each region. Appendix D visualizes this geographic distribution and provides descriptive statistics.

The samples reflect expected patterns in terms of vulnerability to policy costs and concerns about physical climate change risks. In the General Population sample, 7% of respondents identify themselves or someone in their families as employed in the fossil fuel industry. This is realistic given that the U.S. Department of Energy calculated that traditional energy sectors employed approximately 6.4 million Americans for hosting research workshops to give feedback on the theoretical hypotheses and research design used in this paper prior to data collection.
in 2017. By contrast, in the Cross-Pressured and Coal Country samples, 30% and 65%, respectively, report being employed or having a close family member employed in the fossil fuel industry. Our coastal samples also reported higher levels of flood insurance ownership/desire for such insurance.

India Sampling Strategy

Our samples in India parallel those chosen in the US, with some additions. Our nationally representative (“General Population”) survey was fielded using telephone-based interviewing techniques ($n = 2,102$). The survey relied on the population-wide database of all landline and mobile phones; automated predictive dialers selected numbers randomly from all Indian telecom circles and digital exchanges. Next, analogous to our US strategy, we sampled respondents vulnerable to economic policies poised to threaten coal production. The India “Coal Country” sample ($n = 1,556$) combines (a) a representative sample of 706 individuals residing in 39 districts (from nine states) that have the highest reported rates of coal mining employment with (b) a sample of 850 coal miners from three of those states. In India’s Coal Country sample, 62% of respondents are employed or have a close family member employed in the coal industry, a proportion that approximates the US case.

To construct a cross-pressured sample, we collected data from two groups. The first, a “Coal Mines Cross-Pressured” sample, identified 4 districts ($n = 735$) containing at least one coal mine and which ranked high on a country-wide index of climate vulnerability. The second, a “Coal Plants Cross-Pressured” sample, represents 25 districts containing at least one operating coal plant and ranking high in exposure to climate vulnerability ($n = 838$). Our policy and climate change vulnerable (“Cross-Pressured”) sample combines

7Mobile phone usage and tele-density coverage is very high in India, providing access to all major demographic groups. The survey was offered in Hindi, Punjabi, Gujarati, Marathi, Kannada, Malayalam, Tamil, Telugu, Odiya, Bangla, and Asamiya. For additional details, see Gaikwad and Suryanarayan (2020).

8We identified districts containing coal mines based on the Government of India’s 2015 publication, “Statistics of Mines in India,” which provides a comprehensive listing of all coal mines in the country. Climate vulnerability was ascertained using the Central Research Institute for Dryland Agriculture’s “Atlas on Vulnerability of Indian Agriculture to Climate Change,” which ranks each district in India based on climate vulnerability.

9To identify coal plants, we relied on the Global Coal Plant Tracker database, which contains information on the universe of coal plants that are located in India. The locations of coal plants in the Global Coal Plant Tracker database were webscraped and assigned latitude and longitude information. For this step in the research, we are grateful to Johannes Urpelainen, Ricky Clark, and Noah Zucker.
these two groups \((n = 1,573)\). In the Cross-Pressed sample, 10% of respondents report being employed in the fossil fuel industry. For all mentioned samples except for the targeted coal miners, respondents were polled proportionately to the population size of districts. Appendix D visualizes this geographic distribution and provides descriptive statistics for standard demographics. Additionally, Appendix E provides extensive details regarding our India sampling strategy, which created to our knowledge the most comprehensive samples to date of climate policy and climate change vulnerable groups across the country.

Discussion Our targeted sampling strategy enabled us to reach individuals in communities that are absent from other surveys. For example, in Bergquist, Mildenberger and Stokes (2020) only one respondent came from one of the US counties we targeted in our coal country and coastal fossil fuel samples. In a follow-up US nationally representative sample we briefly discuss below, there was literally no overlap.

Preferences for Allocation of Compensation

We first focus on individual preferences for the allocation of public funds raised from higher fossil fuel prices to different compensatory mechanisms. After collecting pre-treatment demographic indicators, climate science beliefs and subjective measures of climate change concern, we introduced respondents to a series of climate policies aimed at curbing the use of fossil fuels. These policies would raise the cost of fossil fuels, leading to higher energy costs (i.e., the equivalent of a carbon tax) for all citizens.

Importantly, the proposed policies would also include government allocation of the raised funds toward compensatory ends. Respondents were asked to allocate raised funds to four goals: (1) direct transfers to individuals in fossil fuel industries, (2) infrastructural investments to help communities prevent or adapt to climate risks, (3) spending on the development of green energy sources, and finally (4) an even distribution of funds to all taxpayers. These categories reflect the theoretically informed range of instruments available to policymakers and cover options that surfaced as priority policies in a pilot study as well in contemporary policy discussions (see Appendix B).

To combat climate change, the use of fossil fuels like coal and oil will need to be reduced.

\(^{10}\)In what follows, we present results for the combined Cross-Pressed sample, but similar findings obtain when we analyze the Coal Mines Cross-Pressed and the Coal Plants Cross-Pressed separately.
To reduce coal and oil production, the [United States/Indian] government is considering a policy to raise the costs of fossil fuels. This policy will affect average [Americans/Indians] because they currently use energy that comes from fossil fuels. Continuing to use these sources of energy will lead to higher household energy costs for average [Americans/Indians].

This policy can take different forms. It can increase the costs of fossil fuels a little or a lot. With higher costs, the demand for fossil fuels will fall. The government also needs to decide how to use the money collected from the policy that raises the cost of fossil fuels. The options of how the money can be used are:

- Compensate workers in the coal and oil industries who will lose jobs due to the policy.
- Help individuals whose homes and properties will be harmed by climate change, such as those who live in coastal areas.
- Invest in forms of renewable energy like solar or wind energy.
- Distribute the money equally to all citizens in order to offset the higher costs that they will have to pay for energy.

Next we gave respondents three different scenarios that altered the cost per household associated with the policy: $16, $64, or $256 per month for the US and ₹140, ₹560, ₹2,240 for India. The costs represented 0.5, 1.5, and 2.5 percent of the per capita GDP of each country, representing the range of values that scholars have argued countries would need to contribute to meaningful climate mitigation efforts (Bechtel and Scheve, 2013). We randomized the order that respondents received of each cost. After each scenario, we asked respondents using the following text what percentage of the money raised should be spent on each compensation option listed above (with allocations summing to 100):

Please consider the scenario in which the government passes a climate policy that increases the average monthly household energy costs by [[$16, $64, $256] [₹140, ₹560, ₹2,240]].

How would you want the money spent? (Please enter values for each option below so that all options together sum up to 100%. Each value must be greater than or equal to 0. If you do not want any money spent on an option, please enter 0.)

Measurement discussion Our outcome measure lets us understand how respondents would prioritize spending. However, before proceeding to the results, we note several things. First, this does not directly tap support for policies. Previous research by Bergquist, Mildenberger and Stokes (2020) leverage a conjoint

11For our India coal miners sample, each respondent saw all three prices and answered separately to each. For the other samples, each respondent was randomly assigned to consider one of the three prices.
experiment and show different aspects of policies, including funds to retrain fossil fuel workers but also other social policies, influence support for a broader climate policy. Our focus is more squarely on specific types of climate policy. However, our results do not change when in a follow-up question we asked individuals to choose a level of spending that they would support, and then allocated these funds across the four categories (see below and Appendix J).

[do we want, somewhere above, address the critique that in India workers don’t pay taxes. We frame in terms of household costs, so I don’t think it an issue, but it came up in presentations]

Allocation of Funds and Choice of Climate Compensation

The allocations exercise returns a rich set of findings. We discuss each country separately and in comparative focus. Figure 1 shows the results in the US for the middle ($64) energy cost level scenario. The results are largely similar to the allocations chosen at the other two cost levels; we note differences below. Preferences are reported for each of our three samples of theoretical interest. Horizontal lines represent the average percentage contribution (mean with 95% confidence interval) across contribution categories.

Figure 1: US preferences for allocation purposes of climate policy funds, by sample. This figure denotes how respondents in our three samples allocated funds raised from a policy increasing the average monthly household energy costs by $64 across four spending options. Dots represent average allocation and lines represent 95% confidence intervals.

Examining the General Population sample, we find that the average American is most in favor of green
investments (allocating 34% of total funds), followed by an equal rebate to taxpayers (29% of the funds). These results are consistent with our argument that the average voter in the general population, who is not particularly vulnerable to either climate change or climate policy adjustments, is the least interested in targeted forms of compensation such as transfers and adaptation investments. Instead, she allocates more to compensatory options that benefit broad sections of society.

The Coal Country sample comprises individuals who are exposed only to the economic risks of climate policy. In contrast to the general population, these voters are significantly in favor of direct transfers to workers whose employment is threatened by climate policy, allocating 35% of funds (significantly larger than the 22% allocated by the General Population) to transfers. This preference for direct fiscal transfers to policy-vulnerable individuals is evident even at the highest carbon tax level ($256). Coal Country is the only sample that consistently allocates more money to direct transfers than to other options.

The Cross-Pressed sample supported the highest level of adaptation spending across the three groups. However, these investments in adaptation infrastructure feature as this sample’s least favored option. As a result, this groups rankings mirror the general population but also show much more of a “mixture” compared to the other groups, with, for example, higher levels of support for fossil fuel worker compensation than the general public. Cross-Pressed respondents are more evenly split among the different compensatory mechanisms proposed in the survey. This suggests that the Cross-Pressed group heeds concerns stemming from both policy and physical vulnerability while formulating compensation preferences.

Figure 2 presents results from India. India’s General Population sample ranks green investments first, at the highest policy cost ($256), the preferred top choices flip, and respondents allocate more to equal taxpayer rebates than to green investments (see Appendix F).

The aversion to adaptation infrastructure spending in all US groups may reflect voters’ preferences for policies in which compensation generates material gains in the short run rather than prevent material losses in the future. Indeed, related literature finds that even in the most vulnerable communities, people want private safeguards rather than public protection from climate change (Dryzek et al., 2011).

Our results do not imply that respondents in the cross-pressed group lack strong opinions about compensation or are indifferent to the set of policy choices. As Sprinz and Vahtoranta (1994) argue, cross-pressed groups find climate change to be more salient of an issue than other groups, but are torn in their decisions regarding which spending to prioritize.

Differences in cost levels have little impact; responses are even more stable in India than in the US. Because of this consistency, we present only the middle (₹560) energy cost responses; Appendix F reports results for the other cost levels.
selecting an allocation of funds—34%—that is identical to the proportion allocated in the US. This preference persists at the highest tax level (₹2,240). The general public in the world’s two largest democracies converge in prioritizing green technology investments as their top target of compensation.

Figure 2: Indian preferences for allocation purposes of climate policy funds, by sample. This figure denotes how respondents in our three samples (General Population, Cross-Pressured, and Coal Country) allocated funds raised from a policy increasing the average monthly household energy costs by ₹560 across four spending options. Dots represent spending preferences and lines represent 95% confidence intervals.

Unlike in the US, however, the average Indian does not prefer equal rebates to taxpayers, and in fact ranks this policy last. A similar aversion to equal taxpayer rebates emerges in all the India samples. The fall in support for equal rebates matches rising approval for investments in adaptation infrastructure, which are preferred at the same level as transfers in the General Population sample.

Respondents in the Indian Coal Country sample revealed policy preferences that mirror those uncovered in the US Coal Country sample. They ranked fiscal transfers to coal workers first, with an allocation (33%) that approximates the proportion estimated in the US coal sample. This parallel finding across the two countries corroborates the congruent desire for compensation to which climate policy vulnerable communities feel entitled.

Interestingly, India’s cross-pressed sample mirrors the general population. One explanation for this convergence is that, in contrast to the US, the average voter in India is simply more concerned about climate vulnerability, bringing General Population preferences closer to those of the Cross-Pressured group. This could occur if among individuals who are not currently exposed to climate change, those in poorer
countries may be more concerned about future physical climate change vulnerability given their lack of access to protective mechanisms (Carley et al., 2018). Consistent with this explanation, we find both that physical climate change vulnerability is higher in India than in the US and that the General Population and Cross-Pressured samples are less differentiated in India than in the US (see Appendix D).

Why do preferences for equal rebates and infrastructure investments reverse across India and the US? Existing research predicts that individuals in poorer countries have less individual capacity to adapt and may be less willing to sacrifice economic growth for cleaner environments (Greenstone and Jack, 2015). This may explain why our India samples evidence high levels of support for adaptation infrastructure. The de-prioritization of equal rebates in India may stem the lower rates of tax payments among the citizenry and from lack of faith in the execution of redistribution in India.16 We view these interpretations as only suggestive, since additional socio-economic differences across the sub-national regions in the two jurisdictions could also impact observed differences across the US and India.

In both countries the General Population and the Coal Country samples are the groups with the most divergent preferences. The average voter in both countries evidences high levels of support for broad-based compensatory mechanisms that will benefit society as a whole. By contrast, the coal samples’ top and consistent choice is targeted transfers to compensate workers economically harmed by decarbonization policy. Our results also give credence to the claim that voters’ allocation choices are motivated by factors apart from self-interest. In particular, we note the considerable baseline support in the General Population surveys for transfers to vulnerable workers, both in the US (21\%) and in India (26\%). This support is in line with theories of embedded liberalism, which predict a societal contract whereby voters agree to compensate domestic losers of redistributive international economic policies (cf. Ruggie 1982). Our results indicate broad-based interest in compensating climate policy vulnerability—even if in a limited form—among voters in the US and India, indicating mass support for ‘just transition’ policies that contain employment-based

16India has been described as a ‘patronage democracy,’ where many aspects of government-supplied benefits including jobs, financial assistance, and public goods are distributed along ethnic lines (Chandra, 2004). Thus, even if redistribution were appealing, respondents may deem the idea impractical or prone to clientelistic interference.
compensatory mechanisms.

Individual level covariates The preceding analyses do not include individual level information about our respondents. This might be important because our samples differ somewhat along other variables that might relate to allocation preferences, like ideology (see Appendix D). Do the sample contrasts within each country obtain when we include these controls? Appendix G presents regression results where we include covariates like income, ideology, individual subjective concern about climate change, and fossil fuel employment. The sample differences are consistent with the preceding discussion.

Individual level covariates can also and across sample differences remain. Individuals reporting less subjective concern for climate, for example, report less support for climate adaptation spending. Self-reported fossil fuel employment positively correlated with support for transfer.

Climate vulnerable only The preceding results left out the case of individuals living in regions that are especially climate vulnerable but have less specific policy vulnerability. To address this case, we ran an additional study in the US where we more precisely targeted individuals living in coastal flood zones and compared them to those living in adjacent areas but not in a flood zone. The results, presented in Appendix H, show that these especially vulnerable individuals rank climate adaptation spending higher than the other three samples reported above, and at greater levels compared to this additional sample’s adjacent climate vulnerable group.

Relationship to actual support for climate policy As discussed above, some previous research has shown that the precise composition of climate policy can have an impact on support for costly climate policies (Bergquist, Mildenberger and Stokes, 2020). Our analyses above only examined how people would design climate policy, and not its impact on actual climate policy support as this is a different research question. To speak to this issue we did several things. First, we subsequently asked respondents to pick an amount they would be willing to pay, and then among those reporting something greater than zero, we asked them to allocate funds. Appendix J reports the results, but the top line was that the vast majorities of our
samples were willing to pay some amount of money and their allocation choices strongly correlated with the allocation choices that they originally reported. Second, we ran a separate nationally representative survey in the United States, in which we probed respondents about their own willingness to pay $64 in average monthly household costs for one of the four randomly assigned allocation policies (see Appendix I). The top line result was that in line with the rankings from our allocation exercise, green investments are the most supported policy lever, followed by equal rebates, transfers, and infrastructure investments. These findings are informative as they point to differences in absolute levels of support for the policies that mirror the allocation exercise. Third, we took the data from (Bergquist, Mildenberger and Stokes, 2020) and investigated whether having a policy dimension that included funds to retrain fossil fuel workers received greater climate policy support for individuals living in states with high fossil fuel production. We found that this was true for core coal producing states of West Virginia, Wyoming, and Kentucky, as well as Louisiana and Alaska. We did not find this for Texas.

Open ended responses

Coming soon.

See Appendix K.

Preferences for the Disposition of Compensation

We now narrow our focus to targeted compensation schemes that would benefit fossil fuel producing regions poised to be adversely impacted by decarbonization. These policy mechanisms have political implications given that they are aimed at identifying and mobilizing political communities. For example, in the US, transfer schemes exhibit bipartisan support among the public (see Appendix A), and countries seeking to transition away from fossil fuel production, such as Germany, are exploring transfer schemes in detail.

The broad question of “how” to deploy such transfers can be tackled from various perspectives. For example, economic analyses might focus on efficiency considerations or on how to structure re-training
opportunities for workers. We focus squarely on a political dimension: the disposition of funds—namely, whether transfers should flow to the households of individuals directly impacted by the loss of fossil fuel jobs, or whether transfers should flow to communities and community organizations. Scholars investigating transfer mechanisms in the context of the trade adjustment literature have argued that community-level transfers are potentially preferable to individually-focused transfers (Rosen and Coalition, 2008; Schoepfle, 2000). A focus on community transfers is also justified by recent work which shows that group-level considerations influence preferences for redistribution policy more generally (Bernauer and Nguyen, 2015). This distinction matters for compensatory climate policy because governments can structure compensation in either more concentrated or diffused ways (Carley, Evans and Konisky, 2018).

We theorize that voters in coal producing regions, as well as those who are cross-pressured, prefer more community-oriented compensatory mechanisms to individual transfers than the general public. This is because group identities in coal mining regions are closely linked to the carbon economy. For both economic and social reasons, individuals in these regions have shared interests. From an economic perspective, coal workers as well as non-coal workers in services and secondary sectors in coal country depend on the coal industry. The latter may reasonably anticipate material losses from decarbonization policy and seek redress. Materially, then, non-coal workers are predicted to support community-level transfers to those that directly compensate coal-related job losses. Coal workers, by contrast, have immediate economic interests related to coal employment. Pocketbook considerations should lead these workers to support transfers that directly target coal job losses.

Yet coal communities also exhibit strong collective social identities. Theories of social identity predict that when group affiliation is high, individuals are willing to forego material benefits to support policies that augment group welfare (Shayo, 2009; Gaikwad, 2020). Specifically, Shayo (2009, 147-148) argues that individuals share their identity with members of a group both when they perceive similarity with other group members (termed “distance”) and when they care about the group’s position (defined as “status”);
it is this process of identification that in turn leads to a “willingness to sacrifice material payoffs in order to enhance group status” because “in many situations enhancing a group’s status is equivalent to enhancing the welfare of other group members.”

There are strong reasons to anticipate high degrees of social identification and group attachments in fossil fuel communities such as coal. These communities are geographically concentrated and occupationally specialized (e.g., Carley, Evans and Konisky (2018, 136) describes coal regions as historical “mono-industry economies” with coal holding “the entire community together”), racially and ethnically homogeneous (Mayer, Keith Smith and Rodriguez, 2020; Trotter, 2015; McDuie-Ra and Kikon, 2016), and intergenerationally dependent on employment in coal (cf. Duncan 1999). Residents of coal communities “embrace—and even identify with—coal” both as “a marker of community identity” and “as a total ‘way of life’” (? , 54). Bell and York (2010, 134) terms this as “community economic identity,” noting that the coal industry “appears to be more than a provider of jobs; it embodies all of the characteristics of the archetypal West Virginian.” Thus, existing work points to perceptions of shared similarities—corresponding to the concept of “distance” discussed above—galvanizing social identification in coal country.

Concerns regarding group “status” are also salient in coal producing regions. Sociological studies find, for example, that individuals in coal country “believed that preserving mining as a viable occupation would honor forbearers who had mangled their bodies in the mines to provide for them as children,” that “miners upheld the dignity of rural life in the face of urban onslaught,” and that coal job losses “wiped away the

17Duncan (1999)’s magisterial study presents a wealth of interview evidence from coal miners in Appalachia to buttress this claim, e.g.: “Whatever I’ve made had gone back into this country. I’ve got five kids, and they all live here. And I suspect their children will live here” (24); “Most of our key people at our operation have been with Daddy since they were young, so there is a bond there with them and their families” (29); “These coal mines, it’s usually generation after generation, father to son, uncle, nephew” (31); “I think it’s unique here in that you’re either exposed to the mining industry, which is high skill, or nothing. Or welfare. We don’t have a lot of work that’s in between the two...I think it’s apparent to everybody that we could use something other than coal. But I wonder if you could get five hundred people that would work for a wage lower than the miner? Maybe they would just say, “The heck with it, I’ll draw welfare,” and maybe get a bit less and not work...Really, coal is about all we got” (58).

18In India, too, the coal industry has historically been concentrated in regions with high proportions of Scheduled Tribe and Scheduled Caste communities. McDuie-Ra and Kikon (2016, 263-264) discusses how coalfield rights have remained within tribal community institutions and how members of tribal groups have resisted government coal mining bans. In the words of a female coal trader, “I told the minister, you have come to this village for this first time and then order us to stop coal mining...you are coming to stop what is being produced from our own farm—the coal is coming out from our own land. It is not your land, it is our land and we will not allow you to ban it.”
little pride [the region] had left” (iden, 56-62). Carley, Evans and Konisky (2018, 136) present corroboratory interview evidence from coal workers:

> There is also a sense of grief that comes along with it, you know, coal mining is really a part of the culture here and it’s interwoven into the way people feel about themselves and their own identity and their identity as a community. And so to lose that so quickly is really, it creates a sense of grief among people about losing their way of life and a piece of their culture that is really engrained and a part of who they are.

These ethnographic accounts suggest that social identification is augmented through group status predilections in embattled mining communities (cf. Glasmeier and Farrigan 2003).

> If individuals in coal country perceive a strong sense of identification with members of their community, then they would interpret policies that are beneficial to the group as helping all members within the group and therefore view compensation in a collective lens. Evidence that fossil-fuel workers in coal country prefer community transfers over direct transfers to their own households would be consistent with this point of view.

> By contrast, members of broad-based communities such as the general population are predicted to be less attentive to group concerns. Individuals in large, socially and economically diverse groups are less likely to have developed a shared identity tied to geographically concentrated occupations since both “distance” and “status” concerns militate against social identification. The average voter is predicted to be less interested in allocating funds to community-oriented compensatory mechanisms than to individual transfers; this is especially the case for the small minority of individuals with fossil fuel jobs in non-fossil fuel producing regions. In a similar vein, the general public should be less sensitive to community concerns, and less likely to associate policy support with community welfare considerations. Finally, individuals facing both policy and climate change vulnerability are predicted to have cross-cutting preferences. On the one hand, these individuals share interests linked to fossil fuel jobs. On the other hand, cross-pressed individuals face more climate change vulnerability than coal country residents. These pressures should translate into
mixed preferences for community-level deployment of compensation and mixed concerns for protecting group identities.

Preferences for Targets of Compensation Deployment

To test these conjectures, we gauged whether respondents preferred that fiscal transfers be given to individual workers or to broader communities affected by climate policy. Respondents were asked if they prefer the government to “provide funding only to the individuals affected by” climate policy, or “provide funding to entire communities” where such individuals reside. We look at the descriptive frequencies of individuals preferring each type of deployment. We break down the frequencies by whether respondents or their close family members are employed in the fossil fuel industry. Figure 3 reports the US results. The broad patterns in Figures 3–6 hold in multivariate regression analyses that control for individual level covariates such as gender, age and partisanship (see Appendix L).

![Graph showing US preferences for transfers at the community (versus individual household) level by sample and fossil fuel employment.](image)

Figure 3: US preferences for transfers at the community (versus individual household) level by sample and fossil fuel employment. The bars report the percent preferring community transfers.
Recall, residents of regions that are economically dependent on fossil fuel production ranked compensatory transfer mechanisms as their top policy preference. We see here that these respondents are particularly supportive of transfers if they are directed at the community level. Individuals in the Coal Country sample are proportionally more in favor of community-level compensatory transfers, irrespective of their employment status. These results are consistent with claims that both material and non-material factors are important determinants of preferences in Coal Country. Economic self-interest may explain why individuals who are not employed in fossil-fuel jobs in Coal Country prefer community transfers the most.

Yet the stark divergence in the preferences of fossil fuel-employed workers—those in coal country are 19 percentage points more likely to support community transfers than those in the general population—suggests that group affiliation and identity-related factors motivate allocation choices in Coal Country.

When comparing respondents who are or are not employed in fossil fuel jobs within each sample, we reach a similar conclusion. In the General Population and Cross-Pressed groups, we find starker divisions across preferences for individual-level compensation (preferred more by those employed in fossil fuels) and community-level compensation (preferred more by those not employed in the fossil fuel sector), a pattern consistent with materialist accounts of preference formation. In Coal Country, however, the gap between workers who are or are not employed in fossil fuel jobs diminishes considerably, and is in fact statistically insignificant in multivariate analyses (see Appendix L), underscoring cross-sectoral support for community-based compensatory mechanisms.

Figure 4 reports the results from India. There are high levels of support for community level compensation relative to individual compensation. Nevertheless, it is noteworthy that like in the US, the General Population sample is least in favor of community transfers. This low ranking of community-oriented transfers indicates that the average Indian weighs group considerations least when considering compensation deployment. The Coal Country sample in India has near identical preferences to its US counterpart with

19 This pattern may be explained by a point discussed earlier: Indians across all samples report more concern about climate change than Americans (see Appendix D for self-reported indicators of climate concerns).
Figure 4: *India preferences for transfers at the community (versus individual household) level by sample and fossil fuel employment.* The bars report the percent preferring community transfers.

respect to fossil fuel workers (56% in both countries) and non-fossil fuel workers (60% in India and 61% in the US). Interestingly, in contrast to the US, India’s Cross-Pressured group registers highest support for community-level compensation; intersecting policy and physical vulnerability is associated with heightened group-based considerations in India.20 Fossil fuel workers in this group are most supportive of community transfers, pointing again to the role of other-regarding preferences in shaping deployment choices. Overall, group-related considerations feature highly in India’s policy and physically vulnerable regions. India’s Coal Country and Cross-Pressured samples are on average significantly more likely to prefer community transfers to individual transfers than the General Population (see Appendix L). This supports our conjecture that decarbonization risks affect not only those employed specifically in fossil fuel industries but also broad sections of society in regions dependent on fossil fuel production.

20Note that policy vulnerability in India’s Cross-Pressured group was operationalized by coal industry employment, whereas policy vulnerability was measured in the US in terms of oil and natural gas employment. As we discuss below, identity related concerns appear more salient among particular industries such as coal than in other fossil fuel industries. This may explain why India’s Cross-Pressured group evidences high levels of support for community-oriented transfers.
Comparing the results from the US and India, our main conclusion is that community-oriented sentiments appear strong among voters in regions of both countries that face policy threats from climate change. Coal Country voters value the community fabric that has evolved from high levels of coal industry employment and plausibly fear the material losses that the community as a whole stands to incur from de-carbonization policies. This finding is in line with evidence indicating the diffused consequences of economic retrenchment in trade-affected industries (Margalit, 2011).

Role of Community Identity

We have shown that individuals in embattled coal mining regions have distinct preferences supporting community-oriented transfers. We next ask if these regions differ by support for policies that could threaten the identities of coal workers. Protecting the identity of coal miners and their communities has been a topic of considerable political debate, surfacing repeatedly, for example, during the 2016 and 2020 US presidential campaigns and provoking sustained political mobilization in India.

Safeguarding community identities is also central to the concept of group “status” in Shayo (2009)’s social identification theory discussed above. In communities featuring high degrees of group identification, individuals are predicted to prioritize policies that augment the welfare of other group members. If the strong preference for community-oriented transfers that we uncovered in fossil fuel communities were connected to identity-related concerns, then we would expect to see evidence that members of these groups are concerned about protecting the identities and well-being of members of coal communities.

We therefore designed a question to probe whether identity-related considerations featured highly among members of fossil fuel communities. To measure the importance that respondents attach to the identity (and therefore political salience) of coal communities, we asked:

Some people say that the government should not pass policies that harm jobs in industries like the coal industry because such policies will threaten the identities of coal workers and their surrounding communities, which are closely tied to coal mining. Do you agree? [(1) strongly disagree to (4) strongly agree]

Note that our question directly links identity-related concerns to policy support for decarbonization,
which we deemed to be an important avenue of inquiry based on a large body of qualitative and ethno-
graphic scholarship that highlights the centrality of community identities in coal-producing regions. At the
same time, by tying policy support to identity-related concerns, it is possible that answers also captured
respondents’ policy preferences, in turn increasing the proportion of individuals who reported concern about
the impact of the policy on community identities. Our analysis therefore focuses on differences across our
samples rather than on absolute magnitudes within samples.

![Opposition to Policies Threatening the Identities of Coal Communities](image)

Figure 5: US preferences for blocking policy measures that threaten the identity of the coal communities.
The bars report the percent of opposing respondents by sample.

Figures 5 and 6 present the results for US and India, respectively. As displayed in Figures 5 and 6,
concerns about protecting worker and community identities was highest in Coal Country (72 percent in the
US and 74 percent in India, respectively), second highest in the Cross-Pressured sample, and lowest in the
General Population sample (57 percent in the US and 61 percent in India, respectively). In Appendix L,
we document that these findings are robust to the introduction of controls in multivariate analyses. In
additional analyses of the Coal Country sample, we find that both the majority of people directly connected
to fossil fuels and those with less of a connection opposed identity threatening policies. Overall, in both countries, respondents in Coal Country oppose identity-threatening policies at greater rates than in the General Population, with Cross-Pressured samples falling in between.

These identity results help partially explain our prior finding that those residing in coal-producing regions favor community transfers most. Coal mining regions are consolidated in voicing resistance to policies threatening the identities of coal workers and their surrounding communities and in seeking transfers to compensate the community at large. The cross-sectoral basis of this support points to identity-related factors as important determinants of preference formation over the disposition of compensation policy in these regions. The general public by contrast is less interested in compensating broad-based vulnerability in fossil fuel communities. Evidently, to purchase societal buy-in in coal communities, policies will need to go beyond appeasing individual workers and instead engage communities, since demand for compensation arises from more than just the individual employees who will directly bear the costs of decarbonization.
More generally, our results indicate that policy reforms—in climate and other distributive domains—will need to prioritize compensation in ways that effectively address the polarization that we document between average voters and more vulnerable communities.

Finally, our theory and evidence provide some scope conditions to debates about industrial decline, social identification, and political mobilization. Identity-related concerns appear quite salient in coal regions in our samples, yet coal typifies a particular type of industry—one that is geographically concentrated and occupationally specialized, featuring workforces that have been culturally distinct and intergenerationally dependent on particular modes of employment. Parallels with other senescent industries that historically featured similar characteristics, such as steel, warrant further analysis (see also Bell and York 2010, 118; Duncan 1999; Hechter 1978). At the same time, in the climate domain, we note that coal production differs from other fossil fuel industries, such as fracking and natural gas, where similar dynamics might not apply.

Conclusion

Effective greenhouse gas emissions abatement will impact the lives of individuals and communities around the world. Just as in other policy arenas where there are net welfare gains that accompany concentrated losses, such as trade policy, acting on climate change requires understanding the salience of policy preferences and overcoming the resistance of localized policy “losers.” Against this backdrop, we explored preferences over different forms of climate-related compensation for vulnerable communities within the US and India, the world’s two largest democracies, prominent greenhouse gas emitters, and leading coal employers. Our study is one of the first to seriously engage with the design of decarbonization policies that confront distributional political realities (e.g., Kono, 2020; Bergquist, Mildenberger and Stokes, 2020).

Converting policy opponents into supporters presents one of the biggest challenges in implementing successful climate mitigation policy. Our research suggests that mobilizing sufficient support will be difficult because different societal coalitions prefer distinct levels, forms, and targets of compensation. The most cohesive and potentially antagonistic group standing in the way of mitigation policy consists of the
communities that are currently confronted by the wage and employment consequences of climate policy but do not face significant climate change vulnerability. Our results indicate that governments have much to do to appease these voters. This may be a difficult task given the political barriers to compensating targeted groups; for example, the 2016 Washington State referendum on carbon taxes (Washington Initiative 732) failed in large part due to concerns about interest groups getting access to funds paid by taxpayers.

Another important group of voters are those who are pressured by both policy and climate change vulnerabilities. They desire a mix of allocations for different types of compensation. If climate change continues to cause adverse weather events that increase in intensity and frequency, more communities will probably become “cross-pressured,” thereby pushing the policy agenda to divide carbon tax revenues among several compensatory programs.

We make two points regarding the general population surveys. First, in both countries the average citizen prefers broad-based compensatory mechanisms like investments in green technologies. A referendum on a climate action plan containing these policy levers could therefore muster majoritarian (see also Bergquist, Mildenberger and Stokes, 2020). Second, we note that any system that raises revenues via taxes is bound to face opposition unless the benefits are sufficiently tangible. Nevertheless, a salutary feature of our findings is that the general public is willing to divert a not insignificant proportion of funds collected from increased household energy costs to compensate job losses in the fossil fuel industry. This points to a pathway forward for policymakers seeking to mobilize support for climate policy from different domestic constituencies. Our data shows that compensation can in fact strengthen the public foundations for ambitious climate policy if laid out in targeted and credible ways. Consequently, this paper provides some validity to moves by governments in countries such as Australia, Germany, and South Africa that have sought to quiet climate policy opposition with employment-based compensation arrangements.

We conclude by charting a pathway for future research. Cross-national analyses of the content and modes of deployment of compensatory policies can shed light on the determinants of political cooperation
over climate policy-making. Urgently needed is additional survey research that investigates whether particular mixes of compensation policies increase citizens’ willingness to pay higher carbon taxes, whether extreme climate change vulnerability shifts preferences regarding compensation, and whether cross-border compensation schemes generate popular support. Finally, further unpacking how identity-related concerns shape the preferences of occupationall-concentrated communities like those in coal country can help shed light on the political preferences of voters in other regions, such as the Rust Belt, that have materially been impacted by globalization; compensatory schemes like the Trade Adjustment Assistance might have under-performed because they focused on individually-displaced workers at the expense of broader communities (Rosen and Coalition, 2008; Schoepfle, 2000; Rickard, 2020). Our research indicates that the success of embedded liberalism likely hinges on the ability of governments to understand when and how economic vulnerability sprouts across communities. Creating coalitions of support to compensate this vulnerability may be essential for supporting international economic cooperation.
References

Coppock, Alexander and Oliver A McClellan. 2019. “Validating the demographic, political, psychological, and experimental results obtained from a new source of online survey respondents.” *Research & Politics* 6(1).

34

Urpelainen, Johannes and Setu Pelz. 2020. “COVID-19 and a Just Transition in India’s Coal Mining Sector?” *ISEP Policy Brief*.
Appendix

“Creating Climate Coalitions: Mass Preferences for Compensating Vulnerability in the World’s Two Largest Democracies”

The Appendix contains the following sections:

- Appendix A: Bipartisan support for compensating fossil fuel workers
- Appendix B Contextual information regarding the four policy categories
- Appendix C: Research ethics
- Appendix D: Geographic distribution and descriptive statistics of the US and Indian samples
- Appendix E: Additional information regarding sampling strategy in India
- Appendix F: Choices of US and Indian respondents in the allocation exercise across all tax levels
- Appendix G: Regression models of allocation decisions utilizing individual level covariates.
- Appendix H Reports results from a separate sampling strategy focusing on climate change only vulnerable individuals.
- Appendix I Nationally representative data on willingness to pay to support four policy choices
- Appendix J Reports results of allocation decisions when individuals were able to choose a cost
- Appendix K Analysis of survey respondents’ open-ended explanations for survey choices
- Appendix L: Additional analyses and regressions models based on the questions regarding community and identity for both the US and India
- Appendix M Survey of literature discussing coal identities in the US and India

A Bipartisan support for compensating fossil fuel workers

In the paper we suggested there is bipartisan support for compensating fossil fuel workers in democracies such as the United States. Here we provide more information that backs up this statement.

In 2017, we fielded a nationally representative survey via the AmericasBarometer project where we asked respondents the following question: “Congress could consider many important bills in the next two years. If you were in Congress would you vote FOR or AGAINST the following? Climate Adjustment Assistance: Provides education assistance and retraining to workers who have lost their jobs as a result of [policies designed to reduce — reductions in] greenhouse gas emissions.” The text in brackets was randomly assigned but did not significantly affect answers. Respondents were asked to answer whether they were either for or against the policy. There was bipartisan support for the proposal in both of the treatment conditions above (62% Republican, 70% Independent, 85% Democrat). We observed similar bipartisan support in a nationally representative survey fielded in 2016 as part of the Cooperative Congressional Election Study (65% Republican support, 78% Independent support, 94% Democratic support).

B Justification of climate policy categories

In this section we discuss how the compensation and investment options proposed in our survey reflect actual policy choices in the US and India. For each country we provide more background information about each actual policy mechanism and the political discussion around them.
B.1 US

Compensation to coal/oil workers

The industrial decadence of coal and carbon-intensive activities has been intensely discussed in the public opinion dominion. It is agreed that shifting from fossil fuels to cleaner sources of energy threatens struggling communities, especially coal-dependent communities. There is disagreement on how to help these communities. Historically, support to workers has been provided in other realms. For example, Congress passed legislation in 1974 that established the Trade Adjustment Assistance Program, which still operates today. Workers who can show that they have lost jobs or wages because of increased international competition petition the Department of Labor for benefits administered through state agencies, including cash payments, retraining and assistance with relocation and job searches. However, some criticized this adjustment program as an ineffective ‘band-aid.’ A most defined federal effort to help coal communities is the POWER Plan launched by the Obama administration. This program directs funds into Appalachian communities to assist displaced workers, build regional institutions’ capacity and fund economic development programs. The plan allowed the Appalachian Regional Commission, an economic development agency supported by federal, state and local governments, to invest more than $190 million in projects across Appalachia between 2015 and 2019 (Trump terminated this commission, though Congress restored its funding). The discussion to implement a bold program like the Appalachian Regional Commission for more US states seems to be picking up with the debate around just transition and the Green New Deal. Biden’s American Job Plan states the priority to target ‘long-term unemployment and underemployment’ of this type of communities, but the details of the jobs program are still unclear.

Infrastructure for climate vulnerable

The US Environmental Protection Agency (EPA) supports the development and maintenance of protective infrastructure nationwide, especially in coastal cities. Historically, however, the measures of resilience and risk protection around the country have been varied and fragmented at the local level. Since 2006 US households receive federal income tax credits for weatherizing their homes; however these incentives went mainly into green energy production and grid supply rather than protection and adaptation. Government-subsidized insurance, such as the U.S. National Flood Insurance Program (adopted in 1968), is a mechanism to enhance climate resilience. It has however been criticized, because some believe it provides a perverse incentive to develop properties in hazardous areas, thereby increasing overall risk. Resilience standards and construction were embedded in the 2009 American Recovery and Reinvestment Act, which called for an identification of vulnerabilities of economic sectors to climate change. In a similar spirit, with the American Job Plan President Biden is calling on Congress to invest an additional $17 billion in inland waterways, coastal ports, land ports of entry, and ferries to maximize the resilience of land and water resources to protect communities and the environment. Accordingly, “President Biden’s plan will protect and, where necessary, restore nature-based infrastructure - our lands, forests, wetlands, watersheds, and coastal and ocean resources. Families and businesses throughout the United States rely on this infrastructure for their lives and livelihoods” (White House 2021).

Investments in green energy

Discussions about clean energy transition in the US started in the 1960s, partly due to increasing environmental awareness partly because of the emergence of alternative and relatively low-cost sources of energy, e.g. hydroelectricity, in the late 1950s. From 2000 to 2010, annual investment in solar power and wind grew more than fourfold respectively, however only in the 2010s these took over hydroelectric power in terms of size of power production. The Obama administration turned favorable to provide government support and subsidies to renewables. From 2006 to 2014, US households received more than $18 billion in federal income tax credits for installing solar panels and other “clean energy” investments. The 2009 American Recovery and Reinvestment Act included more than $70 billion in direct spending and tax credits for clean energy and associated transportation programs. During the Trump administration the government took a smaller role in major clean energy investment, but nonetheless renewables kept momentum partly due to some state governor leadership and also because of energy sector private investments. As of 2021, many initiatives indicate high government and private sector interest in green energy investments. Biden’s $2 trillion infrastructure plan includes a 10-year extension to tax credits that have been a boon to wind, solar and other renewable energy projects.

Equal rebates to all citizens

Rebates return the revenue of some form of tax on fossil fuels (e.g. a la carbon tax) to the general society. Proponents of this policy argue that equal rebates could mediate against the negative impact of increased taxation on economic growth as well as increase public support for carbon taxation. While other developed countries have implemented carbon tax rebate (e.g. several provinces in Canada), no US state has a carbon tax so these rebates do not quite exist. In the past few years various representatives and senators in the U.S. Congress have proposed legislation authorizing a federal carbon tax (e.g. the Energy Innovation and Carbon Dividend Act by Congressman Deutch and the Climate Action Rebate Act by Coons). A preliminary analysis of the Deutch Bill shows that carbon tax revenues would rise from $70 billion in 2020,
to $400 billion in 2030, and that through a rebate mechanism nearly all revenue is used for annual dividend payments, which would increase to about $1400 for adults and $600 to children by 2030. Much about the opposition to the rebates in the USA is linked to the opposition to a carbon tax to begin with, and also generally on how progressive/regressive this should be.

B.2 India

The four policy options discussed in this article have received varying levels of policy, media, and academic attention in India. For example, the Indian government has already made major investments in green energy and engaged in extensive infrastructure construction in climate vulnerable regions. In the meantime, the other two policies—equal rebates to all citizens and compensation to coal/oil workers—are being seriously discussed and debated in think tank and academic circles. The following section offers an overview of the four policy options.

Compensation to coal/oil workers

A 2020 UNFCCC report noted that Indian workers in sectors most affected by climate change policies, such as the coal and fossil fuel industries, are more likely to engage in informal work and lack social protection. Therefore, to achieve just transition, the country needs to extend protection to the informal workforce (United Nations Framework Convention on Climate Change 2020). Chandra Bhushan (2020), a prominent environment expert in India, also highlights the need for a just transition—to ensure that coal- and fossil fuel-dependent communities do not suffer financially from the closing of mines and power plants. In the poorest regions in India, the eastern states of Chhattisgarh, Jharkhand, Madhya Pradesh, Telangana, and Odisha, the livelihoods of entire communities are dependent on the production of coal (Roy, Kuruvilla and Bhardwaj, 2019). These regions are also home to the historically discriminated indigenous Adivasi people, who will likely suffer from the economic fallout of the energy transition.

Currently, Indian labor unions have begun engaging in the question of the country’s just transition. The New Trade Union Initiative, a non-partisan labor initiative founded in 2002, has advocated for broadening the social security net in the process of energy transition and insisted that the country should maintain its “right to develop” while adopting more climate-friendly policies (Roy, Kuruvilla and Bhardwaj, 2019). The UNFCCC 2020 also advised the Indian government to provide financial compensation, retraining opportunities, and early retirement to workers affected by energy transition policies. However, the Indian government has yet to adopt worker compensation programs, as the country remains highly dependent on coal and has not engaged in serious coal phase-out (Bl什han, 2020).

Infrastructure for climate vulnerable

With its monsoon climate and a long and densely populated coastline, India is home to the world’s largest climate vulnerable population. In the aftermath of recent cyclones Fani, Gaja, and Hudhud as well as a number of severe floods, many coastal states in India have taken initiatives to make their infrastructure more climate-resilient (Roy, 2019). As the majority of India’s urban metropoles are located along its coastline, upgrading its coastal infrastructure is critical not only for the welfare of local residents but also for the nation’s economic growth.

So far, federal and local governments have made significant efforts to strengthen the country’s climate infrastructure, such as improving coastal protection, building cyclone shelters, and planting coastal forests and mangroves (Government of India 2008, Aparna Roy 2019). In 2008, the government issued the National Action Plan on Climate Change (NAPCC), which marks one of India’s most significant efforts to combat climate change. The NAPCC lists out the government’s plans to develop regional ocean modeling systems and establish more efficient cyclone and flood warning systems (Government of India 2008). The government has also partnered with the World Bank on a series of infrastructure development programs that seek to enhance climate resilience. For instance, the Bihar Kosi Basin Development Project focuses on upgrading the region’s flood control infrastructure and the Puducherry Coastal Disaster Risk Reduction Project aims to build resilient coastal housing, evacuation shelters, and a cyclone resilient electrical network (The World Bank India 2021). Following the outbreak of the COVID-19 pandemic, the Indian government announced a series of infrastructure projects to reboot the country’s economy. Indu Murthy (2021), a leading researcher at the Indian think tank Center for Study of Science, Technology Policy, identifies this infrastructure boom as an opportunity for the government to build climate-smart principles into the country’s new infrastructure programs.

Investments in green energy

Investing in renewable energy is perhaps the most important and well-established climate change policy in India. The country began its initial green energy exploration in the 1960s, constructing windmills to exploit wind energy for irrigation (Bhattacharya and Jana, 2009). In the 1970s and 80s, the Indian government launched two national solar energy programs and continued to develop the country’s wind capacity (Bhattacharya and Jana, 2009). Investing in green energy is a cornerstone of the Indian government’s climate strategy. In the 2008 NAPCC, the Indian government stated its ambitious goal of increasing renewable energy contribution to 15% of the country’s electricity production by 2020 and announced the establishment of the National Solar Mission, which aims to add 22 GW of solar capacity by
The NAPCC also suggests increased investment in hydropower, as hydropower is the cheapest source of renewable energy in India and the Indian Central Electricity Authority estimates that less than a quarter of the country’s hydropower potential has been exploited (Government of India 2008). Moreover, since the establishment of the National Clean Energy and Environment fund in 2010, the Indian government has channeled carbon tax revenues for funding research and development on renewable energy technologies (Bhat and Mishra, 2020).

As of 2020, investments in green energy have exceeded fossil fuel investments for five years in a row and increased 60% between 2015 and 2019, amounting to $18 billion in 2019 (International Energy Agency 2021, 42–43). Currently, the private sector leads in investments in green energy, accounting for up to 95% of the country’s installed renewable energy capacity (Majid et al., 2020). The top investors in the field are Tata Power Solar, Suzlon, and ReNew Power. During the 2014 Obama-Modi climate talks, the two countries reached major renewable energy investment deals, which include the construction of extensive solar pipelines to fulfill the Indian government’s solar energy goals (Office of the Press Secretary June 7, 2016). In 2018, the Indian government passed an amendment in tariff policy to further attract foreign investment in the renewable energy sector (Majid et al., 2020). These initiatives indicate high government and private sector interest in green energy investments.

Equal rebates to all citizens

Although carbon tax rebates are commonly employed in industrialized economies as a mechanism to reduce the negative economic impact of carbon taxation, it has not been taken up by the Indian government. In fact, the policy remains quite controversial in the country’s think tank and academic circles. As a form of “revenue recycling,” rebates return carbon tax revenue to the general society (Beiser-McGrath and Bernauer, 2019). Proponents of this policy argue that equal rebates could mediate against the negative impact of increased taxation on economic growth as well as increase public support for carbon taxation (Beiser-McGrath and Bernauer, 2019; Ojha, Pohit and Ghosh, 2020). Shakti Sustainable Energy Foundation 2018, a think tank in India, published a detailed report studying developed countries’ implementation of revenue recycling programs and suggests that India could adopt similar policies to compensate citizens for their increased costs of living due to a carbon tax.

Opponents of the rebate program, however, point out that universal cash transfers might not work for developing countries like India because the policy would only reach individuals with financial access but would not compensate households that are not covered by the income tax (Rathore and Bansal, 2013; Azad and Chakraborty, 2020). In addition, they point out that carbon tax rebates might be an insufficient incentive for the poor to move away from cheaper, but less climate-friendly, sources of energy (Azad and Chakraborty, 2020). Instead, they suggest that the Indian government should devise other social policies to protect low-income households (Rathore and Bansal, 2013).

C Research Ethics

This study was approved by the Institutional Review Board of [University Name and Protocol Number Redacted], the Committee on use of Human Subjects of [University Name and Protocol Number Redacted], and the Ethical Review Board of [University Name and Protocol Number Redacted].

Voluntary informed consent was obtained by all human subjects in both the US and India. In the US surveys, which were conducted online, informed consent was obtained electronically and was built into the survey flow. In the India surveys, which were conducted via telephone and in-person, informed consent was obtained verbally or in signed format. Subjects were free to decline participation in the surveys at any point during the study.

Prior to providing consent, subjects were informed about the goals of the research, foreseeable risks and benefits associated with the research, the scholarly nature of the research, compensation, the voluntary nature of the study, and relevant contact information. No deception was used in the surveys.

Survey respondents in India were not compensated monetarily for participating in the study; respondents were sampled at random from the respective population groups and asked if they were interested in participating in a survey. In the US, we worked with two survey companies (Lucid and Qualtrics) rather than online crowd-sourced labor markets. These companies routinely do a range of activities like market research where respondents are compelled by the important opportunity to let their opinions be recorded while also receiving remuneration consistent with prevailing market research rates.

Finally, for the India surveys, in order to ascertain the appropriateness of the study with respect to local laws, cultural, social and political contexts, our research design and study was reviewed by an expert not affiliated with the research project and experienced and knowledgeable about the local laws, regulations and customs.
D Descriptive Statistics

D.1 US Sample

D.1.1 Geographic Distribution of US Sample

Our sampling scheme is visualized in Figure A.1, with dark grey indicating counties containing respondents from the General Population poll, red marking counties with Coal Country respondents, and blue highlighting counties with respondents in the Cross-Pressured sample.

Figure A.1: This map shows the counties from which our respondents were sampled. Red denotes counties in the Coal Country sample; blue denotes counties in the Cross-Pressured sample; dark grey represents counties from our General Population sample.

D.1.2 Descriptive Statistics of US Sample

<table>
<thead>
<tr>
<th></th>
<th>General Population</th>
<th>Cross-Pressured</th>
<th>Coal Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>53%</td>
<td>60%</td>
<td>62%</td>
</tr>
<tr>
<td>Median Age</td>
<td>46 years</td>
<td>35 years</td>
<td>37 years</td>
</tr>
<tr>
<td>College Degree</td>
<td>35%</td>
<td>33%</td>
<td>29%</td>
</tr>
<tr>
<td>Employed</td>
<td>54%</td>
<td>62%</td>
<td>51%</td>
</tr>
<tr>
<td>Ideology: Liberals</td>
<td>29%</td>
<td>15%</td>
<td>18%</td>
</tr>
<tr>
<td>Ideology: Conservatives</td>
<td>34%</td>
<td>43%</td>
<td>39%</td>
</tr>
<tr>
<td>White</td>
<td>75%</td>
<td>65%</td>
<td>95%</td>
</tr>
<tr>
<td>Concerned by Climate Change</td>
<td>76%</td>
<td>73%</td>
<td>69%</td>
</tr>
<tr>
<td>N</td>
<td>3702</td>
<td>1428</td>
<td>516</td>
</tr>
</tbody>
</table>

Table A.1: Descriptive statistics of US samples. ‘College Degree’ includes college graduates and graduate degrees. ‘Employed’ refers to self-employed or paid employees.
D.2 India Sample

D.2.1 Geographic Distribution of India Sample

Our sampling scheme is graphed in Figure A.2, with dark grey indicating districts containing respondents from the General Population poll, red marking districts with Coal Country respondents, and blue highlighting districts with respondents in the Cross-Pressured sample.

Figure A.2: This map shows the Indian districts from which our respondents were sampled. Red denotes districts in the Coal Country sample; blue denotes districts in the Cross Pressured sample; dark grey represents districts from our General Population sample.

D.2.2 Demographic Distribution of India Sample

E Additional Information Regarding India Samples

The implementation of our surveys in India required a more involved sampling strategy than in the US. Here we describe the decisions we took to identify the relevant samples.

E.1 General Population

The General Population sample was conducted using Computer Assisted Telephone Interviewing (CATI), drawing on all mobile phone and landline connections in India.21 Our research firm employed an automated predictive dialer to select phone numbers from all telecom circles and digital exchanges in India. India’s high telephone density rate allowed enumerators to access the vast majority of demographic groups in the country.22 Members of low-frequency demographic groups were over-sampled to obtain a geographically and socio-economically representative sample. The sample covered the entire geography of India, excluding only some remote north-eastern states and union territories. Respondents could choose to take the survey in eleven languages: Hindi, Punjabi, Gujarati, Marathi, Kannada, Malayalam, Tamil, Telugu, Odiya, Bangla and Asamiya. The survey was conducted by the firm CVoter News Pvt. Ltd.

21Telephone surveys are advantageous since they alleviate privacy and social desirability concerns for respondents in group settings. Additionally, the medium facilitates interviews with hard-to-reach demographic groups, boosting representativeness of the sample. Interviews were recorded and supervised in real time, augmenting the quality of responses.

22Because incoming calls are free of cost, we were able to access poorer citizens in our sample frame.
<table>
<thead>
<tr>
<th></th>
<th>General Population</th>
<th>Cross-Pressed</th>
<th>Coal Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>65%</td>
<td>59%</td>
<td>30%</td>
</tr>
<tr>
<td>Median Age</td>
<td>36 years</td>
<td>35 years</td>
<td>36 years</td>
</tr>
<tr>
<td>Attained Secondary School</td>
<td>48%</td>
<td>47%</td>
<td>42%</td>
</tr>
<tr>
<td>Employed</td>
<td>77%</td>
<td>78%</td>
<td>75%</td>
</tr>
<tr>
<td>Voted for BJP</td>
<td>60%</td>
<td>65%</td>
<td>48%</td>
</tr>
<tr>
<td>Below National Median Income</td>
<td>40%</td>
<td>42%</td>
<td>45%</td>
</tr>
<tr>
<td>Scheduled Caste/Dalits</td>
<td>12%</td>
<td>12%</td>
<td>22%</td>
</tr>
<tr>
<td>Scheduled Tribes</td>
<td>3%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Other Backward Classes</td>
<td>35%</td>
<td>45%</td>
<td>32%</td>
</tr>
<tr>
<td>Upper Caste</td>
<td>39%</td>
<td>30%</td>
<td>31%</td>
</tr>
<tr>
<td>Muslim</td>
<td>8%</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>Concerned by Climate Change</td>
<td>91%</td>
<td>89%</td>
<td>93%</td>
</tr>
<tr>
<td>N</td>
<td>2102</td>
<td>1573</td>
<td>1556</td>
</tr>
</tbody>
</table>

Table A.2: Descriptive statistics of India samples. ‘Secondary School’ includes individuals who have completed secondary school or higher. ‘Employed’ refers to self-employed or paid employees. ‘Voted for BJP’ refers to whether respondents voted for the Bharatiya Janata Party (BJP) in the last Lok Sabha election.

E.2 Coal Country

The Coal Country sample captures parts of the India heavily dependent on coal industry employment, and thus vulnerable to the economic threats of climate policy. This sample was constructed by combining two surveys: a representative survey of coal mining districts as well as a targeted survey of coal miners, as described below.

(a) Coal Mining Districts

First, we identified districts in India that are most heavily dependent on coal mining in order to capture parts of the Indian population most exposed to potential job losses from decarbonization. We identified coal mining districts using the 2015 Government of India publication, “Statistics of Mines in India: Volume I (Coal),” which provides statistics on “employment, production, productivity and other associated aspects in coal mines” in India. In association with the Mines Act, 1952, and the Coal Mines Regulations, 1957, India’s central government provides this regular statistical report on the country’s coal mines and operations. We used the report’s record of average daily employment to construct a list of all districts across India with at least one coal mine in operation that actively employed workers. From this list, we excluded 4 districts that also ranked high on ecological vulnerability; these districts were classified and sampled as cross-pressured districts (see below). Our final sample contains 39 districts from nine states (Assam, Chhattisgarh, Jammu and Kashmir, Jharkhand, Madhya Pradesh, Maharashtra, Orissa, Telengana, and West Bengal), and represents to our knowledge the most comprehensive sample of districts with coal mining employment in India.

(b) Coal Miners

Given India’s high levels of population density, we anticipated difficulty in locating workers employed directly in coal mines through the representative sample of coal mining districts above. Therefore, to supplement our Coal Country sample, we selected three districts with high coal employment—Dhanbad, Sahdol, and West Bardhman—in which we conducted in-person interviews with 850 coal industry workers. These individuals were identified and interviewed by the survey firm Morsel Research & Development. These interviews involved the same list of questions as our other samples, along with additional qualitative follow-up questions asking respondents about how they made decisions regarding allocations, community or individual transfers, and other key responses.

24Coal mining districts vary in intensity of coal employment. The largest district (Dhanbad in Jharkhand) contained 88 mines and employed 50,567 workers in 2015, while the smallest district (Narsigpur in Madhya Pradesh) contained 1 mine and employed 20 workers in 2015.

25These districts are in the states of Jharkhand, Madhya Pradesh, and West Bengal respectively. We selected districts with the highest levels of coal employment that were feasible to survey. Dhanbad and West Bardhaman have the country’s top two levels of coal employment. Sahdol has the country’s fifth highest level of coal employment. We excluded two districts in Telangana state with higher levels of coal employment than Sahdol due to local conflicts that posed a threat to enumerator safety.
E.3 Cross-Pressed

Cross-Pressed districts capture parts of India’s population exposed to both job losses from decarbonization policy and the ecological threat of climate change. For completeness, we distinguished coal mine and coal plant districts, and then identified those districts that were ranked high on measures of climate vulnerability.

(a) Coal Mines Cross-Pressed

To identify the coal mines cross-pressed districts, we combined the district-level coal mines data (discussed above) with an index of climate vulnerability developed by researchers at India’s Central Research Institute for Dryland Agriculture (CRIDA). The CRIDA “Atlas on Vulnerability of Indian Agriculture to Climate Change” ranks each district in India based on 4 indicators: exposure, sensitivity, adaptive capacity, and vulnerability.\(^{26}\) Based on these rankings, each district is assigned one of following five vulnerability ratings: Very High, High, Medium, Low, and Very Low. From the universe of coal mining districts, we selected all districts that were ranked “Very High” in terms of overall climate vulnerability. This generated a sample of four districts (Godda, Pakur, Bokaro, and Bilaspur) across two states that we deemed cross-pressed.

(b) Coal Plants Cross-Pressed

We used the Global Coal Plant Tracker database to identify the universe of coal plants that are located in India.\(^{27}\) The database contains information on 1,866 coal plants in India—including those that are in operation, have been retired, have been announced, and are in development. The database also contains information on individual plant capacity and estimates of each plant’s associated annual carbon dioxide emissions. The locations of coal plants in the Global Coal Plant Tracker database were webscraped and assigned latitude and longitude information.\(^{28}\)

We used geo-coordinates to situate each coal plant within one of the 652 districts in present day India. We found that 423 districts in India are not associated with coal production; by contrast 229 districts have some association with coal activity. For each district in the country, we pulled in the total population, rural population, and urban population, and educational achievements indicators from the 2011 census. We also hand-coded whether a district was located on a coast or not and whether it was neighboring a coastal district.

We then combined this district-level plant data with the climate vulnerability index developed by CRIDA (discussed above). Our final sample for the Coal Plants Cross-Pressed includes all districts that have a plant and also rank among the country’s top 140 most climate vulnerable districts. In the end, 25 districts across the states of Bihar, Gujarat, Haryana, Jharkhand, Karnataka, Madhya Pradesh, Maharashtra, Rajasthan, Tamil Nadu and Uttar Pradesh were included in the sample.

F Allocations Across All Tax Levels

F.1 US Sample

In the main text, we presented the results of the compensation choices respondents made based on a policy that would raise household energy cost by $64. In Figure A.3 we further present results from the lower ($16) and upper ($256) cost levels presented to US participants. The main findings are as follows:

- The average respondent in the ‘General Population’ is least interested in targeted forms of compensation such as fiscal transfers or adaptation infrastructure spending and most interested in compensatory options that benefit broad sections of society. They especially favor rebates at high tax levels.
- The average respondent in the ‘Coal’ sample is significantly in favor of direct transfers to people whose employment stands to be threatened by climate policy, at all levels of tax.
- The average respondent in the ‘Cross-Pressed’ (coastal/fossil fuel) sample has preferences that lie in between those of the ‘Coal’ and the ‘General Population’ samples.

\(^{27}\)See https://endcoal.org/tracker/ (accessed last on October 13, 2017).

\(^{28}\)For this step in the research, we are very grateful to Johannes Urpelainen, Noah Zucker, and Ricky Clark, who kindly shared with us the latitude and longitude data of existing coal mines.
Figure A.3: *US Average allocations by cost-treatment*
F.2 India Sample

Figure A.4 presents the results for the three cost levels (₹140, ₹560, and ₹2,240) presented to India participants.

The main findings are as follows:

- While the US ‘General population’ prefers green technology investments at the lower two cost levels and equal rebates to tax payers at the higher cost level, the average Indian is most interested in green technology investments at all cost levels. These investments constitute relatively diffused compensatory options that benefit broad sections of society.

- Like in the US, the average respondent in the ‘Coal Country’ sample is significantly in favor of direct transfers to people whose employment stands to be threatened by climate policy, at all levels of tax.

- The average respondent in the ‘Cross-Pressured’ (coal employment/high ecological vulnerability) sample has preferences that lie very close to the ‘General Population’ sample. This is possibly driven by the high levels of concern for climate change in the General Population (see Appendix D).

G Multivariate analyses

Here we analyze allocations within each category using both sample indicators and a set of individual level covariates. Here we use a simple linear regression, though both tobit models as well as fitting all categories with a Dirichelet regression (Maier, 2014) produce similar results.

G.1 US Results

For basic background covariates, we include self-reported income, age, dummy variables for conservative and moderate ideology (liberals were the excluded category; derived from a 7-point scale), and binary gender. We measured whether the respondent was employed in the fossil-fuel sector (an alternative measure that included if someone in the respondent’s family was so employed produces similar results). Based on the respondent’s location, we used data on climate change induced economic damages as a percentage of county income from Hsiang et al. (2017). We also included a set of covariates designed to tap climate change risk. This included a self-report on whether the respondent was personally concerned about the impacts of the climate change, whether they own or want flood insurance, and whether or not they had smelled smoke from a forest fire. Finally we estimated a model with state fixed-effects. We estimated a range of models in order to explore the stability of the results, beginning with a model with the sample indicators and the basic background characteristics. We then added various combinations of employment and climate change risk measures, as well as state fixed effects.

After controlling for various demographics, as well as individual and county level variables, the influence of the sample indicators remain relatively stable. The only exception is a more muted effect once state fixed effects are included, though this does not completely wash out the effect of support for those in coal country for transfers and support for climate vulnerable infrastructure from those in the coastal fossil fuel sample. Controlling for these sample indicators, we also observe support for transfers by those directly employed in the fossil fuel sector. Those not personally concerned about the effects of climate change were less likely to support infrastructure spending, and those who had or wanted flood insurance wanted more infrastructure spending.

G.2 India Results

Background covariates for our India sample were designed to parallel the US study as closely as possible. We include self-reported income, age, and binary gender. In lieu our US measure of ideology, we include a dummy variable for self-reported vote for the BJP in the most recent Lok Sabha election. Other vote breakdowns produce similar results. Relative to the US sample, we obtained an identical self-report of personal concern about climate change. However, our other indicators of climate change damage and risk were modified to be more applicable to the India sample. We asked participants if their region had experienced a drought in the past two years, and personal concern about heatwaves in their community. We include fixed-effects for Indian states. Like the US analysis, we begin with a base model and add employment, risk measures, and state fixed effects.

As with the US data, the influence of sample indicators remains stable under different controls. Including state fixed effects does appear to increase the estimated effect of the Coal Country sample on the preferred share of transfers to fossil fuel workers and investments in green energy. Self-reported risk indicators seem to have limited effect. Heat wave concern does seem to shift support toward investment in green energy and away from equal rebates.
Figure A.4: India Average allocations by cost-treatment
Figure A.5: Multivariate analyses of allocations in the United States. Separate models are color coded differently. Model with state fixed effects excludes the state estimates.
Figure A.6: Multivariate analyses of allocations in India. Separate models are color coded differently. Model with state fixed effects excludes the state estimates.
H Climate change vulnerability only analysis

In 2020 we participated in a survey targeting individuals in regions with a high degree of coastal flooding vulnerability in California, Florida, Virginia, and New Jersey (see [redacted] for more details). Essentially, specific buildings that were in a flood plain as identified by NOAA Sea Level Rise maps were identified. Then, within the same locales, buildings that were not in a flood plain were identified. Survey invitations were sent by mail to these households and respondents filled out an online survey and received a small gift card upon completion. In addition, some respondents were randomly assigned to receive a map showing their house on a map. If the house was in a flood plain, this flood plain was shown. This creates four separate groups. In the survey, which contained questions about climate policy, our exact allocation question at the $64 level was included.

Figure A.7 reports the results. As in other samples, investments in green energy gets the highest support across all groups. Relevant for our purposes, individuals in flood zones were more likely to support adaptation spending compared to individuals that lived near but not directly in a flood zone. Providing a map to respondents increased this effect. These results hold if we control for a range of covariates.

![Figure A.7](image)

Figure A.7: US preferences for allocation purposes of climate policy funds, by climate change vulnerability samples. This figure denotes how respondents allocated funds raised from a policy increasing the average monthly household energy costs by $64 across four spending options. Dots represent average allocation and lines represent 95% confidence intervals.

Figure A.8 takes the coastal flood sample that did not receive the experimental map treatment and plots it against the samples analyzed in the paper. We see that this group prefers higher levels of adaptation spending compared to all three groups.

![Figure A.8](image)

Figure A.8: Combining main text’s samples with non-map flood vulnerable/non-map condition from Figure A.7. Dots represent average allocation and lines represent 95% confidence intervals.

I Willingness to Pay for Four Policies

In our primary analysis, we asked respondents to “divide the dollar” and allocate spending between four policy options. In a follow-up survey experiment, conducted on a nationally representative sample of US adults via Qualtrics in Fall
2020, we fielded an alternate version of the survey question intended to adjudicate individuals’ absolute preferences and willingness to personally support each of the four policy choices. Respondents were randomly presented only one of the four policy options. They were informed that the policy would raise the average cost per household by $64 per month, and were asked whether they were personally willing to pay this average monthly cost to support the policy. The randomized design allows us to study absolute preferences for each policy lever.

Table X presents the results of our analysis. We find that at the $64 monthly cost level, entirely in line with the rankings from our allocation exercise, green investments are the most supported policy lever (43% support), followed by equal rebates (39% support), transfers (37% support), and infrastructure investments (35% support). These findings are informative as they point to differences in absolute levels of support for the policies that mirror the allocation exercise.

At the same time, it is also important to note that each of the policies have absolute baseline levels of support; even when respondents are not forced to “divide the dollar” and allocate funds to each policy, a significant portion still supports paying taxes to support each of the policies. Following Bergquist, Mildenberger and Stokes (2020), combining several dimensions of policies could increase support even more (which is consistent with the fact that in our divide the dollar exercise, respondents rarely completely allocated to one category).

Because this survey was nationally representative, we did not get respondents from our coastal fossil fuel or coal country regions.

<table>
<thead>
<tr>
<th>Support</th>
<th>Transfers (n=446)</th>
<th>Infrastructure (496)</th>
<th>Green Investment (450)</th>
<th>Redistribute (469)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37%</td>
<td>35%</td>
<td>43%</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>63%</td>
<td>65%</td>
<td>57%</td>
<td>61%</td>
<td></td>
</tr>
</tbody>
</table>

J Allocations for a chosen price

The spending allocation tasks presented in the main text were set on three a priori household cost levels. In a separate section of our survey, we allowed the respondents to choose their own price of the government policy, in order to investigate (a) if and how many respondents would not want any cost and hence choose a price of zero, and (b) how congruent the ranking of the compensation and investment options is compared to the ranking in our main results. Just like in the main tasks, the total proportion of the policy spending had to add up to 100%.

J.1 US

Only a small fraction of the US respondents said they would rather not have any policy at any cost. Specifically:

- 99 coal country respondents want to pay $0 (19% of this sample); median chosen cost is $16 (20 if we exclude the 0s)
- 191 cross-pressure respondents want to pay $0 (13% of this sample); median chosen cost is $25 (35 if we exclude the 0s)
- 440 general population respondents want to pay $0 (12% of this sample); median chosen cost is $20 (25 if we exclude the 0s)

When individuals could allocate across the categories when they could choose the cost, did this mirror their previous elections? For these individuals, the Pearson correlation between the ranking choices with a ‘forced’ cost ($64) and a chosen cost (above $0) are positive and strong.

29The question was worded as follows, with experimental treatments in bold:

“To combat climate change, the use of fossil fuels like coal and oil will need to be reduced. To reduce coal and oil production, the United States government is considering a policy to raise the costs of fossil fuels. This policy will affect average Americans because they currently use energy that comes from fossil fuels. Continuing to use these sources of energy will lead to higher household energy costs for average Americans. Suppose the policy implemented by the government raises the average cost per household by $64 per month.

If money raised by this policy is used to compensate workers in the coal and oil industries who will lose jobs due to the policy / help individuals whose homes and properties will be harmed by climate change, such as those who live in coastal areas / invest in forms of renewable energy like solar or wind energy / distribute the money equally to all citizens in order to offset the higher costs that they will have to pay for energy.

Would you be willing to pay $64 more on average per month in energy costs and support the policy or would you oppose the policy?”
• Compensation to vulnerable coal/oil workers: \(r = 0.69 \)
• Infrastructure investments to climate vulnerable: \(r = 0.53 \)
• Investments in green energy: \(r = 0.74 \)
• Equal rebates for all citizens: \(r = 0.65 \)

These strong correlations are not driven by one particular sample but they are strong across the samples (e.g., regarding compensation to vulnerable workers, the Pearson correlations in Coal Country, Cross-Pressured and General Population are respectively .83, .69, and .65; for infrastructure investments they are respectively .55, .51, and .53; for green energy investments, .66, .73, and .75; for equal rebates, .60, .67, and .65).

J.2 India

As with the US sample, only a small fraction of respondents in India opted for no policy at any cost. Specifically:

- 167 coal country respondents want to pay $0 (11% of this sample); median chosen cost is R 100 (stays at 100 if we exclude the 0s)
- 99 cross-pressure respondents want to pay $0 (6% of this sample); median chosen cost is R 200 (250 if we exclude the 0s)
- 299 general population respondents want to pay $0 (14% of this sample); median chosen cost is R 140 (200 if we exclude the 0s)

There is a strong, positive Pearson correlation in the India sample between ‘forced’ cost allocations (560 Rupees) and chosen cost allocations. For all four categories the correlation within the India sample is slightly stronger relative to the US.

- Compensation to vulnerable coal/oil workers: \(r = 0.72 \)
- Infrastructure investments to climate vulnerable: \(r = 0.59 \)
- Investments in green energy: \(r = 0.82 \)
- Equal rebates for all citizens: \(r = 0.67 \)

The India sample similarly exhibits strong cross-sample correlation. For compensation to vulnerable workers, the Pearson correlations in Coal Country, Cross-pressured and General Population are respectively .73, .66, and .69; for infrastructure investments they are respectively .68, .69, and .44; for green energy investments, .82, .84, and .78; for equal rebates, .66, .72, and .64.

K Open Ended Responses

In our surveys, we invited all the respondents in our US and India samples to explain why they ranked their first policy choice in an open-ended manner. Specifically, all our respondents were asked, “you previously told us what you think would be the most important way for the money to be spent; please take some time now to tell us why you made the choice you did.” Respondents then provided justifications, many of which touched upon identifiable themes.

To navigate the open ended responses and their themes in a systematic manner, we performed a manual qualitative coding of their content. We hired a research assistant who was asked to read each response, and then code in a binary fashion ten variables. We first describe the binary variables that, irrespective of the favorite policy, deal with issues of community and identity. We then move to more granular policy specific variables.

K.1 Community/Identity Analysis

Our research assistant recorded if, in defending their response (and irregardless of their favorite spending option), an individual included a ‘community’-related theme or an ‘identity’-related theme that justified their preferred policy. For ‘community’ the key criteria is whether the respondent is alluding to some targeted community-based rationales (as opposed to individual-based rationales). For example, a reference to families or older generations in a town/state is a 1 in this variable. A reference to themselves only or, e.g., the general labour force would not have that connotation, and would have a 0. Similarly, for ‘identity’ the key criteria is whether notions of belonging, group status, group fate, shared histories, burdens, responsibilities are mentioned in the response.
K.1.1 Results

Figure XXX shows the percentage of open-ended responses that covered ‘community’ themes (and therefore was assigned a value of 1 in our coding of the ‘community’ variable) by sample. We find that for the US... Similarly, although in smaller proportions, in India’s Coal Country...

Additionally, Figure XXX shows the percentage of open-ended responses associated with ‘identity’ themes. We find that for the US... Similarly, for India...

The results provide complementary strength to our argument that in Coal Country that the preferred policy choice, and especially the support for compensatory transfers to vulnerable workers in polluting sectors, are driven by a sense that this will help communities (or, vice versa, that without those policies entire communities will be vulnerable). Additionally, the qualitative responses also indicate that Coal Country respondents are more likely than the other respondents to present a justification based on identity among the reasons why they chose their top-ranked policy.

K.1.2 Illustrative Quotes

To give a more vivid sense of the themes of some of the Coal Country respondents and illustrate how they refer to issues related to community and identity, we report here a number of selected quotes. Many of the US Coal Country responses relate compensatory transfers to issues related to families (quotes #53 and #2077) and children’s education in the local community (#989):

#53: “In the area I live we are coal mining country. I have seen people have to leave, lose their homes, divorce, and have horrible repercussions because of the loss of coal mining jobs left in the area. In turn, I have seen once thriving family men lose everything and become addicts to cope. We are also in the lead for the opioid epidemic. Eastern Kentucky needs help. We need more job options and training to replace the only thriving industry we once had. It was ingrained into our culture to become coal miners. Now that that option is gone people are lost.”

#989: “In WV we have to many mountains for the solar system to work properly. The coal miners lose their jobs, they can not feed their families and they are always the lasts ones to get help. Also my husband is a disabled coal miner. Also the government doesn’t care about the poor people that has to pay those increases. Most people are struggling now just to make ends meet at the end of the month. In most families both parents are working and they don’t have time for their children and that’s why we have so many drop outs in school. We need to educate these children that is our future generations to be able to make decisions and work with other come up with a solution to our problems that no one has to suffer in the process.”

#2077: “I live in coal country. I see all the coal miners out of jobs due to all the regulations on coal now. There is not enough jobs in the area to sustain the men and they have no other training to do another job. Many are too old to go to college and try another career. Some are not smart enough for college and would not make the money they made in the coal mines even if they did. I see the families losing their homes, cars, and dignity when they have lost their jobs in the mines and can’t find another. I support sending/spending any and all money to help them get training in another field that will pay them close to what they are used to live that way because of some big shot who sits in an office and makes more money doing pretty much nothing than those who risk their lives underground everyday.”

Similarly, in India the quotes – which are distinctively shorter than the US quotes due to the translation of the responses – indicate that Coal Country respondents chose compensatory transfers to vulnerable workers because “it is important for the community to walk together” (interview #133 in West Bengal). Indian Coal Country respondents also indicate that those transfers are important “so that in future all the people might take steps keeping in mind the entire community” (interview #167 in West Bengal). According to some “the community […] are the foundation of the industry” (interview #68 in Madhya Pradesh).

K.2 Granular Policy Specific Analyses

Additionally, the research assistant coded other eight binary variables, two per each of the four spending options. For a respondent that preferred a particular spending option, the research assistant coded if the respondent (a) mentioned
a generic reason for this choice that referred to the basic function of the policy mechanism (namely, and in order: protecting workers, protecting infrastructure, guaranteeing future jobs, and protecting average citizens’ money), and/or (b) if they were motivated by community-specific reasons and a need of protecting specific groups. For example, for the policy entailing workers compensation, an individual could have mentioned a preference for helping vaguely defined workers, or a preference for helping workers in view of the effect that unemployment would have on their specific areas.

Below we show the main results from this additional coding of the open-ended responses. We pair these to direct quotes from the Coal Country sample, to buttress the finding that XXX...

K.3 Additional Evidence from India Coal Miners Sample

For the coal miner subsample in India, enumerators gathered open-ended responses to several questions central to our analysis. Morsel, the firm coordinating this sample, translated these qualitative responses to English. In this process, they condensed each individual’s response into a one or two sentence distillation focused on a main theme.

In these face-to-face interviews with coal miners, the miners were asked why they answered the way they did after they had indicated they preferred community over individual transfers to address job loss in the fossil fuels industry. In this subsample, a majority emphasized a motivation along the lines of everyone in the community being linked. At a minimum, their preference was motivated by fairness and compensation to all affected:

- “It is just not about an individual’s loss but loss for the whole community [WB.90].”
- “Communities depend upon industries just as much as individuals do [JH.139].”
- “They all depend on each other economically so they all should be given some amount of money [WB.235].”
- “The entire community will fall into debt trap otherwise [WB.240].”

Some miners seem to have been motivated less by fairness and more by the communal and family bonds they experience in the mining community:

- “All the families are linked and all are poor [JH.330].”
- “Everyone need to be paid, as they live in close fellowship [WB.164].”
- “The impact of a job loss if never limited to an individual only [JH.154].”

A third notable group emphasized the role the community had played in sustaining miners in their area. For them, a reasonable compensation should take into account not just present economic impact, but the loss of generations of communal investment in the industry:

- “Without the community the individual would not have survived in the industry [MP.49].”
- “Individuals can survive if the community does [JH.136].”
- “Community should get it because they are the foundation of the industry [MP.68].”
- “Everyone has a stake in the industry [JH.9].”

Of the 474 miners who chose community over individual transfers, 312 expressed a sentiment along the lines of everyone needing help and everyone being connected. The next most common sentiment was a fear of falling into poverty. On the other hand, of the 376 miners who chose individual transfers the majority (180) emphasized a fear of falling into poverty over connection or communal linkage.

L Identity and Community Additional Analyses

We present additional findings based on the questions regarding community and identity. We explore whether the overall differences in support for community transfers and the protection of identities documented in the manuscript holds when we run split sample regression that control for the other relevant variables. In Tables A.3 (US) and A.4 (India) we estimate a regression model for each sample and include a dummy variable indicating whether an individual is employed in the fossil fuel industry along with the set of controls.

For the US, we find that the difference between fossil fuel workers and non-fossil fuel workers remains but is small and statistically insignificant. In contrast, fossil fuel workers in the cross-pressured and general population samples prefer direct compensation rather than community based schemes. For the question on protecting identity, we also recover similar results as reported in the paper body. In the India regressions, we see small differences between fossil fuel workers and non-fossil fuel workers across samples, in line with the finding documented above that the major differences in India are cross-sample.
Table A.3: US Results By Sample

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Community Over Individual Transfers</th>
<th>Protecting Job Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Coal Country) (Cross-Pressured) (General Population)</td>
<td>(Coal Country) (Cross-Pressured) (General Population)</td>
</tr>
<tr>
<td>Fossil Fuel Employment</td>
<td>−0.036 (0.049)</td>
<td>−0.091*** (0.030)</td>
</tr>
<tr>
<td>Age</td>
<td>−0.001 (0.002)</td>
<td>0.002** (0.001)</td>
</tr>
<tr>
<td>Gender: Male</td>
<td>0.003 (0.048)</td>
<td>−0.008 (0.028)</td>
</tr>
<tr>
<td>Education: High</td>
<td>0.018 (0.048)</td>
<td>−0.008 (0.029)</td>
</tr>
<tr>
<td>Ideology: Conservative</td>
<td>−0.036 (0.064)</td>
<td>−0.039 (0.040)</td>
</tr>
<tr>
<td>Ideology: Moderate</td>
<td>−0.056 (0.065)</td>
<td>0.024 (0.041)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.672*** (0.097)</td>
<td>0.506*** (0.050)</td>
</tr>
</tbody>
</table>

Observations

| 466 | 1,302 | 3,538 | 466 | 1,302 | 3,540 |

* p<0.1; ** p<0.05; *** p<0.01

Note: For the "Community Over Individual Transfers" dependent variable, community preference is coded as ‘1,’ and individual preference is coded as ‘0.’
Table A.4: India Results By Sample

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Community Over Individual Transfers</th>
<th>Protecting Job Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Coal Country)</td>
<td>(Cross-Pressured)</td>
</tr>
<tr>
<td>Fossil Fuel Employment</td>
<td>-0.065^{**}</td>
<td>0.070*</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Age</td>
<td>-0.002^{**}</td>
<td>-0.002^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Gender: Male</td>
<td>0.056*</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Education: High</td>
<td>0.012</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Did Not Vote for BJP</td>
<td>-0.012</td>
<td>0.051**</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.610^{***}</td>
<td>0.676^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,522</td>
<td>1,523</td>
</tr>
</tbody>
</table>

*p<0.1; **p<0.05; ***p<0.01

Note: For the "Community Over Individual Transfers" dependent variable, community preference is coded as ‘1,’ and individual preference is coded as ‘0.’
Community and Identity Literature

Existing literature indicates strong group-based affinities in coal-producing regions both in the United States and in India. Within the coal communities in both countries, coal is often equated with a sense of economic security, working-class solidarity, masculine pride, and national power (Bell 2009; Bell and Braun 2010; Lahiri-Dutt 2014; Scott 2010). Such popular imaginations create a strong coal identity based on perceived solidarity and a shared interest in protecting the status of the in-group. This section provides a literature review of interdisciplinary sources on coal identities in the two countries.

In the U.S., coal workers have historically maintained a strong shared identity based on their employment in the coal industry. Coal communities have tended to be dependent on coal mining over multiple generations, as many miners note that their grandfather’s or even great-grandfather’s generation had been employed in the mining industry (Carley, Evans, and Konisky 2018; Duncan 1999, 31-32). The influence of coal also extends beyond those immediately employed by the industry (Bell and York 2010). As Carley, Evans, and Konisky (2018, 136) note about residents of coal country:

The historic roots of coal not only steer individuals toward the profession but also shape the broader culture within these communities. Scholars have identified previously that a strong sense of identity to extractive industries is common, and we found significant evidence of coal culture in Appalachia. Coal was frequently framed as the common bond—or identity—that held the entire community together. This sense of identity is amplified by strong attachments to location, landscape, and personal networks, which not only makes it challenging for individuals to generate a conception of self that transcends coal, but also makes it particularly difficult psychologically for individuals that need to leave Appalachia for new employment opportunities.

Indeed, the transition away from coal triggers a “dual crisis” in coal communities—an existential threat from the loss of an industry and an onslaught on their identity and pride as coal miners. In some rural communities in Western Colorado, the coal industry has long served as the primary source of employment and tax revenue and the pillar of community pride (Mayer, Smith, and Rodriguez 2020). During his fieldwork in Shale County in Appalachia, Lewin (2019, 56) discovered that most residents in the region believed that mining offered “the only real opportunity for gainful employment in the county” and that community organizations depended on the taxation of and donations from coal companies. The Shale County community has historically constructed a heroic image of the miner as an embodiment of the region’s cherished values: “independence, self-sufficiency, hard work, devotion to family, selflessness, and dedication to community” (Lewin 2019, 58). The decline of the mining industry, however, has forced residents onto welfare and undermined their shared pride and solidarity.

Aside from their employment in the coal industry, coal workers’ sense of perceived similarity also originates from their common ethnic and regional identities. The Appalachian region, one of the main coal-producing areas in the U.S., has been home to Scottish and Irish immigrant communities since the 18th century (Douglas and Walker 2017). Due to its geographical isolation and lack of arable land, the region did not attract slave plantations and thus remained racially and ethnically homogeneous (Douglas and Walker 2017). Such homogeneity contributed to an image of white landscapes in rural America and a racial narrative of white settlers making a living in the empty American heartland (Holloway 2007; Kojola 2019).

Coal extraction is also deeply linked with American nationalist imaginations, as natural resources often come to embody the nation and coal-mining a pathway towards citizenship (Kojola 2019; Whitehead, Jones, and Jones 2007). In American popular culture, European immigrants to the rural heartland are often depicted as hard-working individuals striving to realize their “American dream” (Leap and Thompson 2018). Scott (2010, 143, 168) describes how the coal-rich Appalachia contributes to the cultural construction of the American nation:

The patriotic sacrifices of miners constitute the terms for Appalachia’s membership in the American nation. Appalachia’s marginal status as a natural resource colony ironically provides coalfield communities a way to claim a core national identity. The hardships of mining can be read as evidence of their patriotic devotion to America and their central role in the national economy.

In other words, coal-based identities are embedded in a broader, nationalist mystique and narratives of the nation’s founding.

The unionization of coal workers provides yet another anchor for their shared identity. Residents of West Virginia, for instance, have a deeply rooted identity as the “Union People,” as the union served to unite the coal workers around a collective identity, providing them economic security and a sense of respect in the broader community (Bell 2009). The denial of these “Union People” to work for a community coal mine meant not only a loss of employment but also a loss of identity and a breakdown of the community’s social fabric (Bell 2009).

For the male coal workers—the vast majority of those working in mines—coal employment is tied to the ideal of hegemonic masculinity in the coal regions. In the words of Maggard (1994, 30), masculinity in the coal camps has been
equated with “a willingness to work in dangerous conditions.” Beckwith (2001, 310) adds that the mining industry in certain regions, such as the Central Appalachian coal camps, has been so male-dominated that the terms “miner” and “male” identities have become conflated and virtually exchangeable. Fearing the loss of their social status and masculine pride, men in these coal regions have been more reluctant to speak out about the consequences of irresponsible mining practices. As an environmental activist in Central Appalachia puts it, “Men were the coal miners, so it’s a little harder for them to let go of that sense of, you know, this is how I put cornbread on the table” (Bell and Braun 2010, 806).

The collective identities of coal communities have also been exploited by the coal industry to mobilize popular opposition to environmental regulation. In West Virginia, local coal companies have supported the (faux) “grassroots” organization “Friends of Coal” in an attempt to construct an “industry ideology” that centers the West Virginian identity on coal production (Bell and York 2010). In a similar vein, coal producers in Central Appalachia promote a narrative of shared coal heritage that portrays themselves as guardians of the region’s cultural heritage (Lewin 2019). These narratives induce local residents to “embrace - and even identify with - coal not just as a market of community identity, but as a total ‘way of life’” (Lewin 2019, 54). The industry’s efforts to construct what Bell and York (2010) call a “community economic identity” explain how the coal industry, despite its diminished economic importance, still occupies a central position in regional identities and manages to mobilize popular support for its preservation.

In addition to their resistance to environmental movements, residents of coal-producing regions have turned to populist politicians in hope of “bringing back the mines” and a “way of life” associated with the mining industry (Kojola 2019). Lewin (2019) argues that Appalachia’s “subordinate relationship” to the rest of the country has conditioned locals to feel like they are abandoned and devalued by the federal government. Such perceptions fuel pro-industry, pro-fossil fuel views that resonate with the rhetoric of right-wing populist leaders (Lewin 2019). At the same time, members of coal communities have grown increasingly suspicious of what they see as a liberal “attack” on coal and the “liberal political agenda” to replace fossil fuel with renewable energy (Olson-Hazboun 2018).

Compared with their American counterparts, the loss of mining triggers an even keener perception of an existential threat among Indian coal miners. Two factors contribute to their greater vulnerability. First, a high percentage of Indian coal workers are employed informally and lack the social benefits of secure employment. Siddiqui and Lahiri-Dutt (2015) estimate that in 2015, more than 42% or an estimated 1.4 million mining and quarrying households are “marginal,” earning irregular incomes and lacking access to services and utilities. In Ramgarh, one of the top five coal-producing districts in Jharkhand, one in four households depend economically on local coal mining yet only 7% of the households have a formal job in the industry (Blushan, Banerjee, and Agarwal 2020, 11). Lahiri-Dutt (2003) estimates that in the coal deposits in the Raniganj coalbelt, over 500,000 people are employed in the illegal mining sector, surviving on a mixture of coal scavenging and subsistence farming.

Second, the emergence of the coal industry destroyed local environments, significantly reducing alternative employment opportunities in the agricultural sector. In the Barjora colliery area of West Bengal, participation in the agricultural sector has declined from 62% in the pre-mining period to merely 3% in the post-mining period (Banerjee and Mistri 2019). As of 2019, up to 55% of the residents in the area are employed in the mining industry (Banerjee and Mistri 2019). Similarly, in the Ib Valley coalfield of Western Odisha, 51% of local residents depend on mining as their primary source of income (Das and Mishra 2015, 86). This is perhaps due to the common practice among Indian coal mining companies of acquiring farm and and then offering coal mining jobs to the former landowners (Blushan, Banerjee, and Agarwal 2020, 95).

Aggarwal (2020) argues that “India is a coal-dependent economy and is home to many towns and cities whose entire economy is directly or indirectly based on coal ... highlighting how deeply connected to coal, the economy of such regions is.” The closure of coal mines in India, Aggarwal (2020) notes, will need to accommodate social and economic disruptions, with new forms of economic opportunities and infrastructure being made available “to support and enhance the livelihoods of those dependent on coal.”

The tremendous economic vulnerability of India’s coal communities is compounded by the government’s lack of planning in the transition away from coal. The socio-economic consequences have been especially severe in older coal mining regions such as Jharkhand, where many mines are closed down due to unprofitability (Blushan, Banerjee, and Agarwal 2020). As of 2020, 106 out of 203 leased mines in Jharkhand are temporarily or permanently closed and the percentage of closed mines is even higher in certain districts (Department of Mines and Geology 2020). All five mines are closed in Jamtara as well as 16 out of the 25 mines in Bokaro (Blushan, Banerjee, and Agarwal 2020, 44). The closure of coal pushes coal communities further into poverty. For skilled workers, alternative job opportunities in the region are limited, and for unskilled and poorly educated laborers, there may well be no fallback employment option (Blushan, Banerjee, and Agarwal 2020, 95). Small businesses and local retailers also take a blow from mine closures, as many have developed due to the emergence of coal mining (Blushan, Banerjee, and Agarwal 2020, 96). Local residents also expressed concern that the economic fallout from mine closures could lead to a spike in crime and substance abuse.

30Such practices have at times triggered local resistance to coal extraction, particularly among the indigenous Adivasi people who inhabit much of the country’s coal-rich jungle areas. See also: Banerjee and Mistri 2019; Dasgupta 2020; Lahiri-Dutt 2003; Padel and Das 2010; Oskarsson 2018
undermining the region’s social stability (Bhushan, Banerjee, and Agarwal 2020, 96).

The tremendous vulnerability of India’s coal communities amplified their strong economic identity in the coal industry. In the words of Bhushan, Banerjee, and Agarwal (2020, 95), the “predominant perception of dependence on coal for income makes it impossible for most people in the mining areas to imagine a future without coal mining.” A survey of Ramgarh residents demonstrates a “palpable sense of dependence” on coal, with 77% of locals stating that coal mining contributed to their income in “some way”; this “reflects a ‘coal-centered’ life that has evolved in these old mining regions over decades and the complex economic fabric it has helped create” (Bhushan, Banerjee, and Agarwal 2020, 87). Similar to American coal communities, many Indian coal workers report that older generations of their family have been employed in the coal industry and many even directly inherited their jobs from their fathers (Bhushan, Banerjee, and Agarwal 2020, 95). The district’s coal-centered economic identity extends beyond individuals working directly in coal mining. Those gathering and selling coal, laborers who transport slurry, and those engaged in leveling and loading also expressed a strong economic dependence on the coal industry (Bhushan, Banerjee, and Agarwal 2020).

Coal miners in India also associate their work with feelings of nationalist pride as well as working-class solidarity. Lahiri-Dutt (2014), in her work on the Indian “coal nation,” demonstrates that coal played a vital role in helping India form a postcolonial identity. While coal mining was historically associated with the colonial state, after 1947, as the newly independent state exerted control over its natural resources, the industry assumed a new role as a symbol of national independence and modernization (Lahiri-Dutt 2014). Coal mining created a working-class of migrants and indigenous laborers and subsequently gave birth to the trade union movement, which united workers against the exploitation of coal companies (Lahiri-Dutt 2016). The nationalization of coal mining in 1971 further created an image of the “national coal,” which is seen to have played a pivotal role in the country’s industrialization (Lahiri-Dutt 2016).

Though concerns for community pride and shared identity perhaps amplified workers’ demand to retain the mining industry, the main driving force behind coal communities’ pro-mining activism is their perception of an existential threat from mine closures. In Naginimora, a town in the northeastern state of Nagaland, local residents have long resisted the state government’s takeover of their mining rights. A Konyak landowner explains why locals rejected the state government’s offers of employment in exchange for their land:

“They promise us employment and other benefits, but we have none of that. How can they take land from people who are uneducated and cannot read and write? We have to protect it, so we have all said no to the government’s move (Kikon 2019, 120).

For residents of coal-rich regions, coal holds the promise of a better life and a transformation of their fortunes. Kikon (2019, 120) found that “Naga villages perceived oil and coal as resources that could radically transform their lives ... [and] people fantasized about a prosperous carbon future and potential benefits from oil exploration.” For even more marginalized communities, coal might be the only source of viable income. In the Raniganj collieries, local individuals excluded from the formal mining industry have attempted to assert their claims on the coalfields by drawing on their traditional rights and customs (Lahiri-Dutt 2003). In Meghalaya, where the government issuing a mining ban, indigenous communities invoked their special status granted by the Indian Constitution to justify their mining rights (Lahiri-Dutt 2017; McDuie-Ra and Kikon 2016; Stokke 2017). A local villager defends her community’s engagement in “illegal coal mining”:

Yes, we dig coal—this is our main income. But tell me, why would we not take coal from here? Was this not the land of our ancestors? The collieries came and took our lands from us. They took our lands, and gave us nothing in return. They took our forests, and now we have no land, no forests. Why is this coal not ours? It is ours. Of course I will take it! (Lahiri-Dutt 2017, 799)

Historically, India’s coal communities were ethnically concentrated with tribal and semi-tribal groups, although in recent years Indian coalfields have attracted migrants from nearby regions (Das and Mishra 2015; Gupta 1985). This demographic composition can be explained by the history of coal mining in India. As large-scale mines were opened in forest areas, local inhabitants—often indigenous populations and low-caste peasants—were removed from their lands and incorporated into the mining economies.31 Mining companies drew laborers from both displaced locals and migrants from neighboring districts (Gupta 1985; Lahiri-Dutt 2003). In the Laitrumbai region, for example, Bangladeshi migrants

31 Gupta (1985, 18) writes, “The mines in both Bengal and Bihar came to be located in remote, formerly jungle areas—inhabited by tribal and semi-tribal populations and low-caste Hindus engaged in a somewhat crude form of agriculture and also partly dependent on the gathering of forest produce. In the early years virtually the entire mining labour force was composed of tribal and low-caste peasant and artisan groups. From the earliest days of mining, labourers were drawn from villages either within the two coal bearing districts or neighbouring districts. Till 1921 the overwhelming majority of the mine labour force consisted of local people or at most short-distant migrants (18).”
were willing to work for lower wages than local laborers because they would have been paid even less for doing similar jobs in their home country (Lahiri-Dutt 2014, 93). The Rabha and Hajong minorities also seek temporary employment in the mining sector during the agricultural lean season (Lahiri-Dutt 2014, 93). These migrant laborers are commonly seen by local residents as threats to their cultural identity and economic welfare (Lahiri-Dutt 2014, 93). Nevertheless, even among migrant miners, who typically come from tribal and low-caste communities, there has been a “persistence of strong traditional kinship and family ties from which the miners used to draw support and succour” (Gupta 1985, 26). Scholars underscore how local opposition to state-led bans on coal mining have been led by tribal groups, including the Movement for Indigenous Peoples’ Rights and Livelihood (MIPRL), who have highlighted constitutional protections for “tribal rights over land and land use” (McDui-Re and Kikon 2016, 266).

To conclude, India’s coal identity seems to be driven primarily by a sense of existential threat, whereas the American coal identity is shaped more by a perception of community heritage and solidarity. While American coal communities are tied together by strong feelings of regional identity, ethnic similarity, and shared culture, in India, members of the mining community come from a wide range of tribal backgrounds, ethnic affiliations, and regional origins. Yet the gradual disappearance of the industry triggers an existential crisis for coal communities in both countries, mobilizing community members’ economic identities and generating widespread resistance against mine closures. For American miners, the energy transition threatens to end their traditional “way of life.” For those affiliated with the Indian mining industry, mine closures pose a threat to their basic subsistence.

References

Olson-Hazboun, Shawn K. 2018. “‘Why are we being punished and they are being rewarded?’ views on renewable energy in fossil fuels-based communities of the US west.” The Extractive Industries and Society 5(3):366–374.

Oskarsson, Patrik. 2018. Landlock: paralysing dispute over minerals on Adivasi land in India. ANU Press.

