Abstract
Combating climate change requires large economic adjustments with significant distributional implications. Scholars and policymakers increasingly propose compensating vulnerable communities to mitigate the costs of decarbonization and build coalitions supporting climate cooperation. What are the determinants of mass preferences toward different modes of compensation? We theorize that varying vulnerability to decarbonization policies and to climate change generates distinct preferences regarding compensatory designs. Employing original surveys in the United States, we show that communities vulnerable to job losses from decarbonization more strongly favor compensating workers than communities that rely on fossil fuel employment but that are also exposed to climatic events. By contrast, the general population privileges alternate types of large-scale redistribution. Importantly, support for compensation in coal country is closely connected to fears that climate policy will threaten community identities. Our findings illustrate how compensatory designs generate polarization across key constituencies, explicating why mobilizing support for compensation can be politically challenging.

Word Count: 9,910

1 We thank Nicholas Obradovich, Ricky Clark, Rohit Chandra, Alicia Cooperman, Jennifer Hadden, Matto Mildenberger, Kenneth Scheve, Michael Bechtel, Resul Umit, Johannes Urpelainen, Noah Zucker, and participants at the Center for Advanced Study in the Behavioral Sciences’ Comparative Politics of Climate Change Workshop, Stanford University’s Comparative Politics of Environmental Policymaking Workshop, the Political Economy of Energy Transitions Workshop, the 2019 American Political Science Association, and the 2019 International Political Economy Society conference for helpful feedback. We are especially grateful to Robert Keohane and the Balzan Prize in International Relations for inspiring and supporting this project, and for providing early stage feedback. Darrin Gilkerson and Diana Ding provided excellent research assistance.
“Decarbonization” represents one of the most pressing and multifaceted challenges facing governments around the world. It requires coordination and cooperation across countries seeking to reach effective deals at the international level. At the same time, it necessitates convincing domestic audiences to support a bundle of policies—implemented by national legislatures and policymaking bodies—that will facilitate meaningful reductions in emissions (Bechtel and Scheve 2013). Because these policies entail significant distributional implications, they are poised to generate vigorous opposition from adversely affected communities (Jenkins 2019). Governments, in turn, have sought to employ compensatory policies to alleviate the “carbon transition” costs for vulnerable communities and create momentum for climate policy cooperation.

This paper sets out to explicate the sources of mass support for different climate-related compensatory designs and modes of compensation. Our approach focuses attention on critical groups that lie at the center of climate policy decisions, yet that remain understudied in existing work. We begin by identifying communities that stand to be most immediately impacted by decarbonization policies—and in particular, those with high rates of coal employment—as critically important political constituencies. Next, we consider communities that are highly reliant on fossil fuel employment but that also face nearer-term costs due to physical stresses emerging from climate change, such as those residing in coastal regions. We benchmark the preferences of these two politically relevant groups with the preferences of the national electorate, theorizing how each constituency develops preferences regarding decarbonization policies. To test our theoretical propositions, we fielded a common survey instrument on samples from the three communities, probing respondents to allocate revenue raised from carbon taxes to spending across various categories of compensatory mechanisms.

By examining how to spend proceeds from costs imposed on carbon emissions, we put the lens squarely on the distributional politics of climate policy (Keohane and Victor 2016, Aklín and Mildenberger 2018, Colgan, Green and Hale 2018, Bergquist, Mildenerger, and Stokes 2019).² Our focus is on preferences over the shape of decarbonization policies within countries that will generate costs for citizens. Revenue raised from decarbonization policies can be spent in a variety of ways. For example, a ‘carbon tax’ could be evenly redistributed to all taxpayers, as recently suggested by a large group of economists (Climate Leadership Council 2019). It could also be used to compensate individuals who are likely to lose their jobs due to employment in

² In this study, we bracket consideration of how governments can choose to impose direct or indirect carbon taxes that incentive decarbonization among citizens and firms in the domestic economy, focusing instead on examining the possible channels by which governments can use the proceeds from such revenue raising schemes to compensate vulnerable communities.
carbon intensive industries. Spending on other ends, such as investments in green technologies or infrastructural enhancements to protect groups vulnerable to climate change, are alternative possibilities that have been proposed by scholars and policymakers.

We focus on preferences held by individual citizens, building on a range of studies that explicate the determinants of sympathy for, or opposition toward, climate action (e.g., Aldy et al 2012, Bechtel and Scheve 2013, Carlsson et al. 2011, Stokes 2013, Tingley and Tomz 2014, Cooper et al 2018, Tingley and Tomz 2020). The literature, however, lacks theory and evidence to clarify how individuals develop preferences regarding compensation in climate politics, and more generally about the shape of preferences for decarbonization policies with distributional dimensions. This is a regrettable oversight. Compensation in political economy research is still largely understood in the context of individual attitudes towards taxation, economic inequality, and trade adjustment (e.g. Margalit 2011, Autor et al 2014); to date, little is known on individuals’ motivation to embrace climate action when redress is available to those who might be harmed by decarbonization. Given the key role that compensation plays in legislative action on environmental regulation (Hatch 1995, Kono 2019) as well as normative debates regarding climate cooperation (Evans and Phelan 2016), elucidating how compensatory mechanisms can shift public opposition into support for climate action is a matter of pressing concern.

This paper provides a theoretical framework and rigorous empirical tests to explain the determinants of individual preferences for compensation related to climate change policymaking. To the extent that the policy buy-in of “climate losers” can be achieved with various mechanisms, including compensation, we set out to answer the following questions: What types of compensation mechanisms are more favorable among different politically relevant voter groups? How do individuals with varying degrees of climate sensitivity develop preferences pertaining to climate policy compensation? Do different modes of deployment of compensation activate policy support? By addressing these questions, this paper not only explores the types of compensatory policy options that likely increase support for climate action among coalitions of

3 Providing compensation to workers has broad support among American voters. In 2017, we fielded a nationally representative survey via the AmericasBarometer project where we asked respondents the following question: “Congress could consider many important bills in the next two years. If you were in Congress would you vote FOR or AGAINST the following? Climate Adjustment Assistance: Provides education assistance and retraining to workers who have lost their jobs as a result of [policies designed to reduce | reductions in] greenhouse gas emissions.” The text in brackets was randomly assigned but did not significantly affect answers. Respondents were asked to answer whether they were either for or against the policy. There was bipartisan support for the proposal in both of the treatment conditions (62% Republican, 70% Independent, 85% Democrat). We observed similar bipartisan support in a nationally representative survey fielded in 2016 as part of the Cooperative Congressional Election Study (65% Republican support, 78% Independent support, 94% Democratic support).
voters, but also investigates the impact of vulnerability at the individual and group level on support for different types of decarbonization policies.

Our theoretical argument regarding the determinants of attitudes toward compensation starts from the assumption that individuals may be more or less exposed to the costs of addressing climate change. While these costs are disparate, in this paper we focus on one cost dimension that we believe is central to understanding mass politics over climate compensation: the employment and wage related costs that are associated with decarbonization policies and that generate vulnerability among societal groups poised to lose materially from climate policy action (Kolstad 2014, Bechtel et al. 2019). These costs will be borne disproportionately by workers in carbon-heavy economic sectors—specifically, the coal, oil and gas, and other fossil fuel producing industries.

We then consider how individuals who are susceptible to employment-related costs associated with carbon policies might develop distinct preferences when they also face ecological costs associated with climate change (Brody et al. 2007, Egan and Mullin 2012). Residents in coastal communities or regions susceptible to climate-related disturbances are expected to be particularly sensitive to the impact of climate change due to the ecological vulnerability that they face, and may thus view compensation distinctly compared to individuals in regions that are relatively unaffected by climate change. We argue that the levels and mix of these costs underline individuals’ propensity to accept one type of climate policy compensation over others and one method of deployment of compensation over others.

We test our theoretical predictions with new survey data. Specifically, we probe our argument with a nationally-representative survey of voters in the United States, along with two surveys of targeted communities of Americans residing in fossil fuel producing regions of the country that are either coastal (i.e., more ecologically vulnerable) or non-coastal (less ecologically vulnerable) in nature.

Our general population survey reveals that voters on average focus more on investments in green technologies (when the household carbon tax is low) and equal distributions of funds raised from carbon taxes (when the taxation level is high). By contrast, people exposed to fossil fuel (un)employment who reside in regions that are less ecologically vulnerable prefer policies that focus resources on direct compensatory transfers to individuals working in coal and oil industries. These groups of voters have little appetite for investments in green technologies or egalitarian payouts of carbon tax funds to citizens. However, whether people in fossil fuel producing regions are willing to sacrifice direct transfers for larger-scale, more diffused compensatory climate policies is a function of their ecological vulnerability to climate change. Notably, we find that “cross-pressured” individuals—i.e., people attached to the fossil fuel
industry who also live in coastal areas—prefer the most *mixed distributions* of monetary allocations to compensatory mechanisms. This includes support for climate adaptation spending. Our evidence therefore indicates that the preferences of individuals vulnerable to climate change policy are distinct compared to the preferences of the average voter, with cross-pressured individuals falling in between these two attitudinal poles.

Having considered the determinants of mass preferences over climate policy compensatory instruments, we proceed to examine if preferences vary as a function of the relative importance that groups of voters attach to individual versus collective goals. Community and identity-related beliefs play a key role in climate politics discourse (Bluët et al. 2015, Mildenberger and Tingley 2018) and decisions to mobilize politically at either the individual or community levels are important determinants of public policy positions (Shayo 2009, Hopkins 2010). We draw on theories of social identity and community-oriented motivations to better understand the determinants of preference formation on climate action policies. Specifically, we predict that different types of (economic and ecological) vulnerabilities should generate distinct feelings of community attachments that, in turn, can help explain why some individuals prefer more concentrated forms of compensation while others favor compensatory resources that are more communally deployed.

Our identity-related analyses buttress the finding that individuals in regions that are predominantly sensitive to the employment repercussions of climate policy have the most distinctive opinions about the deployment of compensation. Specifically, we find that Americans in employment-vulnerable regions prefer more community-oriented compensatory transfers relative to compensation to individual households, and subscribe closely to notions of community identity associated with coal employment. By contrast, individuals in the general population pay considerably less attention to issues of community: they are less favorable of community-level compensatory mechanisms and less concerned about the impact of decarbonization on group identities in coal producing regions. Respondents in the cross-pressured group fall in between these two groups, privileging a mix of individual and community level resource deployment, and exhibiting some concern for policies that would harm the identities of fossil fuel producing communities.

Taken together, our findings contribute to scholarly conversations regarding the role of egocentric and sociotropic motivations in driving support for climate policies in emissions-rich electoral democracies (Bechtel, Bernauer and Mayer 2012; Bechtel and Scheve 2014). They also have implications for the implementation of effective carbon policies in large heterogeneous countries. As Jenkins (2019) argues, “attention to the distributional impacts and political economy of various policy choices can provide important insights about the likely sources and strength of support and opposition that these policies will receive from various constituencies.”
Our results, in turn, elucidate how individuals belonging to communities that are vulnerable to the costs of regulatory policies aimed at emissions mitigation and to the costs of climate change itself develop preferences regarding compensatory climate policies that are systematically different from those of the average voter.

Theory of Differential Preferences for Compensation

Compensation is a mechanism for redistributing resources to the more sensitive losing parties of a redistributive economic policy. As a burden-sharing tool, its distinctiveness stems from its focus on reallocating resources to specific groups in order to redress past or future costs. Because of its targeted nature, compensation can have important feedback effects on support for public policy, for it can foster governments’ credibility in seeking to protect vulnerable individuals and communities (Autor et al 2014). At the same time, compensation may fail to achieve policy goals if it is not well calibrated or judiciously implemented (Carattini, Kallbekken and Orlov 2019, Jenkins 2019). How the public views compensation is therefore critical for successful policy enforcement and compliance. Importantly, support for compensatory policies likely depends both on the type and degree of vulnerability experienced by targeted groups and how this is perceived both by affected communities and by the rest of society.

In this section, we delineate how different forms of climate-related vulnerability can affect preferences for compensatory climate policy. The issue area of climate change is instructive because the politics of climate change mitigation and adaptation are deeply rooted in distributive conflicts, and “climate losers” constitute a compelling group that can lay stake to beneficial policy support (Bechtel and Scheve 2013, Anderson, Bernauer and Balietti 2017). We note, however, that the core theoretical tradeoffs we identify in the climate arena potentially apply to other redistributive international economic policy domains where coalitions of voters demand compensation as a form of economic redress.

In order to establish what compensation in climate politics may look like, we begin by identifying the groups that are likely to claim entitlement to compensation related to climate change, and develop predictions related to their preferred compensatory mechanisms. On the one hand, climate change necessitates expensive adaptation for communities whose livelihoods are most exposed to events such as floods, hurricanes and wildfires. Adaptation-related costs could be addressed by protective infrastructural investments—for example, seawalls in low-lying coastal communities—made by governments to protect ecologically vulnerable communities from the adverse effects of climate change (Barbier 2014). On the other hand, climate change action implies costly mitigation, which bears on regions in which socio-economic activities contribute disproportionately to greenhouse gases, such as fossil fuel producing localities. Given the direct impact of decarbonization on job losses and household incomes in coal and other fossil
fuel generating industries, governments may choose to address mitigation-related costs by providing *direct fiscal transfers* to affected workers and their families (Rentier et al. 2018).

Evidently, other instruments exist apart from these two compensatory options. Investments in *clean energy and green technologies* may be a useful redistributive mechanism if these are conceptualized as long-term conduits for decarbonization, aiming to reduce emissions in a diffuse fashion while holding the potential of generating jobs and economic gains for broader societal coalitions in the future. In a similar vein, other compensatory mechanisms such as *tax rebates* for all citizens who directly or indirectly contribute to carbon taxes targeting mitigation may also be considered equitable and credible instruments of redress that immediately benefit large sections of society (Jagers, Martinsson and Matti 2019).

We contend that support for these different forms of compensation is linked to individuals’ perceptions of climate change vulnerability. Here we investigate two dimensions of vulnerability and, therefore, two different sources of individuals’ preferences related to the compensatory mechanisms envisioned above. On the one hand, we concentrate on *employment-related vulnerability* to carbon policy, which researchers have increasingly highlighted as a catalyst of public opposition to climate cooperation (Bechtel, Genovese and Scheve 2019, Carley et al. 2018a, Kono 2019, Beiser-McGrath and Bernauer forthcoming, Berquist, Mildenberger, Stokes 2019). On the other hand, we consider *ecological vulnerability*, which the scholarship on public behavior has underlined as an important source of political activism (Egan and Mullin 2012, Healy and Malhotra 2009, Bechtel and Hainmueller 2011).

The premise of our theoretical framework is that individuals can perceive vulnerability concerns associated with climate change either *independently* or *simultaneously* (cf. Sprinz and Vahtoranta 1994). We begin by considering how individuals can be negatively affected by decarbonization policies, for example if they live in areas where fossil fuels are extracted and refined. Individuals affiliated with the fossil fuel industry are those who are either directly employed in jobs that contribute to fossil fuel production or those who are dependent on its associated economies, such as service sector employment in fossil fuel producing regions. We then evaluate how individuals living in communities exposed to climate policy risk might or might not also be affected by ecological fragility associated with climate change—for instance, if they live in coastal regions or drought prone lands that are vulnerable to the adverse climatic events. This classification generates two categories of individuals: 1) those who are carbon policy vulnerable but not ecologically threatened, and 2) those who are both carbon policy vulnerable and ecologically threatened. We benchmark the policy preferences of both of these groups of individuals to those who are neither ecologically threatened nor carbon policy vulnerable, i.e., the general public.
Policy threatened, ecologically not threatened

What are the determinants of preferences among these three groups of voters regarding compensatory climate policies? First, we consider individuals who are exposed to the cost of carbon policy but who do not face clear and immediate ecological threats from climate change. This group includes people exclusively pressured by the anxiety of losing jobs or wages were the government to pass stringent climate action legislation. In line with research that identifies a powerful effect of employment-based concerns in climate politics (Bechtel, Genovese and Scheve 2019), we predict that these people should be most supportive of compensatory payments that deal directly with their individual-level employment concerns. Consequently, we expect these individuals to support policies that emphasize more prominently direct fiscal transfers to affected households rather than other investments (such as, for example, investments in adaptation infrastructure, green technologies, or tax rebates).

Policy threatened, ecologically threatened

We next consider individuals who are exposed to the costs of carbon policy but who also face clear and immediate ecological threats from climate change. We classify this group as “cross-pressured” (Sprinz and Vahtoranta 1994). Cross-pressured individuals may be pushed to support, on the one hand, direct individual transfers and, on the other hand, more collective forms of protection (e.g. infrastructural investments), since each compensatory instrument alleviates a distinct category of vulnerability. Hence, we expect those exposed to high costs on both dimensions to express more support for policies that entail a mix of direct individual-level compensatory payments to offset the costs of climate mitigation policy, as well as infrastructural action designed to offset community-level environmental costs of climate change. Were they to choose the amounts in which to allocate compensation, we expect that selected choices would be more evenly distributed than, for example, the selections of individuals only pressured by employment concerns. We predict that individuals with cross-pressured interests would also be affected by the level of allocation of compensatory resources.

Neither ecologically threatened, nor policy threatened

Finally, we consider individuals who are pressed neither by climate change vulnerability nor employment-based concerns related to carbon policy—in other words, the general public. We expect these individuals to exhibit the lowest level of salience related to multidimensional issues of climate change. Consequently, we expect these individuals to be less supportive of climate-related compensation in aggregate, and less enthusiastic about infrastructural investments and fiscal transfers to groups affected by climate change policies. If given the opportunity to divert compensatory resources to other funding programs or an equal
redistribution of public funds to citizens (e.g. a carbon tax rebate), we expect these individuals to be the most supportive of the latter type of compensatory mechanisms. Note that among individuals who are not exposed to the costs of carbon policy, some may be concerned about bearing the costs from future, loosely targeted climate change events (and not from eventual job losses or wage decreases caused by climate policy). Hence, these individuals may display more favorability to more spatially “diffused” forms of compensation, which have more to provide to their collective interest. Specifically, we expect that these individuals may support policies that emphasize investments in green technologies more than individual-level compensatory schemes.

Research Design

To test the theoretical predictions outlined above, we collected survey data from voting-age citizens in the United States between March and August 2019. The importance of the United States is widely acknowledged in the climate politics literature, and we choose this country to situate our analysis with other studies of climate policy and public opinion (e.g., Aldy et al 2012; Bechtel and Scheve 2013). We fielded our survey instrument on three different US samples: a) a nationally representative (“General Population”) sample, meant to capture the opinions of average Americans and set the benchmark of the analysis; b) a targeted sample of cross-pressured (“Coastal/Fossil Fuel”) communities with objective ecological vulnerability to climate change—operationalized by proximity to the coast—as well as risk of job loss due to climate policy, denoted by employment in the fossil fuel industry; c) and finally, a targeted sample of coal country (“Coal”) communities with no ecological vulnerability to climate change but high risks of job and wage losses due to climate policy.

The identification of the counties to be included respectively in the “Coastal/Fossil Fuel” and “Coal” samples was done using zip-code level measures of fossil fuel employment from the US government’s Bureau of Economic Analysis. For the “Coastal/Fossil Fuel” sample, our sampling strategy identified communities mostly in the coastal south and Pacific northwest of the country; this sample included in large part individuals residing in Louisiana, Texas and Alaska. For the “Coal” sample, the communities represented in our sample come for the most part from West Virginia, Virginia, Kentucky, Wyoming and Pennsylvania.

Our US nationally representative (“General Population”) sample was fielded in two waves via the survey firm Lucid (Coppock and McClellan 2019). Setting aside participants with particularly high response speeds, this sample includes 3,702 American adults. The “Coastal/Fossil Fuel” sample and the “Coal” sample were fielded by Qualtrics, and include 1,428 and 516 individuals each, respectively. These two targeted samples were difficult to collect; our sample sizes reflect the maximum number of respondents surveyors could reach in each region.
Our sampling scheme is visualized in Figure 1, with dark grey indicating counties containing respondents from the “General Population” poll, red marking counties with “Coal” respondents, and blue highlighting counties with respondents in the “Coastal/Fossil Fuel” sample.

![Map Illustrating Counties](image)

Figure 1: The map illustrates the counties from where our respondents come from. Red denotes counties in the “Coal Country” sample; blue denotes counties in the “Coastal Fossil Fuel” sample; dark grey refers to counties from our “General Population” sample.

In the “General Population” sample, 7% identify themselves or someone in their families as employed in the fossil fuel/coal industry; this is realistic given that the US department of energy calculated that traditional energy sectors employed approximately 6.4 million Americans in 2017. However, and as validity of the more targeted sampling, in the “Coastal/Fossil Fuel” and “Coal” samples, respectively, 30% and 65% report being employed or having a close family member employed in the fossil fuel/coal industry. Also, and in line with other research on American attitudes towards climate change (Howe et al 2015), more than two thirds of the respondents in each sample consider themselves concerned about climate change.

After collecting pre-treatment demographic indicators, as well as indicators of climate concern, climate science beliefs and knowledge, we introduced respondents to a series of climate policies aimed at curbing the use of fossil fuels like coal and oil. At its core, these policies were distributive. On the one hand, they raised the cost of fossil fuels, leading to higher energy costs for average Americans. On the other hand, the government was able to deploy the funds raised
from higher energy costs toward a number of ends, described below. We measured respondents’
distributive allocation choices and analyzed the extent to which their allocation decisions varied
according to the financial costs imposed on American households.

In sum, we attempted to capture whether objective exposure to losses from climatic events or
subjective concerns of vulnerability to climate change, as well as awareness of economic
uncertainty due to climate policy leads individuals to respond differently to compensation. In
addition, we evaluated how exposure to different combinations of risks leads individuals to
display varying degrees of sensitivity to the attributes of different policies.4

Measuring Preferences for Different Types of Compensation Policies

Our first analysis focuses on individual preferences for the different ways in which funds raised
from increased fossil fuel prices (e.g., through a carbon tax) can be targeted as compensatory
mechanisms. We are interested in analyzing whether there is variation in support depending on
individuals’ exposure to climate policy and climate change costs (or at least perceived climate
costs). To do this we designed a survey exercise that allowed individuals to allocate funds raised
from carbon taxes across four distinct categories: (1) direct transfers to individuals in fossil fuel
industries, (2) infrastructural investments to help communities prevent or adapt to climate risks,
(3) spending on the development of green energy sources, and finally (4) an even distribution of
funds across all taxpayers. These categories reflect a robust set of options available to
policymakers and cover the range of options that surfaced as priority policies in a pilot study.5

4 We further interrogated our results in the direction of our hypotheses to tackle the issue that the
question of vulnerability may be fundamentally subjective. On the one hand, with respect to
policy vulnerability, we explored the meaning of being in a region with high levels of fossil
fuel/coal employment versus being individually employed in fossil fuel/coal sectors. On the other
hand, with respect to natural vulnerability, we also analyzed the data through the subjective
measure of self-reported climate concern, i.e., whether or not individuals in our surveys said they
were concerned about the impact of climate change on the community they live in. Both
additional measures have the benefit of capturing individual-level perceptions of vulnerability
that our geographic sample estimates cannot represent. However, they of course have the caveat
of being filtered by many unobservables and to be potentially endogenous to other factors (e.g.
ideology). We report these results in the appendix, in relation to whether or not someone
indicated they were employed in the fossil fuel sector. In line with our theory, these additional
results attest that fossil-fuel employed and non-employed individuals have different preferences
if the self-reported climate change concern is taken into account.

5 An earlier pilot (where these choices were set up as a conjoint analysis) also included putting
the money back towards “other government programs.” This choice was uniformly less popular
than any of the other options. However, it is possible that in the US context if funds were
provided to local governments this option might prove to be more popular. In sensitivity tests,
The wording of the survey instrument was as follows:

To combat climate change, the use of fossil fuels like coal and oil will need to be reduced.

To reduce coal and oil production, the United States government is considering a policy to raise the costs of fossil fuels. This policy will affect average Americans because they currently use energy that comes from fossil fuels. Continuing to use these sources of energy will lead to higher household energy costs for average Americans.

This policy can take different forms. It can increase the costs of fossil fuels a little or a lot. With higher costs, the demand for fossil fuels will fall. The government also needs to decide how to use the money collected from the policy that raises the cost of fossil fuels. The options of how the money can be used are:
 - Compensate workers in the coal and oil industries who will lose jobs due to the policy.
 - Help individuals whose homes and properties will be harmed by climate change, such as those who live in coastal areas.
 - Invest in forms of renewable energy like solar or wind energy.
 - Distribute the money equally to all citizens in order to offset the higher costs that they will have to pay for energy.

Next we gave respondents three different scenarios that differed by the cost associated with the policy ($16, $64, $256). We randomized the order that respondents received each cost. In each scenario we had people state what percentage of the money raised should be spent along the different dimensions. In particular, we asked:

Please consider the scenario in which the government passes a climate policy that increases the average monthly household energy costs by [$16, $64, $256].

How would you want the money spent? (Please enter values for each option below so that all options together sum up to 100%. Each value must be greater than or equal to 0. If you do not want any money spent on an option, please enter 0.)
 ______ Transfers to compensate workers in the coal and oil industries who will lose jobs due to the policy
 ______ Infrastructural investments to protect individuals whose homes and properties will be harmed by climate change
 ______ Investments in renewable energy (e.g., solar or wind energy)

we explore the potential role of trust in national/state/local governments in explaining positions on the allocation of money in these programs.
Equal transfers back to all citizens

Figure 2a refers to the findings regarding the mid ($64) energy cost level. The results are largely similar to the equivalent estimates averaged across the three cost levels, although we do observe some movement on redistribution and green investments if we compare the choices in a $256 cost scenario versus a $16 cost scenario, as per Figure 2b (see also Appendix). We present the results broken out by the three samples, which represent the three types of communities differently exposed to the risks of climate change and climate policy. Each horizontal line represents the average percentage contribution (mean with 95% confidence interval) across each contribution category.
Starting from the baseline “General Population” sample, we find that at the set policy costs the average American is most in favour of green investments, followed by a rebate redistribution of funds. It is worth noting that at the highest policy costs ($256), the preferred choices flip, and average Americans prefer most of all a redistribution of the allocated funds to all taxpaying citizens (see Appendix). This is consistent with our argument that the average voter in the general population, who is relatively less vulnerable to both climate change and climate policy adjustments, is least interested in targeted forms of compensation such as fiscal transfers and adaptation infrastructure spending and most inclined to supporting compensatory options that benefit broad sections of society.

The “Coal” sample comprises individuals who are exposed only to the economic risks of climate policy; we conjectured that this group should mobilize for direct compensation to individuals who are at risk of losing jobs from decarbonization policies. Indeed, we find that these Americans are significantly in favor of direct transfers to people whose employment stands to be threatened by climate policies. This preference for direct fiscal transfers is evident even at the
highest carbon policy costs (i.e., $256). Noteworthily, this is the only group that consistently ranks direct transfers as its most favorable compensatory policy.

By contrast, the average individual in the “Coastal/Fossil Fuel” sample has preferences that lie in between those of the abovementioned groups. Cross-pressured communities appear to be more evenly split across the different compensatory mechanisms proposed in the survey; consequently, their allocation choices appear least polarized. This finding suggests that for cross-pressured groups the two theoretically identified dimensions of vulnerability play a neutralizing role, leading to a convergence in preferences regarding compensatory mechanisms. We emphasize that our results do not imply that respondents in the cross-pressured group lack strong opinions about compensation or are indifferent to the set of policy choices. As Sprinz and Vahtaoranta (1994) argue, cross-pressured groups may in fact find climate change to be more of a salient issue than other groups. It may be due to issue saliency that cross-pressured Americans appear torn in their decisions regarding which spending mechanism to prioritize.

Overall, then, the “Coal” community is the most univocally in favor of direct transfers to vulnerable workers. The average voter lies at the opposite end of the spectrum, privileging compensatory policies that can materially benefit most Americans. Cross-pressured communities lie in between these two groups.

Noteworthily, we also find that across all categories—even among the cross-pressured communities that are susceptible to climatic adversities—individuals favor allocations to infrastructural investments for adaptation the least. This may be because people across all groups would rather support a policy where compensation generates material gains in the short run rather than prevent material losses in the future. Nonetheless, it is worth observing that cross-pressured respondents allocate significantly more to infrastructure than individuals in the other two samples. This is plausibly since cross-pressured respondents are likely to be more aware (relatively) about ecological vulnerability and the need for protection from climate-related adversities in the future.

Role of Community and Identity in Deployment of Compensation

Why do voters in coal country have systematically different preferences regarding compensatory mechanisms compared to cross-pressured groups and the general public? In the previous section, we considered transfer schemes broadly defined without distinguishing between different modes of compensation. However, research has associated climate policy preferences with community

6 Indeed, similar literature finds that, even in the most vulnerable of communities, people want private safeguards rather than public protection from climate change (Dryzek, Norgaard and Schlosberg 2011).
feelings and other-regarding beliefs (Bliuc et al. 2015). This suggests that support for redistributive climate policy may also be entrenched in egotropic versus sociotropic perceptions assumed to influence preferences for compensation more generally (Rocha, Knoll and Wrinkle 2015).

In light of these claims, we turn next to a complementary set of considerations regarding qualitative aspects of the compensatory schemes. Our goal here is to explore if preferences vary as a function of the community and identity-related attachments that different climate policy-vulnerable groups may have. We anticipate that the distinct preferences regarding compensatory mechanisms documented earlier stem from variations in levels of collective identities across voters residing in coal country, cross-pressured groups, and the general public.

The overarching theoretical tradeoff that we focus on pertains to the extent to which citizens prefer compensation to protect narrowly defined groups relative to broader communities, which we conceptualize in two ways: the localities and regions within which individuals live and the identity-related groups to which individuals adhere. Theories of social identity hold that individuals might prefer policy that enhances their own material welfare and/or the welfare of the broader social groups with which they identify (Shayo 2009, Dickson and Scheve 2006, Gaikwad 2019). Applying this framework to the domain of compensatory preferences, we posit that groups with varying degrees of vulnerability likely attach different weights to policies that compensate households relative to entire communities affected by climate policy and that threaten the social identities of communities linked to fossil fuels production.

This investigation helps shed light on the types of groups that are most favorable to compensatory policies which explicitly target broader groups rather than specific households. It also helps address questions regarding the effectiveness of compensatory policies. Given direct transfers from the government to vulnerable workers, should those funds be targeted at impacted individuals or broader communities? What factors motivate opinions around the mode of deployment of transfers?

Group Identities and Preferences for Mode of Compensatory Transfers

When confronted with distributive policies, people are often motivated by concerns that are more or less reflective of their individual situation versus the state of their community, both generally (cf. Mansfield and Mutz 2009) and specifically with respect to climate policy (Bechtel and Scheve 2014, Bernauer and Nguyen 2015, Mildenberger and Tingley 2018). Support for compensatory policy may be filtered by the relative importance that voters attach to the concentration of the gains from compensation. In other words, preferences may vary as a function of whether people perceive compensation to be more efficient if funnelled to individual
households or to organizations that can distribute proceeds among communities at large. Scholars investigating transfer mechanisms in the context of the trade adjustment literature have argued that community-level transfers are potentially preferable to individually-focused transfers. This distinction matters for compensatory climate policy as well, because transfers can be structured in either more concentrated or diffused ways.

Our contention is that groups with varying degrees of vulnerability will have systematically different preferences regarding compensation formulated and deployed in more individualistic relative to more communal ways. We conjecture that groups in regions that are most vulnerable to the employment adjustments of climate policy should privilege community-level transfers the most since decarbonization policies affect the economic wellbeing of entire communities that depend on fossil fuel industries, and not just individual workers employed in these industries. This creates incentives to demand compensatory policies that target the community as a whole, since policies that help other members of the community enhance the aggregate welfare of the group and, in turn, indirectly improve the standing of individual group members.

Why should people living in climate policy vulnerable communities care about group welfare associated with compensatory transfers? These groups have historically been relatively small, culturally homogenous, geographically concentrated, occupationally specialized, and intergenerationally dependent on employment in specific fossil fuels industries (Hatch 1995). These factors plausibly help generate a sense of linked fate, such that policies that are beneficial to the group are interpreted as being beneficial for all members within the group. Therefore, our second prediction is that members of these groups will be most attentive to community identities that are related to fossil fuel industry employment, and most opposed to governmental policies that are viewed as harming community identities.

On the other end of the spectrum, broader communities such as the national electorate—that are large, socially and economically diverse, and less likely to have developed a shared historical identity tied to occupational specialization in particular industries—are not predicted to be

8 Note that regardless of group interests, powerful material forces might lead individuals who are themselves directly employed in fossil fuel jobs to prefer the concentration of compensatory resources at the individual level. Consequently, we expect that these Americans would prefer government redistribution to be given to individuals directly. We thus also examine how broader communities adjudicate between individual and community-oriented transfers, after controlling for the preferences of specific individuals employed in fossil fuel sectors.
attentive to group concerns. This should make the average voter in the general population less willing to allocate finances to community-oriented compensatory mechanisms and most supportive of finely targeted and cost effective individually-focused transfers. In a similar vein, individuals in this group are expected to be less sensitive to community identity concerns, making them less likely to associate policy support with considerations of community welfare. Correspondingly, this group should be less cognizant of national identities and more supportive of cost efficiencies when considering cross-border compensatory mechanisms.

Meanwhile, we expect “cross-pressured” individuals, i.e. people attached to the fossil fuel industry who also live in coastal areas, to have more mixed opinions about the deployment of compensatory resources to fossil fuel-dependent communities. While individuals in this group might attach weight to group-level considerations, they remain less connected—be it geographically, occupationally, culturally—with one another. Yet they are likely to have a greater sense of shared consciousness because of their vulnerability to both climate change and climate change policy than the general population. Our prediction, therefore, is that preferences in this group will fall in between the preferences of climate policy vulnerable groups and the national electorate. Specifically, we anticipate that individuals in cross-pressured regions would privilege a mix of individual and community level resource deployment, exhibit some concern for policies that stand to harm the identities of fossil fuel producing communities, and balance considerations of nationalism and cost efficiency when considering cross-border compensatory schemes.

Measuring Preferences for Modes of Compensation Deployment

We evaluate now whether different policy-vulnerable groups develop distinct preferences regarding the mode of deployment of compensatory mechanisms, conditional on the sense of community and identity that they have. First, we investigate how concentrated the respondents want compensation to be. Are respondents more likely to support policies if compensatory schemes are designed to target individuals versus impacted communities? Second, we evaluate whether and how different groups may resist climate policy if it threatens the cultural identities of vulnerable communities.

Deployment of Compensation: Households versus Communities

We posed a number of potential variations to the policies under consideration in order to test individuals’ sensitivity to different theoretically-relevant distributive dimensions. To start, we gauged whether policy support increased or diminished if compensation was allocated toward specific individuals employed in the coal and oil industries who were slated to lose jobs as a result of the policy, as opposed to broader communities that might be affected by policy-related
job losses---such as communities in coal mining regions facing the prospect of shuttered coal mines. We then separately performed a similar analysis with respect to infrastructural investments, which can in principle be provided to individual households or communities affected by environmental uncertainty or natural disasters.

For each compensatory instrument, we asked respondents if they would prefer the government to either “provide funding only to the individuals affected by” climate policy/events, or “provide funding to entire communities” where such individuals reside. Respondents were forced to choose only one of the two levels of compensation deployment.

Figure 3 reports the regression results from a linear model where the dependent variable is choosing to fund only affected individuals (instead of entire communities) with respect to direct transfers. Model 1 (represented by the squares) presents a specification where the central variables are the dummies of the samples, and the reference category is the General Population sample. This model includes a number of standard respondent-level control variables. In Model 2 (triangles), we also add a measure of political ideology, which is measured as a response to the question “How would you consider yourself on a scale from very conservative to very liberal” (for our purposes, we transform this into a 3-level categorical variable, where the reference category is “Liberal”). In Model 3 (circles) we additionally introduce an individual-level measure of fossil fuel employment, which is captured by the question, “Are you or a member of your close family employed in the fossil fuel sector?” Literature suggests that this indicator has significant explanatory power in the realm of climate policy support (Bechtel, Genovese and Scheve 2019); we therefore investigate whether different groups evidence support for community level compensatory deployments after controlling for individual-level employment.
Figure 3: Effects of vulnerability (by sample) and employment on preferences for “direct transfers” going to individuals instead of community organizations. Linear regression coefficients with 95% confidence interval. Reference group is “General Population”. Controls in the baseline model include sex, age and education. Appendix contains full set of estimates.

In terms of group differences, in Model 1 we find that respondents in the “Coal” sample appear more in favor of providing funding to community organizations than individuals compared to the “Coastal/Fossil Fuel” sample, which is instead indistinguishable from the General Population. In Model 2 we find marginal evidence that after controlling for respondents’ ideology, the Coal sample is more in favor of providing funding to communities compared to respondents in the General Population, who are overall split (54% in favor of community provisions). This effect is estimated at the 90% confidence level, and only becomes statistically significant at more conventional levels if we introduce in the model the individual measure of fossil fuel employment. In Model 3 we find that this variable is positive and highly significant. Being affiliated with the fossil fuel sector increases the preference for providing funds to individuals.
directly, in line with the logic that affected workers want to ensure that compensation is given to them privately. Importantly, however, after controlling for individuals’ fossil fuel employment status, the negative coefficient on the “Coal” sample dummy expands in magnitude and becomes highly statistically significant. In other words, while individuals employed in polluting sectors prefer direct transfers to their households, respondents from geographic areas that depend on fossil fuel producing sectors evidence strong support for community-oriented compensatory mechanisms. These results are corroborated by models in which we interact the individual-level fossil fuel employment variable and sample dummies.9

The main finding here sheds light on the sense of community among coal country voters, and the importance that social coalitions in these regions attach to coal jobs as evidence of community fabric and life. Overall, the result is also in line with evidence indicating the diffused consequences of economic retrenchment in specific industries—a finding that has emerged in research of trade attitudes but that remains unexplored in studies of climate policy opinions.

To further interrogate this results, we analyze responses to the question regarding infrastructural investments. We report these findings in the same fashion as Figure 4. “Coastal Fossil Fuel” subjects—those who face high ecological vulnerability and high economic risk—prefer that the funds for adaptation infrastructure is provided to community organizations. This is in line with our argument that cross-pressured communities are more inclined to think about their collective security needs than the average voter. Interestingly, “Coal” subjects are also more inclined to see funding being given to the community organizations—in fact, even more so than the “Coastal/Fossil Fuel” respondents compared to the General Population; these results expand in magnitude and are precisely estimated when we control for respondents’ ideology or their employment in the fossil fuels sector. This pattern is striking. Coal country voters face lower degrees of objective ecological vulnerability; recall that Figure 2 indicates that these voters attach less importance to adaptation projects requiring infrastructural investments. Nevertheless, this sample is strikingly more mobilized in its preferences for community (vis-a-vis individual) empowerment and enhancement.

9 Through these interaction models, we find that while subjects not affiliated with fossil fuels have a stronger preference for community transfers than fossil fuel employed subjects, these preferences are still distinct from the individuals in the other samples, and especially fossil fuel employees in the “General Population” (who consistently prefer individuals receiving transfers).
Figure 4: Effects of vulnerability (by sample) and employment on preferences for “infrastructural investments” going to individuals instead of community organizations. Linear regression coefficients with 95% confidence interval. Reference group is “General Population”. Controls in the baseline model include sex, age and education. Appendix contains full estimates.

Resisting Policy that Threatens Community Identity

We also probed the extent to which policy support varied when the policies in question affected identity-related factors associated with communities tied to occupations such as coal mining. Protecting the identity of coal communities has been a topic of considerable political debate in the US in recent years, surfacing repeatedly during the 2016 presidential campaign and beyond. To measure the importance respondents attach to the identity (and therefore survival) of these population groups, we asked:

Some people say that the government should not pass policies that harm jobs in industries like the coal industry because such policies will threaten the identities of
coal workers and their surrounding communities, which are closely tied to coal mining. Do you agree? [Scale from (1) strongly disagree to (4) strongly agree]

Figure 5 reports the results of linear specifications set up in the same fashion as the previous models. Strikingly, “Coal” subjects are most strongly in favor of resisting climate policies that could harm their communities. “Coastal Fossil Fuel” subjects are also generally inclined to support the governments halting such policies, but this opinion is not significantly different from the “General Population” estimate if we control for political ideology, which appears to be a major determinant of this response. As per the previous findings, an individual’s own or family-related employment in the fossil fuel sector is a strong predictor of preferences for the government to halt policies that threaten community identities. Nevertheless, even after controlling for employment, the coal group remains considerably more in favor of stopping policies that threaten coal communities (at least at the 90% confidence level). Interaction models provide essentially the same result.10

These results corroborate the larger finding that Americans residing in areas exposed to the costs of climate policy are more vocal about their willingness to protect their communities than Americans residing in areas experiencing both policy and environmental vulnerability, as well as the average American voter. Community-related questions seem to generate more distinct pro-compensation positions among people who only have one source of vulnerability. This of course does not imply that community has no salience for the cross-pressured. Additional analyses in the Appendix show, for example, that non-fossil fuel employed, climate change-concerned respondents across all the three samples are consistently against resisting climate policy on the premise it may threaten the identity of coal communities. Still, community belonging generates most support in coal states.

10 We also probed respondents if they wanted to preserve the identities of groups closely tied to climate vulnerable ecologies (e.g. native communities), and obtained similar results.
Figure 5: Effects of vulnerability (by sample) and employment on blocking policy that threatens coal identity. Linear regression coefficients with 95% confidence interval. Reference groups as previous graphs.

Conclusion

Effective greenhouse gas emissions abatement and successful decarbonization is poised to impact the lives of many individuals and many communities. Just as in other policy arenas, such as trade policy, where there is a purported net welfare gain that accompanies concentrated losses, acting on climate change requires understanding the salience of policy preferences and overcoming the resistance of certain localized “losers” of climate policy. Against this background, we explored preferences over climate-related compensation in relevant vulnerable communities within the United States. Our study is one of the first to seriously engage with the design of decarbonization policies that must confront distributional political realities.

The findings highlighted in this paper indicate the distinctive opinions of individuals who are exposed to independent or concurrent sets of ecological and employment vulnerabilities. On the
one hand, vulnerability to employment losses arising from climate change policy moves support for individual redress and payment. Individuals residing in coal country are consistently most in favor of policies that transfer funds raised from carbon taxes back to those who stand to lose jobs from lower emissions. On the other hand, individuals in the general population display the least support for job related transfers; instead, the average voter is much more in favor of investments in green technologies at lower levels of taxation and equal redistribution to all citizens at higher levels of taxation. Meanwhile, cross-pressured individuals—those living in coastal fossil fuel producing regions that are vulnerable to hurricanes and storms—register preferences that fall in between, expressing support for transfers, green investments and equal redistribution. They nevertheless had the highest level of support for adaptation spending.

Our findings are noteworthy since turning policy opponents into supporters is one of the biggest challenges facing successful economic reforms, of which effective climate change regulations are a foremost example. Our research indicates the extent to which mobilizing supporters will be challenging, given that different groups of people will prefer different levels, forms, and methods of compensation. On the one hand, the most cohesive and potentially antagonistic group are the communities that are currently only confronted by the wage and employment consequences of climate policy. Our results indicate that a government has much to do to appease these voters. On the other hand, the interrelation of ecological climate costs and employment costs also creates a distinct group of citizens, who desire a fair mix of allocations for different types of compensation. If climate change-induced events are to increase in intensity and frequency, more communities will probably become “cross-pressured”, therefore pushing the policy agenda to more mixed transfers. Finally, our data shows that compensation can in fact strengthen the public foundations for ambitious climate policy if provided in targeted and credible ways. Consequently, this paper provides some validity to recent compensatory moves of managing losers and quieting climate policy opposition around the world.11 Last but not least, it pushes forward the case of further exploring the implications of compensation in new areas of political economy research beyond the climate.

Bibliography

Anderson, Brile, Bernauer, Thomas, and Balietti, Stefano. 2017. How Do Individuals Share the Costs of Climate Change Mitigation? Evidence from an Online Game Experiment”, *Climatic Change*, 142(3-4): 447-461

Colgan, Jeff, Green, Jessica, and Thomas Hale. 2018. “Asset Revaluation and the Existential Politics of Climate Change”, working paper

Section 1: Preferences over Different Types of Compensation Policies

In the main text we presented the results of the compensation choices based on a policy that would raise household energy cost by $64. In Figure A.1 we additionally present the results for the lower and upper cost levels presented to the participants, at respectively $16 and $256.

Figure A.1: Average percentage allocation across the three differently vulnerable samples for each of the three cost levels subjects were presented with. Dots are estimates and lines are 95% confidence intervals.
We additionally explore the allocations to the compensatory instruments by splitting the sample in other ways. While in the main text we exploit aggregate (geography, i.e. sample-related) measures of vulnerability, in additional analyses we operationalize other forms of individual (self-reported) vulnerability concerns. Subjective measures are particularly useful in settings where “solution aversion” (Campbell and Kay 2014) serves as a primary motivator for policy inaction on climate change; these include settings where the environmental impacts of climate change are predicted to be less severe than warranted and where the socioeconomic impacts of implementing climate change regulation are anticipated to be more acute and binding than warranted.

To capture the more subjective measure of self-reported climate concern, early on in the survey we asked respondents whether or not they said they were concerned about the impact of climate change on the community they live in. We then combine this response with whether or not someone indicated they were employed in the fossil fuel sector.

Figure A.2 reports the results for each of the three samples of this study. To ease the visualization of the findings, we collapsed to the mean the average allocations the respondents provided for each of the three policy cost levels. The results for each cost level for each sample are further reported in Figure A.3 through Figure A.5, as well as are the results for each cost level for the pooled dataset (Figure A.6). Overall, we find that individuals indicating employment in the fossil fuel industry on average put the most money into direct transfers. This is higher for those saying they are not concerned about the effects of climate change on their community, and most strikingly for the Coal communities. Also noteworthy is the finding that, across all samples, individuals both expressing concern with climate change and registering employment in the fossil fuel industry wanted more money spent on infrastructure for adaptation as well as spending on green technologies, compared to their peers who were not concerned.

Among those not exposed to the policy costs of fossil fuel regulations, those that were concerned about climate impacts supported investment in green energy the highest. Conversely, individuals not exposed to the policy costs of fossil fuel regulations and not concerned about climate impacts, preferred the redistributive policy option the most. This is with the exception of the Coal subjects, who -- even if they are not personally involved in the fossil fuel industry and not concerned -- want as much redistribution allocation as direct transfers. This finding buttresses the singularity of subjects in job-threatened communities and the mixed position of cross-pressured individuals.

12 We analyze discrepancies between subjective and objective measures of climate concern in related work; see Gaikwad, Genovese, and Tingley, 2019, “Climate Concern Perception and Realities.”
Figure A.2: Average percentage allocation across categories broken out by respondent’s climate concern and self-reported fossil fuel employment status, per different sample. The estimates refer to the average of the three policy cost levels presented to each subjects (i.e. the average across $16, $64 and $256); these are substantively equivalent if we observe only the $64 level.
Figure A.3: Average percentage allocation across categories broken out by respondent’s climate concern and self-reported fossil fuel employment status: Coal sample. Results by each policy cost level presented to the subjects.
Figure A.4: Average percentage allocation across categories broken out by respondent’s climate concern and self-reported fossil fuel employment status: Coastal/Fossil Fuel sample. Results by each policy cost level presented to the subject.
Figure A.5: Average percentage allocation across categories broken out by respondent’s climate concern and self-reported fossil fuel employment status: General Population sample. Results by each policy cost level presented to the subject.
Figure A.6: Average percentage allocation across categories broken out by respondent’s climate concern and self-reported fossil fuel employment status: pooled data (all samples).
Section 2: Deployment of Compensation, Sense of Community and Collective Identity

Here we present additional findings based on the questions regarding community and identity.

We start first with the questions targeting the level of deployment of compensation with respect to “direct transfers” and “infrastructure investments”. Figure A.7 and Figure A.8 show the complete set of coefficients (including the control variables) of the full models of these two outcome variables.

Figure A.7: Effects of vulnerability (by sample) and employment on preferences for “direct transfers” going to individuals instead of community organizations. Linear regression coefficients with 95% confidence interval. Reference groups are “General Population”, “Sex: Female”, “Education: Low”, “Ideology: Liberal”, and “No Fossil Fuel Employment”.

38
Figure A.8: Effects of vulnerability (by sample) and employment on preferences for “infrastructural investments” going to individuals instead of community organizations. Linear regression coefficients with 95% confidence interval. Reference groups are “General Population”, “Sex: Female”, “Education: Low”, “Ideology: Liberal”, and “No Fossil Fuel Employment”.

In Figure A.9 we present the results for the full specification model to which we add four dummy variables of trust: trust in the national (federal) government; trust in the state government; trust in municipal government, and trust in community leaders. While we find that the first two levels of trust partly explain choices for individual provision of compensation (in opposite ways), our central results remain largely unvaried.
Figure A.9: Effects of ecological vulnerability (by sample) and employment on preferences for “direct transfers” and “infrastructural investments” going to individuals instead of community organizations, controlling for trust in government. Linear regression coefficients with 95% confidence interval.

We also investigate the effects controlling for additional individual-level variables, such as race, religious affiliation (whether one identifies with any religion or not) and differences between employed versus unemployed/inactive respondents. Figures A.10 and A.11 report the results. While these additional variables have some traction, especially with respect to the “infrastructural investments” responses, overall find that our substantive results remain unaltered.
Figure A.10: Effects of ecological vulnerability (by sample) and employment on preferences for “direct transfers” going to individuals instead of community organizations, controlling for individuals’ religious affiliation (ref: No religious affiliation), race (ref: White) and employment (ref: Unemployed/retired). Linear regression coefficients with 95% confidence interval.
Figure A.11: Effects of ecological vulnerability (by sample) and employment on preferences for “infrastructural investments” going to individuals instead of community organizations, controlling for individuals’ religious affiliation (ref: No religious affiliation), race (ref: White) and employment (ref: Unemployed/retired). Linear regression coefficients with 95% confidence interval.
As reported in the main text, we also explore the interaction of the sample dummies with (a) the variable capturing individual-level fossil fuel employment and (b) the ideology measures. Figure A.12 (a) and (b) report the results. We find that the interaction with individual-level fossil fuel employment is statistically significant for both samples, and that fossil fuel-employed individuals in Coal and Coastal Fossil Fuel areas are all the more likely to want individual-level compensation. The interaction with ideology is less noteworthy, although this term is more relevant to the Coastal Fossil Fuel respondents.

Figure A.12(a): Interaction effects of ecological vulnerability (by sample) and employment on preferences on “direct transfers” and “infrastructural investments” going to individuals instead of community organizations. Linear regression coefficients with 95% confidence interval.
Figure A.12(b): Interaction effects of ecological vulnerability (by sample) and ideology on “direct transfers” and “infrastructural investments” going to individuals instead of community organizations. Linear regression coefficients with 95% confidence interval.

We also analyze the individual versus community level of compensation deployment using the subjective measure of vulnerability, i.e. self-reported concern with climate change. Specifically, we modelled the responses as a linear regression where the theoretically relevant predictors are dummies reflecting whether respondents are concerned with climate change and/or employed in the fossil fuel industry. The results in Figure A.13 represent the change in probabilities where the
reference category is respondents who are neither concerned with climate change nor employed in the fossil fuel industry. We find that the cross-pressured respondents who are both concerned and employed in the fossil fuel sector prefer that the government provides individuals (instead of community organizations) with resources for compensation for both direct transfers and infrastructure. Rather, the subjects who have clear economic risk from climate policy but no subjective ecological concern are very significantly in favor of individuals receiving funding for transfers, but not for infrastructure investments. Given that people not concerned by climate change tend to be more in US areas less affected by natural disasters (e.g. coal country), this analysis strengthens our sample-based findings. More generally, we take this as supporting evidence that fossil fuel employment significantly shapes opinions for deployment of compensation funds, but is moderated by both objective or subjective feelings of vulnerability.

Figure A.13: Effects of subjective climate concerns and employment on preferences for “direct transfers” and “infrastructural investments”. Linear regression coefficients with 95% confidence interval.
We also run additional regression analyses with respect to the question regarding the protection of vulnerable communities, and specifically coal miners. Figure A.14 reports the full estimates of the models in the main text, including the coefficients and confidence intervals of the main control variables.

![Graph](image)

Figure A.14: Effects of vulnerability (by sample) and employment on blocking policy that threatens coal identity. Linear regression coefficients with 95% confidence interval. Reference groups as previous graphs.

Figure A.15 reports the results for a fully specified model that additionally controls for trust levels in different types of governmental institutions, and an interaction model where we multiply the sample dummies to the individual-level fossil fuel employment variable. The results corroborate the findings discussed in the main text. As expected, Coal Country individuals are more likely than cross-pressured and general public respondents to want to halt policies that may
threaten the identity of coal communities, even if we account for trust in institutions. Also, the interaction indicates that individual-level employment among Coal respondents triggers no statistically significant support with respect to this question (while it does for the Coastal Fossil Fuel respondents).

Figure A.15: Effects of vulnerability (by sample) and employment on blocking policy that threatens coal identity: additional specification. The red dots refer to estimates of a model that controls for respondent’s level of trust in a number of governmental institutions. The blue triangles refer to estimates of a model that interacts the sample dummies with the individual-level fossil fuel employment. Linear regression coefficients with 95% confidence interval.

We additionally estimate fully specified models that controls for individual respondents’ religious affiliation, race and employment (versus retirement/unemployment). Figure A.16 shows
that with the exception of the model that differentiates employed and unemployed people, our results are qualitative intact, especially with respect to the Coal Country sample.

Figure A.16: Effects of ecological vulnerability (by sample) and employment on blocking policy that threatens coal identity, controlling for individuals’ religious affiliation (ref: No religious affiliation), race (ref: White) and employment (ref: Unemployed/retired). Linear regression coefficients with 95% confidence interval.
We also explore this response based on the self-reported measure of climate concern (which we substitute to the sample-specific measures of vulnerability). Figure A.17 reports the results for each sample. Again, the reference category here is respondents who are neither concerned with climate change nor employed in the fossil fuel industry. The respondents who are concerned with climate change and employed in the fossil fuel industry confirm the patterns unveiled by our previous analyses, in that this group has mixed positions on the issue, especially if we look at the Coal and Coastal Fossil Fuel groups. The respondents who are concerned with climate change but not employed in the fossil fuel industry are significantly less inclined to halt community-threatening climate policy. Vice versa, respondents who are not concerned but employed in the fossil fuel industry are more inclined to oppose climate policy that threaten coal communities (these results appear stronger for the “Coastal Fossil Fuel” group).

![Figure A.17](image)

Figure A.17: Effects of subjective climate concerns and employment on support for a policy that protects coal community identity, by sample. Linear regression coefficients with 95% confidence interval.