This final exam is due at 11:59 pm on Monday December 5, 2022.

We always suppose \(M \) is a smooth manifold.

Problem 1: Suppose \(f : M \to \mathbb{R} \) is a smooth function. Describe the definition of \(df \) and prove it is well-defined. (Hint: first define it locally on a chart and use partition of unity to define globally, then prove it is independent of the chart.)

Problem 2: Let \(T \subset \mathbb{R}^3 \) be obtained by rotating the circle
\[
\{(x, y, z) \mid y = 0, z^2 + (x - 2)^2 = 1\}
\]
about the \(z \)-axis. Let \(T \) be parameterized by the coordinates \((\theta, \phi) \in [0, 2\pi] \times [0, 2\pi]\)
\[
f(\theta, \phi) = ((2 + \sin \phi) \cos \theta, (2 + \sin \phi) \sin \theta, \cos \phi).
\]
Define the Riemannian metric \(g_0 \) on \(T \) by the induced metric from \(\mathbb{R}^3 \). Define the metric \(g \) on \(S_1 \times S_1 \) by the pull-back metric \(f^*g_0 \).

1. Compute the inner product \(g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}), g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}), g(\frac{\partial}{\partial \phi}, \frac{\partial}{\partial \phi}) \).

2. Let \(x^1 = \theta, x^2 = \phi \). Compute the Christoffel symbol
\[
\Gamma^i_{jk} = \frac{1}{2}g^{il}(\partial_j g_{lk} + \partial_k g_{lj} - \partial_l g_{jk}),
\]
for all \(i, j, k \in \{1, 2\} \), where \(\{g^{il}\}_{i, l \in \{1, n\}} \) is the inverse matrix of \(\{g_{il}\}_{i, l \in \{1, 2\}} \).

3. Find the geodesic from \(p = (1, 0, 0) \) to \(q = (3, 0, 0) \) in \(T \).

Problem 3: Suppose \(B^n \subset \mathbb{R}^n \) is the unit ball and \(S^{n-1} \) is its boundary. Prove the isomorphism between de Rham cohomology
\[
H^k_{dR}(B^n \setminus \{0\}) \cong H^k_{dR}(S^{n-1}).
\]

Problem 4: Let \(E \) be a vector bundle over \(M \) and let \(C^\infty(M; E) \) be the space of smooth sections \(s : M \to E \).

1. Describe the definition of covariant derivative \(\nabla \) on \(E \) and prove the space of covariant derivatives on \(E \) is an affine space over \(C^\infty(\text{End}(E) \otimes T^*M) \).

2. When \(E = M \times \mathbb{R}^n \) and \(\nabla = \nabla^0 + \alpha \) with \(\alpha \in C^\infty(\text{End}(E) \otimes T^*M) \), describe the definition of the induced connection \(\nabla^* \) on the dual vector bundle \(E^* \). If we write \(\nabla^* = \nabla^{0*} + \beta \) with \(\beta \in C^\infty(\text{End}(E^*) \otimes T^*M) \), describe and prove the relation between \(\alpha \) and \(\beta \).

Problem 5: Construct a connection \(A \) on the product principal bundle \(P = \mathbb{R} \times G \) over \(\mathbb{R} \), where \(G \) is a Lie group. To do this, you need to describe a \(g \)-valued 1-form at each point \((t, g) \in \mathbb{R} \times G \). Compute the curvature \(F_A \) of the connection \(A \).