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In this expository paper we will give1 the classical proof of the Bernstein-Gelfand-Gelfand (BGG)
resolution, following the original paper of BGG, and use it to prove the celebrated Weyl character
formula (in some sense the BGG resolution is a categorification of the Weyl character formula). I
have tried my best to flesh out details which BGG omitted in their original paper, as well as organize
the proof and the flow of logic in a manner which I find most motivated and easily understood.

Structurally we will tend to assume facts and prove goals, proving the facts later, i.e., logically
this exposition should be read backwards; for example we will begin by proving Weyl assuming
BGG. We do this for the sake of clarity and motivation. More specifically, we will prove BGG
in this order: we will first show how Three Lemmas imply BGG; then we will show how Weak
BGG2 implies Three Lemmas; then we will prove Weak BGG. Along the way we will assume some
theorems not to be proven in this exposition; these facts are enumerated in Section 1.

Some notes about labelling: we will label theorems by their names when appropriate, and we
will label statements from BGG by just their number, e.g. writing [10.5] rather than [BGG10.5].
When we need to refer to facts from e.g. Kirillov or Humphreys3, we will for example say [K8.27]
or [H4.2].
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1Though we will blackbox some facts in the interest of length, e.g. the conditions for embeddings to exist between
Verma modules.

2This is Theorem 9.9 in BGG’s paper, and they did not call it this; but this seems an appropriate name, as BGG
appears to strictly improve upon it.

3Unfortunately Humphreys does not label his theorems/propositions/lemmas, instead relying on the fact that
there is a unique theorem/proposition/lemma per section; we will rely on context to tell what we mean.
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1. A Short Introduction

Some notations/conventions: We will work over C throughout. Unless otherwise stated, g will
be a semisimple Lie algebra. We will write Σ for the set of simple roots; if αi is a simple root,
it will be said that αi ∈ Σ, and otherwise αi denotes any indexed set of roots. In this spirit, we
will denote by I(Σ) the index set of the simple roots, i.e. i ∈ I(Σ) ⇐⇒ αi ∈ Σ. An irreducible
representation of highest weight λ is commonly called Lλ, and sometimes to emphasize that it is
finite-dimensional we may write Πλ instead. Recall the notion, for λ, µ ∈ P , of

µ ≤ λ ⇐⇒ λ− µ ∈ Q+.

We will write W for the Weyl group and

Wk := {w ∈W : `(W ) = k}.
We will let

w ◦ λ := w(λ+ ρ)− ρ
define the affine action of the Weyl group W on h∗, where recall ρ := 1

2

∑
R+

α =
∑

Σ α, where

Σ ⊆ R+ denotes the set of simple roots. We will also write

λ ∼ µ ⇐⇒ ∃ w : λ = w(µ),

and
λ
◦∼ µ ⇐⇒ ∃ w : λ = w ◦ µ.

In line with the notation of gα, we will also write

Mµ := {v ∈M : hv = µ(h)v}
for the µ-weight space of M ; for example for Verma modules this would be written Mλ

µ with
staggered indices.

Full disclosure: here are the facts we will be blackboxing (in addition to some standard
homological algebra facts/constructions, such as the Jordan-Holder theorem, which is for example
covered in the first two pages of Benson’s Representations and Cohomology I ) in the interest of
length:

(1) Verma modules admit finite Jordan-Holder composition series; in fact, the category O
consists of Artinian objects.

(2) Moreover, for λ ∈ P+, the Jordan-Holder decomposition of a Verma module Mw◦λ contains
irreducibles of form

Lw′◦λ ∈ JH(Mw◦λ), w′ ≥ w.
In fact there are more precise conditions (which we won’t need), which we will give later.

(3) Maps between Verma modules have

Homg(Mλ,Mµ) =

{
0

C
;

moreover, for λ ∈ P+,

Homg(Mw1◦λ,Mw2◦λ) = C ⇐⇒ w1 ≥ w2

where w1 ≥ w2 refers to the Bruhat order (more on this later). In fact there are more
precise conditions for these homs, too long to be appropriate for this preamble, which we
will state later.

(4) The Harish-Chandra theorem, which states that central characters4 ϑλ = ϑµ are equal iff
λ = w ◦ µ for some w, i.e. iff λ+ ρ ∼ µ+ ρ.

4More of this later.
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(5) Various facts about central characters, such as the exactness of the functor �ϑ.
(6) Various purely combinatorial facts about Weyl groups, e.g. the existence of squares and

the existence of a choice of signs attached to arrows so that the product of signs in each
square is −1.

(1) is proved in chapter 1 of Humphreys’s O book, whereas (3) is proved in chapter 4. I have still
yet to learn more about the Harish-Chandra theorem; this is something I will do next. (6) is proved
in section 11 of BGG, but as it is purely combinatorial we omit it for the sake of length here.

Interestingly I could not find any classical (non-generalization) sources on the BGG resolution
aside from the original BGG paper, which we (try to) follow here. The original BGG paper was
surprisingly difficult to obtain, and in it BGG uses some conventions/notations which are different
from those most use (as noted in Humphreys’s book on the category O). Moreover, there were
some points in BGG’s proofs which I found rather difficult to follow (for example due to omitted
details). In this exposition I will try to flesh out these details to the best of my ability and
organize the material in a way which is most motivated and easily understood, as well as switch
the conventions/notations of BGG to something more familiar. Any errors are, of course, entirely
my own.

Among the odd notations of BGG, the most notable is that BGG writes Mλ+ρ where we would
write Mλ for Verma modules. Though changing BGG’s Mλ+ρ notation to Mλ is nothing more than
an index shift, I can only hope I’ve made no errors. Here are some others: it seems to be common
for central characters to be denoted χ, whereas BGG uses ϑ; this is a convention I will keep. BGG
also writes

Mϑ = Ker∞Kerϑ

for the eventual kernel of Kerϑ ⊆ Z(Ug), which I will instead denote by

Mϑ

since in some sense M admits a “weight decomposition” in this way (more later). Interestingly
BGG also writes w1 ≥ w2 implies `(w1) ≤ `(w2), so that instead of a unique maximal element in
the Weyl group there is a unique minimal element. We will stick to the unique maximal element
convention.

Lastly some explanation on my choice of blackbox material: last summer I worked on a resolution
for representations of Sn the symmetric group, and this project is one which I have still not finished.
To this end I figured learning and writing down the proof of BGG would be helpful, and so I have
chosen to commit to paper here the parts of the BGG proof which could possibly carry over to the
Sn context with appropriate modifications; for example, the combinatorial facts about the Weyl
group hold for Sn, so we omit them here, and similarly homs between permutation representations
of Sn no longer enjoy the nice properties of Verma (either zero or C), so we also omit them.

2. The Setting: Category O

For completeness let us describe the setting we work in. We will only be story-telling and won’t
prove any of the details in this section. This is described in section 8 of BGG, where BGG mostly
describes and cites things, and also elaborated upon in chapter 1 of Humphreys, where he proves
e.g. O is Artinian.

Let us first define O:
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

Definition. Let O be the full subcategory of the category ModUg of left Ug-modules, whose objects
are all M such that:

(1) M is Ug-finitely-generated.
(2) M is h-semisimple (i.e. M =

⊕
λ∈h∗M

λ has a weight basis).

(3) M is locally Un+-finite, i.e.

dim SpanUn+(v) <∞ ∀ v ∈M.

Recall that Verma modules lie in this category.
Before going on to give more facts about O, let us describe the notion of central characters:

Definition. For any M ∈ Rep g, if v ∈ M is an eigenvector with respect to all of Z(Ug), then we
can find a

ϑ ∈ HomAlgC(Z(Ug),C)

such that
zv = ϑ(z)v ∀ z ∈ Z(Ug).

These ϑ are called “central characters”; more generally we may refer to any such homomorphism
as a central character.

Let us also write
Θ(M) := {such ϑ}

for the set of central characters of a module.

That this is a homomorphism of algebras is clear since for example (z1 + z2)v = z1v + z2v so ϑ
respects addition, and similarly for multiplication.

For completeness let us cite some facts about O (see Humphreys):
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

Proposition. Let M ∈ O.

(1) All weight spaces of M are finite-dimensional:

dimMλ <∞.
Moreover, the set of weights of M is contained in a finite union of cones λi −Q+, λi ∈ h∗:

wtM ⊆
⋃

i fnt:λi∈h∗
(λi −Q+).

(2) O is both Noetherian and Artinian, i.e. every M ∈ O is both Noetherian and Artinian
as a Ug-module. In particular this means every M ∈ O admits a finite Jordan-Holder
decomposition series.

(3) O is closed under taking submodules, quotients, and finite direct sums.
(4) O is abelian.
(5) For M ∈ O and dimV <∞,

M ⊗ V ∈ O.
In particular

dimV <∞ =⇒ �⊗ V : O exact
−! O.

(6) M is Un−-finitely-generated.
(7) M is Z(Ug)-finite:

dim SpanZ(Ug)(v) <∞ ∀ v ∈M.

(8) Every irreducible module in O is of form Lλ, the quotient of Mλ by the maximal submodule
(λ ∈ h∗).

Next some facts regarding the central characters:

(9) For λ ∈ h∗ and a Verma module Mλ, there is exactly one central character, which we will
call ϑλ:

Θ(Mλ) = {ϑλ}.
(10) For any M ∈ O,

|Θ(M)| <∞.
(11) For any ϑ ∈ Hom(Z(Ug),C), its kernel is an ideal Kerϑ ⊆ Z(Ug) which has stabilizing

eventual kernel:

M ⊇ {v ∈M : (Kerϑ)nv = 0} stabilizes for large n.

This will be denoted

Mϑ := Ker∞Kerϑ
Rep
⊆ M,

which is a subrepresentation of M .
(12) Moreover,

Θ(Mϑ) = {ϑ}
and

M =
⊕

ϑ∈Θ(M)

Mϑ

and

�ϑ : O exact
−! O

is exact.
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I think the proof5 of most of these are not too difficult and can in fact be found in chapter 1.1 of
Humphreys, except maybe for showing O is Artinian (requires citing Harish-Chandra), which is in
chapter 1.11 of Humphreys.

There is another theorem about these central characters which we will need to cite:
Theorem (Harish-Chandra). For λ, µ ∈ h∗,

ϑλ = ϑµ ⇐⇒ λ
◦∼ µ

⇐⇒ λ+ ρ ∼ µ+ ρ,

where the second line is the definition of
◦∼.

Interestingly Harish-Chandra is a single person and not the last name of two authors.

3. The BGG Resolution and The Weyl Character Formula

In this section we will state the main results of this exposition: the BGG resolution and the
Weyl character formula. We will use the former to prove the latter.

3.1. The BGG Setup. Unfortunately the full statement of the BGG resolution takes a bit of
setup. Rather than state a partial result now and use it to prove Weyl, only to give a full statement
later, we will begin with this setup and give the full statement right away. Most of the proofs
implicit in this setup will be omitted in the interest of length.

Recall that Verma modules were defined as the “universal” highest weight modules,

Mλ := Ug⊗Ub Cλ,

where λ ∈ h∗. One may ask what homs between such spaces look like, and there is a theorem of
Verma and BGG which characterizes this (I will give the statement as it appears in BGG, adjusting
for index shifts):

5A note to myself: as Humphreys remarks, it is very easy to for example see Mϑ is a subrep of M , since
Kerϑ ⊆ Z(Ug) and so (Kerϑ)nv = 0 =⇒ (Kerϑ)ngv = g(Kerϑ)nv = 0.
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

Theorem (Verma). For λ, µ ∈ h∗,

Homg(Mµ,Mλ) =

{
0

C
,

and any nonzero map between two Verma modules is an injection.
Moreover,

Homg(Mµ,Mλ) = C

⇐
⇒

∃ α1, · · · , αk ∈ R+

: µ+ ρ = sαk · · · sα1(λ+ ρ),

sαi−1 · · · sα1(λ+ ρ)− sαi · · · sα1(λ+ ρ) ∈ Z0+αi.

In the case that λ ∈ P+, these conditions simplify to

Homg(Mw1◦λ,Mw2◦λ) = C

⇐
⇒

w1 ≥ w2.

The proof of this theorem is a long journey through chapter 4 of Humphreys; as one might expect,
it it much easier to prove that dim Homg(Mµ,Mλ) ≤ 1 and is injective when nonzero than it is to
prove the full criterion.

For our purposes the w1 ≥ w2 will be the relevant condition. As noted earlier, w1 ≥ w2 refers to
the Bruhat order on the Weyl group: i.e. meaning there exists a chain

w1
si1−! u1

si2−! · · ·
sin−1
−! un−1

sin−! w2

such that

uk = sik+1
uk+1,

`(uk) = `(uk+1) + 1,

where we set u0 = w1 and un = w2. We may sometimes suppress the arrow labels s in this notation
and instead just write e.g.

w1 −! u1.

In view of this theorem, since all nonzero maps are injective, when appropriate, there is a Verma
submodule Mµ inside Mλ. Hence, for w1 ≥ w2 let us write

ιw1!w2 : Mw1◦λ ↪−!Mw2◦λ

for the canonical embedding.
There are two other combinatorial facts about the Weyl group which we will quote; proofs may

be found in section 11 of BGG. Here we will refer to them by their numbers in BGG.
Consider the (finite) directed graph Γ(W ) whose vertices are elements of W and whose arrows

are precisely those such that w1
s
−! w2. We will call (w1, w2, w3, w4) a “square” if
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w2

w1 w4

w3

.



Lemma (10.3,10.4). For w1, w4 ∈W with `(w1) = `(w4) + 2, there are either zero or two vertices
that fit in arrows between:

#{w : w1 ! w ! w4} =

{
0

2
.

Moreover, to each arrow w1 ! w2 of Γ(W ) we may assign a sign

sgn(w1, w2) = ±1

such that, for all squares (w1, w2, w3, w4),∏
4 arrows in square

sgn(w,w′) = −1.

3.2. The BGG Resolution. Now we are in a position to set up the BGG resolution. This res-
olution will be constructed as follows for λ ∈ P+: grade the graph Γ(W ) by length `(w); place a
Verma module Mw◦λ at each vertex w of Γ(W ); define maps in the resolution by putting a map
sgn(w1, w2)ιw1!w2 between Mw1◦λ and Mw2◦λ for each arrow w1 ! w2 (recall that maps between
these two is C since w1 ! w2, so any map is given by a multiple of the canonical embedding);
and lastly direct sum all modules in the same grading (i.e. of same length `(w)), appropriately
combining the maps sgn(w1, w2)ιw1!w2 to obtain d. Note well that, since each ι is a map of repre-
sentations, d so defined is also a map of representations.

Theorem (BGG). For Πλ ∈ irRepfd g a finite-dimensional irrep of highest weight λ ∈ P+, there is
a resolution by g-modules of Πλ:

0 −!Mw0◦λ
d|R+|
−! · · · −!

⊕
w∈Wk

Mw◦λ
dk−! · · · −!

⊕
i∈I(Σ)

Msi◦λ
d1−!Mλ

d0−! Πλ −! 0.

Note that each term of the complex is given by (|R+| ≥ k ≥ 0)

Ck =
⊕
w∈Wk

Mw◦λ,

out of which dk (k ≥ 1) is defined as

dk
∣∣
Mw◦λ

=
(

sgn(w,w′)ιw!w′
)
w′∈Wk−1

;

d0 is defined as
d0 := π : Mλ −� Πλ

the projection.
Note also that, as `(w0) = |R+| = dim n−, Mw0◦λ belongs to the (|R+| = dim n−)-th term of the

sequence (where we take Πλ to be the −1-th term).
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3.3. The Weyl Character Formula. We will now prove the Weyl character formula. First some
background: recall we had defined

Definition.
C[P ] := C〈eλ : λ ∈ P, eλeµ = eλ+µ, e0 = 1〉,

in which lives a character (for V ∈ Repfd g finite-dimensional)

χV :=
∑

λ∈wtV

dim(V λ)eλ.

This character enjoys some basic properties, e.g.

Fact.

χC = 1,

χV⊕W = χV + χW ,

χV⊗W = χV χW ,

χV ∗ = χV ,

where � is defined by

eλ := e−λ.

For finite-dimensional representations we know that the above sum must be finite (since there
are only finitely many weights of a finite-dimensional V ), so there are no issues. In the case of an
infinite-dimensional representation, however, we must be more careful; to this end define

Definition.

ŐC[P ] :=


∑
λ∈P

cλe
λ : {λ : cλ 6= 0} ⊆

⋃
i fnt
λi∈P

(λi −Q+)


where we allow infinite sums as long as all nonzero terms lie in a finite union of cones of form
λi −Q+.

Since highest weight representations (those generated by a single v ∈ Ker n+) have weights λ−Q+,

a character χVλ for a highest weight representation Vλ of highest weight λ will live in ŐC[P ]; in fact,
the nonzero terms lie in a single cone λ−Q+.

Since χV⊕W = χV + χW , one may wonder what the characters of finite-dimensional irreducibles
are. This is the theorem of Weyl:

Theorem (Weyl Character). For Πλ ∈ irRepfd g the finite-dimensional irreducible of highest weight
λ ∈ P+, the character of Πλ is given by

χΠλ =
∑
w∈W

sgn(w)ew◦λ
∏
α∈R+

1

1− e−α
,

where
sgn(w) := (−1)`(w)

and 1
1−e−α represents a formal series

1

1− e−α
= 1 + e−α + e−2α + · · · .
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This will follow directly from computing the characters of Verma modules and applying the BGG
resolution. Indeed, the Verma modules have character:

Proposition. For λ ∈ h∗, the Verma module Mλ has character

χMλ
= eλ

∏
α∈R+

1

1− e−α
,

where 1
1−e−α represents a formal series

1

1− e−α
= 1 + e−α + e−2α + · · · .

Proof. Recall that the Mλ has weights µ ∈ λ − Q+, each of which is finite-dimensional. Recall
moreover

Un−
Vec∼= Mλ

via

x 7−! xvλ.

Recall also from a computation6 on pset 10 that, for α ∈ R+, fα brings a vector in the µ-weight
space to the µ− α-weight space, for example

fαv
λ ∈Mλ

λ−α. (∗)

Then, since the Verma module is the free Un− module generated on one vector, if linearly indepen-
dent x 6= y ∈ Un− both have xvλ, yvλ ∈Mλ

λ−δ, then xvλ, yvλ are linearly independent. Therefore,
to compute the dimensional of each weight space, it suffices to enumerate the number of linearly
independent elements of Un− which bring vλ to the right weight space. By the PBW theorem,
since n− has an additive basis {fα}α∈R+ , we know Un− has a basis given by {

∏
α f

nα
α }n; therefore,

for δ ∈ Q+ the dimension of each weight space is given by

dimMλ
λ−δ = #

 ∑
α∈R+

nαα :
∑
R+

nαα = δ

.
By elementary combinatorics this is the coefficient

dimMλ
λ−δ = [e−δ]

∏
α∈R+

(1 + e−α + e−2α + · · · ).

6For completeness, this is saying

hfαv
λ = [h, fα]vλ + fαhv

λ = −α(h)fαv
λ + fαλ(h)vλ = (λ− α)(h)fαv

λ.
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Then we have

χMλ
=

∑
µ∈λ−Q+

dim(Mλ
µ)eµ

=
∑
δ∈Q+

dimMλ
λ−δeλ−δ

=
∑
δ∈Q+

eλ−δ[e−δ]
∏
α∈R+

(1 + e−α + e−2α + · · · )

= eλ
∑
δ∈Q+

e−δ[e−δ]
∏
α∈R+

1

1− e−α

= eλ
∏
α∈R+

1

1− e−α
,

where in the last line we recall Q+ is precisely the set of all nonnegative spans of positive roots.
This is as advertised. �

We are now in a position to prove Weyl.

Proof of Weyl Character. Recall from linear algebra that the alternating sum of dimensions in an
exact sequence of vector spaces is zero. In fact, for ϕ : M −! N a map of representations, we have

hϕ(vλ) = ϕh(vλ) = ϕλ(h)(vλ) = λ(h)ϕ(vλ),

so that
ϕ(Mλ) ⊆ Nλ (∗)

maps of representations preserve weight spaces. Therefore, in an exact sequence of representations
we may restrict attention to each weight space and find that, for

0 −! V1 −! · · · −! Vn −! 0,

the alternating sum of the dimensions of each weight spaces is also zero:
n∑
i=1

(−1)i dim(Vi
λ) = 0; (∗)

applying this for each weight space gives
n∑
i=1

(−1)iχVi = 0. (∗)

Apply this now to the BGG resolution

0 −!Mw0◦λ −! · · · −!
⊕
w∈Wk

Mw◦λ −! · · · −!
⊕
I(Σ)

Msi◦λ −!Mλ −! Πλ −! 0,

whereupon we obtain

χΠλ =

|R+|∑
k=1

(−1)k
∑

w:`(w)=k

χMw◦λ

=
∑
w∈W

sgn(w)χMw◦λ

=
∑
w∈W

sgn(w)ew◦λ
∏
α∈R+

1

1− e−α
,
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as desired. �

In some sense, BGG, being a resolution which turns this alternating sum of formal things into
an exact sequence of actual representations, is a “categorification” of the Weyl character formula.

4. Proving BGG from Weak BGG: Three Steps

Now comes the daunting task of proving the BGG resolution. First, some brief words on how
we will do this: we will first prove BGG assuming three key lemmas (the three main chunks of
the proof), 10.5, 10.6, and 10.7 in the paper. We will then prove these three lemmas, assuming
(which we will prove in a later section) two statements from section 9 of BGG (Theorem 9.9 and its
Corollary (unnumbered)), which may be thought of as a weaker version of the full BGG theorem.

Along the way we will need to assume some facts (e.g. Harish-Chandra) which will not be proven;
we will try to make it clear when we do so, and give precise statements of what the claims are.

As mentioned in the beginning, we will prove BGG in a way which is logically backwards,
assuming facts and proving them later, for the sake of clarity and motivation.

4.1. Lemmas imply BGG. We will prove BGG assuming Lemmas 10.5, 10.6, and 10.7 of BGG.
Other facts along the way, being easier to see, will be appropriately proved. For ease of reading let
us reproduce a statement of BGG here:

Theorem (BGG). For Πλ ∈ irRepfd g with λ ∈ P+, there is a resolution by g-modules of Πλ:

0 −!Mw0◦λ
d|R+|
−! · · · −!

⊕
w∈Wk

Mw◦λ
dk−! · · · −!

⊕
i∈I(Σ)

Msi◦λ
d1−!Mλ

d0−! Πλ −! 0,

where dk (k ≥ 1) is defined as

dk
∣∣
Mw◦λ

=
(

sgn(w,w′)ιw!w′
)
w′∈Wk−1

and d0 is defined as
d0 := π : Mλ −� Πλ.

Proof of BGG. Step 1: Complex: Let us first see BGG is a complex. We have already described
in the last section the “geometry” of the BGG resolution as well as what the maps are. From the
way we have defined the maps, it is immediate that BGG gives a complex, i.e. dd = 0: indeed, by
the combinatorial lemmas, given two terms in BGG which are two apart, i.e. `(w1) = `(w4) + 2,
either there are is no path in Γ(W ) from w1 to w4, in which case d2

∣∣
w1!w4

= 0 trivially, or we can

write a square with attached signs

w2

w1 w4

w3

sgn(w2,w4)sgn(w1,w2)

sgn(w1,w3) sgn(w3,w4)

such that the product of the four signs is −1; for this to happen, either three are +1 and one is −1
or three are −1 and one is +1. It’s then pretty clear that in any case either the top path is +1 and
the bottom path is −1 or vice versa, in which case the sum (which is how d is defined) is zero, so
that dd = 0 still.

12



Step 2: Exact Beginning: Next let us see why this sequence is exact7 at Mλ (position 0) and at
Πλ (position −1).

First some facts:Fact (K8.27). For vµ ∈Mλ
µ,

n+vµ = 0 =⇒ Mλ ⊇ SpanUg(v
µ) = SpanUn−(vµ) ∼= Mµ

is a Verma module.

Proof of K8.27. If n+ acts by zero, then clearly instead of acting by all of Ug it suffices to act on
by Un− (h will of course act by a character), so that SpanUg v

µ = SpanUn− v
µ.

n+vµ = 0 implies the submodule generated8 by vµ, SpanUg v
µ, is a highest weight representation

of highest weight µ, so that it is a quotient of Mµ. Since Un− ∼= Mµ as vector spaces via action, to
show SpanUg v

µ ∼= Mµ is suffices to show the map

Un− 7−! SpanUg v
µ

x 7−! xvµ

is injective (it is automatically surjective since n+vµ = 0). AFSOC xvµ = 0 for some x; since
vµ ∈ Mλ, there is some y ∈ Un− such that yvλ = vµ, so this is saying xyvλ = 0, which can only
happen if xy = 0 since Mλ

∼= Un−; but by PBW
Theorem (PBW). Any Lie algebra g with ordered basis

g = C(ξ1, · · · , ξn)

has that Ukg has basis
Ukg = C{ξk1

1 · · · ξ
kn
n }∑ ki≤k.

we have Un− has no zero divisors, so this implies x = 0 (since vµ 6= 0, so that y 6= 0), which implies
the map is injective and therefore surjective. �

Recall that, for αi ∈ Σ and λ ∈ P+,

f
λ(hi)+1
i (ṽλ) = 0 ∈ Lλ.

In fact this can be made more precise:
Lemma (K8.28a). For λ ∈ P+ and αi ∈ Σ, the submodule inside Mλ generated by f

λ(hi)+1
i vλ

Mλ ⊇ SpanUg

(
f
λ(hi)+1
i vλ

)
= SpanUn−

(
f
λ(hi)+1
i vλ

) ∼= Msi◦λ

is isomorphic to a Verma module Msi◦λ.

Proof of K8.28a. We saw earlier that

fαv
λ ∈Mλ

λ−α,

so in particular

f
λ(hi)+1
i vλ ∈Mλ

λ−
(
λ(hi)+1

)
αi = Mλ

si◦λ,

7BGG claims that this follows from Harish-Chandra’s theorem on ideals, but I could not quite understand this or
locate precisely what statement they were referring to; instead we will give here an alternate and no doubt clumsier
(though hopefully not incorrect) argument.

8It feels like Ug · vµ would refer to the free module generated by vµ, so to emphasize that this is a submodule

generated by vµ, we will write Span
Mλ
Ug v

µ, or just SpanUg v
µ for short.

13



where

si ◦ λ = si(λ+ ρ)− ρ = siλ+ siρ− ρ = siλ− αi = λ−
(
α∗i (λ) + 1

)
αi,

where we recall that ρ− siρ = αi, and more generally

ρ− w(ρ) =
∑

α∈R+:w−1α∈R−

α.. (∗)

Since

f
λ(hi)+1
i vλ ∈Mλ

si◦λ,

to show the desired by Fact K8.27 it suffices to show n+ brings this to zero. Recalling still that n+

is generated by ei for i ∈ I(Σ), it suffices to show this is killed by all ej for j ∈ I(Σ). For j 6= i this
is easy, as [ej , fi] = 0 and so

ej · fλ(hi)+1
i vλ = f

λ(hi)+1
i ejv

λ = 0

since, being a highest weight vector, n+vλ = 0. For i = j we must9 embark on a slightly lengthier
computation:

eif
λ(hi)+1
i vλ =

(
[ei, fi] + fiei

)
f
λ(hi)
i vλ

= hif
λ(hi)
i vλ + fieif

λ(hi)
i vλ

= hif
λ(hi)
i vλ + fi

(
[ei, fi] + fiei

)
f
λ(hi)−1
i vλ

= hif
λ(hi)
i vλ + fihif

λ(hi)−1
i vλ + f2

i eif
λ(hi)−1
i vλ

...

= hif
λ(hi)
i vλ + fihif

λ(hi)−1
i vλ + · · ·+ f

λ(hi)
i hiv

λ + f
λ(hi)+1
i ���eiv

λ

= hif
λ(hi)
i vλ + fihif

λ(hi)−1
i vλ + · · ·+ f

λ(hi)
i hiv

λ

= (λ− λ(hi)αi)(hi)f
λ(hi)
i vλ

+
(
λ− (λ(hi)− 1)αi

)
(hi)f

λ(hi)
i vλ

+ · · ·

=

λ(hi)∑
k=0

(
λ− (λ(hi)− k)αi

)
(hi) · fλ(hi)

i vλ

= f
λ(hi)
i vλ

λ(hi)∑
k=0

λ(hi)− λ(hi)αi(hi) + kαi(hi)

= f
λ(hi)
i vλ

λ(hi)∑
k=0

λ(hi)− 2λ(hi) + 2k

= f
λ(hi)
i vλ

(
−λ(hi)(λ(hi) + 1) + 2 · 1

2
λ(hi)(λ(hi) + 1)

)
= 0,

completing our check that n+f
λ(hi)+1
i vλ. Hence, by Fact K8.27, the submodule generated by this

vector is a Verma module of the form advertised. �

9Probably I am missing some easier way to do this, but this certainly works.
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Recall that Lλ is a quotient of a Verma module by a maximal submodule not containing the
highest weight vector; in fact, this can also be “refined” to
Lemma (K8.28b). For λ ∈ P+,

Πλ = Mλ/
∑

i∈I(Σ)

Msi◦λ
,

where by “Msi◦λ” we mean the submodule SpanUn−(f
λ(hi)+1
i vλ) ⊂Mλ constructed in the previous

lemma which is isomorphic to Msi◦λ.

Proof of K8.28b. We will show the RHS is a finite-dimensional representation and then appeal to
complete reducibility.

To see that
dimCMλ/

∑
i∈I(Σ)

Msi◦λ
<∞,

note

Mλ/
∑

i∈I(Σ)

Msi◦λ
Vec∼= Un−/Un−〈fλ(hi)+1

i 〉i∈I(Σ)

where we have used Mλ
∼= Un− again, as well as using that Msi◦λ ⊂Mλ is generated by f

λ(hi)+1
i vλ.

But recall that an ideal of form Un−〈fλ(hi)+1
i 〉i∈I(Σ) has finite codimension

codimUn− Un−〈fλ(hi)+1
i 〉i∈I(Σ) <∞,

which shows finite-dimensionality.
Then, by complete reducibility, we may write

Mλ/
∑

i∈I(Σ)

Msi◦λ
∼=
⊕
µ≤λ

mµΠµ,

where we know µ ≤ λ since the left hand side is a quotient of a Verma module and so its weights
must be of form λ−Q+. Moreover, by looking at the dimension of the λ-space, since the LHS has
dim(Mλ/

∑
iMsi◦λ)λ = 1 (the quotient not containing the highest weight vector), we force mλ = 1:

Mλ/
∑

i∈I(Σ)

Msi◦λ
∼= Lλ ⊕

⊕
µ<λ

mµΠµ.

In particular, this means the highest weight vector ṽλ of Mλ/
∑

iMsi◦λ lies inside the factor Πλ, so

that the submodule inside generated by ṽλ must be Πλ (by irreducibility of Πλ). On the other hand,
as vλ generates Mλ, we have ṽλ generates all of Mλ/

∑
iMsi◦λ. Hence we have Mλ/

∑
iMsi◦λ

∼= Πλ,
as claimed. �

Indeed, the failure of the
∑

i∈I(Σ) to be a direct sum is why the rest of the terms in BGG are

necessary. That is, K8.28b allows us to describe Πλ as a cokernel⊕
i∈I(Σ)

Msi◦λ −!Mλ −! Πλ −! 0,

but says nothing about what the kernel is. BGG will do this for us. Note well that the map⊕
i∈I(Σ)Msi◦λ −! Mλ is given by the canonical embeddings10 Msi◦λ ⊂ Mλ, as prescribed by

10Here we have chosen sgn(si, id) = +1 for all i ∈ I(Σ), which might seem to be an issue given that in our
statement of Lemma 10.4 we do not have any choice on what the signs are; however, by looking at the proof of
Lemma 10.4 in section 11 of BGG, one sees that the proof goes by induction on `(w), where at the base case (i.e.
in the case of sgn(si, id)) we are free to choose whatever signs we fancy; so in particular we may take them all to be
positive signs, as we do here.
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Verma (Section 2 above); this agrees with the differential maps we described in the statement of
BGG.

Step 3: Exact Everywhere: Now that we know this is a complex which is exact at degrees 0
and −1, we will cite three key lemmas (to be proved later this section) to show BGG is exact
everywhere. The proof will be by induction:

by induction, assume BGG is exact at degrees − 1, 0, 1, · · · , k − 1.

We wish to show exactness at degree k also. Since this is a complex, we already have dk+1(Ck+1) ⊆
Ker dk ⊆ Ck; we wish only to show

dk+1 : Ck+1
?
−� Ker dk

is surjective, i.e. Img dk+1 = Ker dk.
In the below, by Un−-free, we mean free as a Un−-module.

Lemma (10.5). For M,N ∈ O such that M is Un−-free with generators v1, · · · , vn,

M = SpanUn−{v1, · · · , vn}
and

ϕ : M
Un−
−! N

a map of Un−-modules such that

ϕ(vi) is a weight vector,

we have
ϕ : M −� N surj ⇐⇒ ϕ̃ : M/n−M −� N/n−N surj.

In particular we will be interested in applying 10.5 for M = Ck+1 =
⊕

w∈Wk+1
Mw◦λ and N =

Ker dk.Lemma (10.6).

d̃k+1 : Ck+1/n−Ck+1 ↪−! Ker dk/n−Ker dk inj

is injective.

In fact, since we are inducting on k (i.e. to get to the k-th step we have proved this lemma for

every i < k), this will be true of all d̃i for i ≤ k + 1 (sort of like strong induction).[
Lemma (10.7).

dimCCk+1/n−Ck+1 = dimC Ker dk/n−Ker dk <∞.

Assuming these lemmas, it is clear we can now show exactness at k, completing induction. Indeed,
10.6 gives an injection

d̃k+1 : Ck+1/n−Ck+1 ↪−! Ker dk/n−Ker dk

which by 10.7 is an injection between two finite-dimensional vector spaces of the same dimension;

therefore d̃k+1 is also surjective

d̃k+1 : Ck+1/n−Ck+1 ↪−!! Ker dk/n−Ker dk,

which by 10.5 implies

dk+1 : Ck+1 −� Ker dk
16



is also surjective, completing the proof of exactness. This concludes the proof of BGG (Lemmas to
be proved later). �

4.2. Weak BGG implies Lemmas. In this subsection we will prove the Lemmas 10.5, 10.6, 10.7
cited above. The title is slightly misleading; 10.5 does not require Weak BGG, 10.6 does, and 10.7
requires Bott’s Theorem, a corollary of Weak BGG.

We will restate the Lemmas each time so the viewer does not have to scroll up.

4.2.1. Lemma 10.5. First let us show 10.5.

Lemma (10.5). For M,N ∈ O such that M is Un−-free with generators v1, · · · , vn,

M = SpanUn−{v1, · · · , vn}
and

ϕ : M
Un−
−! N

a map of Un−-modules such that

ϕ(vi) is a weight vector,

we have
ϕ : M −� N surj ⇐⇒ ϕ̃ : M/n−M −� N/n−N surj.

Proof of 10.5. =⇒ It is clear that ϕ surjective implies ϕ̃ surjective (since ϕ commutes with n−,
it is not possible for a nonzero person in N/n−N to have preimage in n−M ; indeed, the image of
n−M lies inside n−N).
⇐= Now let us see that ϕ̃ surjective implies ϕ surjective. We will show that any weight vector

in N is actually in the image of ϕ, which implies the desired11; that is, we claim

u ∈ Nµ =⇒ u ∈ Imgϕ ∀ µ.

The idea is to proceed by induction/infinite descent (not sure what to call this) on the weights
of N . That is, since N ∈ O, we know the set of weights of N lie in a finite union of cones (see
Section 2):

wtN ⊆
⋃

i fnt:λi∈h∗
(λi −Q+).

We will start by showing Nλi ⊆ Imgϕ and work our way downwards. In fact, the base case of the
highest weights λi is a formal consequence of the inductive step, as we will highlight below.

Hence, for the inductive step let us pick a weight µ so that all weights above µ are contained in
Imgϕ:

=⇒ pick u ∈ Nµ : N>µ ⊆ Imgϕ.

Under projection by n− this goes to

π : N −� N/n−N

u 7−! ũ.

Then

ϕ̃ surj =⇒ ϕ̃(v1), · · · , ϕ̃(vn) generate N/n−N

=⇒ ũ =
∑
i

ciϕ̃(vi)

11Since weight vectors form an eigenbasis with respect to h, by definition.
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for some coefficients ci. Note12 that h acts on N/n−N , with13

π(u) = ũ ∈ (N/n−N)µ,

i.e. ∑
i

ciϕ̃(vi) ∈ (N/n−N)µ.

However, from linear algebra we know the sum of eigenvectors with differing eigenvalues is not an
eigenvector14, which forces

ci 6= 0 =⇒ wt(ϕ̃(vi)) = µ.

Consider u −
∑

i ciϕ(vi). We’ve noted in an earlier footnote that quotienting (which a priori
commutes with n−) commutes with h, so that

wt(ϕ̃(vi)) = µ =⇒ wt(ϕ(vi)) = µ

and therefore

u−
∑
i

ciϕ(vi) ∈ Nµ

since each u and ϕ(vi) is in Nµ. Since π(u−
∑

i ciϕ(vi)) = 0, we also have

u−
∑
i

ciϕ(vi) ∈ n−N,

so

=⇒ u−
∑
i

ciϕ(vi) ∈ Nµ ∩ n−N.

Hence we can write u−
∑

i ciϕ(vi) as

u−
∑
i

ciϕ(vi) =
∑
α∈R+

cαfαw
µ+α

for some weight vectors wµ+α ∈ Nµ+α and constants cα. Here we know we have factors of fα since
u −

∑
i ciϕ(vi) ∈ n−N , and we know the weights on w must be µ + α since u −

∑
i ciϕ(vi) ∈ Nµ

and fα drops the weight by α.
But

wµ+α ∈ N>µ ⊆ Imgϕ,

which is a submodule of N , so fαw
µ+α ∈ Imgϕ, and

=⇒ u−
∑
i

ciϕ(vi) =
∑
α∈R+

cαfαw
µ+α ∈ Imgϕ

=⇒ u ∈ Imgϕ,

completing the proof.
Note well that, in the above argument, if µ = λi is a maximal weight, then wµ+α = 0 and we

immediately have u−
∑

i ciϕ(vi) = 0 =⇒ u =
∑

i ciϕ(vi) ∈ Imgϕ, so that indeed the base case is
subsumed by the inductive step. �

12This is since

hn−N = [h, n−]N + n−hN ⊆ n−N + n−N = n−N,

so that h acts on n−N (i.e. n−N is closed under h), so that h acts on N/n−N .
13We know hπ(u) = π(hu) since h : n−N −! n−N ; then

hπ(u) = π(hu) = µ(h)π(u) =⇒ π(u) ∈ (N/n−N)µ.

14In other words, eigenvectors of differing eigevalues are linearly independent.
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4.2.2. Lemma 10.6. Next let us do 10.6. This lemma will be broken up into two parts, 10.6a and
10.6b (as they are named in BGG). To prove this lemma we will need to cite Weak BGG as well
as some facts about the Jordan-Holder decomposition of Verma modules. First let me recall what
Jordan-Holder is:

Definition. A “decomposition series” (or composition series) of M ∈ ModR is a filtration

0 = M0 ⊆ · · · ⊆Mn = M

such that
Mi/Mi−1 is simple.

We will denote the set of such simple quotients by

JH(M) := {Mi/Mi−1}i,
which we will call the “Jordan-Holder factors”.

It is a theorem that this JH(M) is well-defined. Concretely one can think about this in two ways: to
get a decomposition series, one may either keep taking maximal submodules15 to obtain the desired
filtration, or one may do the following process: take a maximal simple submodule of M , Π1, and
pass to M/Π1; then take a maximal simple submodule Π2 of V/Π1, and pass to (M/Π1)/Π2; etc..
The filtration is then F0 = 0, F1 = Π1, F2 = π−1

1 (Π2), etc..
There are three key things we must cite for this subsubsection. The first is the Jordan-Holder

Theorem (a standard fact from homological algebra which takes about a page and a half to prove),
the second is the Jordan-Holder factors of a Verma module, and the third is Weak BGG. The
former two will not be proved in this exposition, while the third will be proved in a later section.

First, the Jordan-Holder Theorem says16

Theorem (Jordan-Holder). Given two filtrations of M of possibly different length

0 = M0 ⊆ · · · ⊆Mn = M,

0 = M ′0 ⊆ · · · ⊆M ′m = M,

we may refine them (i.e. stick in extra terms) to obtain two filtrations of equal length

0 = N0 ⊆ · · · ⊆ Nk = M,

0 = N ′0 ⊆ · · · ⊆ N ′k = M

such that
{Ni/Ni−1}i ' {N ′j/N ′j−1}j ,

where by ' we mean the Ni/Ni−1 are a permutation of the N ′j/N
′
j−1 up to isomorphism.

Moreover, the following are equivalent:

• M admits a decomposition series;
• Every filtration of M can be refined to a decomposition series;
• M is both Noetherian and Artinian.

Here recall from commutative algebra that Noetherian is “ascending chains terminate” and Artinian
is “descending chains terminate”. Some additional easy facts about JH factors:

15If N is a maximal submodule of M , then M/N is simple since the existence of a nontrivial submodule of M/N
contradicts the maximality of N .

16This statement is taken from the second page of Benson.
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

Fact. For M,N ∈ ModR which admit decomposition series,

JH(M ⊕N) = JH(M) t JH(N),

JH(M) = JH(M/N) t JH(N),

JH(M) ⊇ JH(N ⊆M),

JH(M) =
⊔
i

JH(Mi/Mi−1),

where in the middle two N ⊆M is a submodule and in the last fact

0 = M0 ⊆ · · · ⊆Mn = M

is any filtration (not necessarily a decomposition series).

These facts are pretty easy to exhibit17.
Second, we must also cite another fact about the Jordan-Holder factors of Verma modules:

Theorem (Jordan-Holder of Verma, 8.12). For λ, µ ∈ h∗,

Lµ ∈ JH(Mλ)
⇐
⇒

∃ α1, · · · , αk ∈ R+

: µ+ ρ = sαk · · · sα1(λ+ ρ),

sαi−1 · · · sα1(λ+ ρ)− sαi · · · sα1(λ+ ρ) ∈ Z0+αi.

For λ ∈ P+,
L ∈ JH(Mw◦λ) =⇒ L = Lu◦λ, u ≥ w,

with Lw◦λ appearing exactly once.

Lastly, we must also cite Weak BGG, to be proved in a later section. To set up Weak BGG we
must first define the notion of “type”:

17The first fact follows by taking as filtration

0 = M0 ⊕N0 ⊆ · · · ⊆M0 ⊕Nn︸ ︷︷ ︸
JHN

= M0 ⊕N ⊆ · · · ⊆Mm ⊕N︸ ︷︷ ︸
JHM

= M ⊕N,

the second follows by taking

0 = N0 ⊆ · · · ⊆ Nn︸ ︷︷ ︸
JHN

= N = M0 ⊆ · · · ⊆Mm︸ ︷︷ ︸
JH(M/N)

= M,

the third follows formally from the second, and the fourth follows by using

0 = Ñ0 ⊆ · · · ⊆ Ñn = Mi/Mi−1

to refine

0 = M0 ⊆ · · · ⊆Mm = M

to

· · · ⊆Mi−1 = N0 ⊆ · · · ⊆ Nn︸ ︷︷ ︸
JH(Mi/Mi−1)

= Mi ⊆ · · · .
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

Definition. For M ∈ O and Ψ = {ψi} a finite set of weights (with multiplicity, i.e. possibly with
repetition), we say M is of type Ψ,

typM = Ψ,

if there exists a filtration of M
0 = M0 ⊆ · · · ⊆Mn = M

such that the factors
Mi/Mi−1

∼= Mψi

precisely exhibit all of Ψ.

Now we may state Weak BGG:
Theorem (Weak BGG, 9.9). For λ ∈ P+ and Πλ ∈ irRepfd g, there is a resolution of g-modules

0 −! B|R+| −! · · · −! B1 −! B0 −! Πλ −! 0

such that
typBk = {w ◦ λ : w ∈Wk}.

Let us remark that the BGG resolution (as one might expect, being stronger than Weak BGG)
satisfies this, having terms Ck =

⊕
w∈Wk

Mw◦λ, so that we may take a filtration consisting e.g. of

Mw1◦λ ⊆Mw1◦λ ⊕Mw2◦λ ⊆Mw1◦λ ⊕Mw2◦λ ⊕Mw3◦λ ⊆ · · · realizing typCk = {w ◦ λ}w∈Wk
.

In the spirit of working backwards, we will state two lemmas, 10.6a and 10.6b in BGG, and show
how they imply 10.6, and prove the two smaller lemmas later this section.[
Lemma (10.6a).

L ∈ JH(Ker dk) =⇒ L = Lw◦λ, `(w) > k.



Lemma (10.6b). Let w0 ∈W , M ∈ O be such that

`(w) ≥ `(w0) ∀ Lw◦λ ∈ JH(M).

Then, for

ϕ : Mw0◦λ
Ug
−!M

a map of representations, we have

ϕ(vw0◦λ) 6= 0 =⇒ ˜ϕ(vw0◦λ) 6= 0 ∈M/n−M.

Note that the statement in 10.6b can also be written

ϕ(vw0◦λ) 6= 0 =⇒ ϕ(vw0◦λ) 6∈ n−M.

Let us see how this implies Lemma 10.6:Lemma (10.6).

d̃k+1 : Ck+1/n−Ck+1 ↪−! Ker dk/n−Ker dk inj

is injective.

Proof of 10.6, assuming 10.6a/b. Since each term Ck+1 is Ck+1 =
⊕

w∈Wk+1
MW◦λ with Mw◦λ

generated over Un− by vw◦λ the highest weight vector of weight w ◦ λ, we can write

Ck+1 = Un−{vw◦λ}w∈Wk+1
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where by not writing Span we are indicating that this is the free18 module generated over Un−.

Then, modding out by the ideal n−
•
⊂ Un− gives

=⇒ Ck+1/n−Ck+1

Vec∼= C{ṽw◦λ}w∈Wk+1

is isomorphic to a vector space with basis {ṽw◦λ}w∈Wk+1
.

The claim is that, to show Ker d̃k+1 = 0, it suffices to show d̃k+1(ṽw◦λ) 6= 0; that is,

d̃k+1(ṽw◦λ) 6= 0 ∀ w ∈Wk+1 =⇒ d̃k+1(ṽ) 6= 0 ∀ ṽ 6= 0.

To see this, note19 that d̃k+1 commutes with h, and that the basis of the domain of d̃k+1, {ṽw◦λ},
consists of eigenvectors of different20 weights; then, since d̃k+1 commutes with h, the nonzero vectors

{d̃k+1(ṽw◦λ)} are still eigenvectors in Ker dk/n
−Ker dk of differing eigenvalues.

AFSOC some nonzero ṽ =
∑

w cwṽ
w◦λ 6= 0 had d̃k+1(ṽ) = 0; then

d̃k+1(ṽ) = 0

d̃k+1

(∑
w

cwṽ
w◦λ

)
=∑

w

cwd̃k+1(ṽw◦λ) =

i.e. a nontrivial linear combination of d̃k+1(ṽw◦λ) vanishes, contradicting that eigenvectors of

differing eigenvalues are linearly independent. Hence we see that d̃k+1(ṽw◦λ) 6= 0 =⇒ d̃k+1(6=
0) 6= 0, so it suffices to show d̃k+1 does not vanish on weight vectors.

Now let us appeal to 10.6a and 10.6b. Take M = Ker dk with any w0 ∈ Wk+1 in the setup
of 10.6b; this satisfies the problem conditions by 10.6a. To be more explicit, by 10.6a, Lw◦λ ∈
JH(Ker dk) =⇒ `(w) ≥ k + 1 = `(w0).

By our work at the beginning of this proof, it suffices to show that d̃k+1(ṽw0◦λ) 6= 0 for any
w0 ∈ Wk+1. Since Ck+1 =

⊕
w0∈Wk+1

Mw0◦λ, it suffices to show the differential restricted to each

summand

dk+1

∣∣
w0

: Mw0◦λ −! Ker dk

has

dk+1(vw0◦λ) 6∈ n−Ker dk.

But this follows from 10.6b, since by construction dk+1(vw0◦λ) 6= 0, as recall dk+1|w0 is defined by
the direct sum of the canonical embeddings of Verma modules.

This concludes 10.6. �

And now we must prove 10.6a and 10.6b. For these two we shall require the Jordan-Holder stuff,
and for 10.6a we shall moreover need Weak

18The different Verma modules don’t talk to each other.
19Indeed, more generally for a map

ϕ : M
Un−
−! N

which commutes with h, we have

ϕ̃ : M/n−M −! N/n−N

also commutes with h since hϕ̃(ṽ) = h((ϕ(v) + n−N) = hϕ(v) + hn−N = ϕ(hv) + hn−N ⊆ ϕ(hv) + n−N = ϕ̃(hṽ),
where we recall from an earlier footnote (I think it’s footnote 11) that hn−N ⊆ n−N .

In this case dk+1 is certainly a map of representations and so commutes with h, and therefore so does d̃k+1.
20w ◦ λ = w′ ◦ λ =⇒ w = w′.
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Proof of 10.6a. Since Ci =
⊕

Wi
Mw◦λ, the JH factors of Ci is

JHCi = JH
⊕
w∈Wi

Mw◦λ =
⊔
w∈Wi

JHMw◦λ.

By Weak BGG, we get a resolution

0 − Πλ  − B0  − · · · − B|R+|  − 0,

where since typBk = {w ◦ λ}w∈Wk
, there exists a filtration of Bk whose quotients are Mw◦λ, so by

a previously noted fact about JH factors we have

JHBi =
⊔
j

JH(Bi
j/Bi

j−1) =
⊔
w∈Wi

JHMw◦λ,

whereupon

=⇒ JHCi = JHBi.

The idea is sort of like DNA/RNA21, where we only know C• is exact in degrees ≤ k−1, whereas
B• is exact everywhere. Let us begin:

Π = B0/Ker dB0 = C0/Ker d0 =⇒ JH(B0/Ker dB0 ) = JH(C0/Ker d0)

(JHB0 = JHC0) =⇒ JH(Ker dB0 ) = JH(Ker d0)

(exact at 0) =⇒ JH(Img dB1 ) = JH(Img d1)

=⇒ JH(B1/Ker dB1 ) = JH(C1/Ker d1)

(JHB1 = JHC1) =⇒ JH(Ker dB1 ) = JH(Ker d1)

(exact at 1) =⇒ JH(Img dB2 ) = JH(Img d2)

=⇒ JH(B2/Ker dB2 ) = JH(C2/Ker d2)

(JHB2 = JHC2) =⇒ · · ·
...

(exact at k − 1) =⇒ JH(Img dBk ) = JH(Img dk)

=⇒ JH(Bk/Ker dBk ) = JH(Ck/Ker dk)

(JHBk = JHCk) =⇒ JH(Ker dBk ) = JH(Ker dk).

At this point we cannot proceed any further since we do not know C• is exact at k. However, B•
is exact at k, so we get

JH(Ker dk) = JH(Ker dBk )

= JH(Img dBk+1)

= JH(Bk+1/Ker dBk+1)

⊆ JHBk+1

=
⊔

w∈Wk+1

JHMw◦λ,

i.e.

=⇒ JH(Ker dk) ⊆
⊔

w∈Wk+1

JHMw◦λ.

21I don’t remember any high school biology, but I think I remember the word “polymerase” or something...
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By theorem 8.12, we know that JHMw◦λ contains things of form Lu◦λ, where u ≥ w; hence

L ∈ JH(Ker dk) =⇒ L = Lu◦λ, u ≥ w for some w ∈Wk+1,

which in particular means

L ∈ JH(Ker dk) =⇒ L = Lu◦λ, `(u) ≥ k + 1,

which is the statement of 10.6a. �

10.6b, while also involving Jordan-Holder, will not involve Weak BGG.

Proof of 10.6b. We will prove this by induction on the number of JH factors, i.e. induction on
|JH(M)|.

Since M ∈ O, the set of weights of M is contained in some finite union of cones λi −Q+, so we
may pick a vector of maximal weight:

pick v ∈Mµ : n+v = 0.

Denote by N the submodule inside M generated by v:

N := SpanUg(v) ⊆M ;

as this is a submodule generated by a single highest weight vector, this is a highest weight repre-
sentation which must therefore be a quotient of a Verma module

=⇒ N ∼= Mµ/smth.

In particular
JHN ⊆ JHMµ.

Since v ∈ Mµ is a22 highest weight vector, it (or rather, its image under an appropriate quotient)
also generates an irreducible Lµ “inside” N ; that is, we can quotient N ∼= Mµ/smth by something
else to get to the quotient by the maximal submodule not containing the highest weight vector,
which is Lµ. Hence

=⇒ Lµ ∈ JHN.

We will break into two cases, the second of which is induction/reduction. Consider

ϕ(vw0◦λ);

either this is contained in N or it isn’t.
Case 1: Suppose it is

ϕ(vw0◦λ) ∈ N.
Since ϕ is a map of representations, it preserves weights so that we have ϕ(vw0◦λ) ∈Mw0◦λ; more-
over, it commutes with n+, so that n+ϕ(vw0◦λ) = ϕ(n+vw0◦λ) = 0. Therefore ϕ(vw0◦λ) generates a
submodule in N which is a highest weight module and therefore isomorphic to a quotient of Mw0◦λ.
This quotient of Mw0◦λ can be further quotiented to obtain Lw0◦λ, so that

Lw0◦λ ∈ JHN ⊆ JHMµ.

By Theorem 8.12 of BGG (JH factors of Verma), this implies

=⇒ µ = w ◦ λ for some w ≤ w0.

But we saw earlier that Lw◦λ = Lµ ∈ JHN ⊆ JHM . By the conditions of 10.6b, this implies

=⇒ `(w) ≥ `(w0).

Combined with w ≤ w0, this forces

=⇒ w = w0, and µ = w0 ◦ λ.
22Not the, but a.
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Then

ϕ(vw0◦λ) ∈Mw0◦λ = Mµ

is a vector inside a weight space of maximal weight, which implies

=⇒ ϕ(vw0◦λ) 6∈ n−M.

This concludes Case 1.
Case 2: We will reduce to a smaller JH size. Suppose

ϕ(vw0◦λ) 6∈ N.

Then

˜ϕ(vw0◦λ) 6= 0 ∈M/N

where the tilda refers to the equivalence class under quotient π : M ! M/N . Since JH(M/N) ⊂
JH(M) (clearly N is a nontrivial submodule), we have

=⇒ |JH(M/N)| < |JH(M)|,

so by applying the inductive hypothesis to

π ◦ ϕ : Mw0◦λ
Ug
−!M/N

we have π ◦ ϕ(vw0◦λ) 6= 0 ∈M/N implies

=⇒ πϕ(vw0◦λ) 6∈ n−(M/N)

=⇒ ϕ(vw0◦λ) 6∈ n−M.

This completes the induction and therefore the lemma. �

Having paid off our debts to 10.6a and 10.6b, we may continue to the third lemma in our path.

4.2.3. Lemma 10.7. The proof of this lemma will not directly involve Weak BGG, but will require
Bott’s Theorem (unnamed Corollary of Theorem 9.9 in BGG) on cohomology, which is a corollary
of Weak BGG. First let us state this corollary:[
Theorem (Bott). For Π ∈ irRepfd g a finite-dimensional irrep,

dimHk(n− : Π) = |Wk|.

Here recall that, for any g ∈ LieAlg, Lie algebra cohomology was secretly the same as Ext, i.e.

Hk(g : M) = ExtkUg(C,M) (∗)

are canonically isomorphic. We will show how this follows from Weak BGG later.
We are now in a position to prove[

Lemma (10.7).
dimCCk+1/n−Ck+1 = dimC Ker dk/n−Ker dk <∞.

Proof of 10.7. We noted in the beginning of the proof of 10.6 that

Ck+1/n−Ck+1

Vec∼= C{ṽw◦λ}w∈Wk+1
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so that Ck+1/n
−Ck+1 is in particular finite-dimensional. Similarly, Ker dk ⊆ Ck =

⊕
w∈Wk

Mw◦λ
is a submodule of a finitely-generated module over Un−, which is a Noetherian ring; therefore2324,
Ker dk is also finitely-generated over Un−, which implies

Ker dk/n
−Ker dk is a finite-dimensional vector space;

let us take weight vector generators v1, · · · , vn ∈ Ker dk so that

Ker dk/n−Ker dk
Vec∼= C{ṽ1, · · · , ṽn}.

In summary this gives

=⇒ dimCCk+1/n−Ck+1,dimC Ker dk/n−Ker dk <∞.

Now we will show these dimensions are moreover equal by passing through dim TorUn−
k+1 (C,Πλ)

and using Bott’s Theorem. Define

Dk+1 := Un−{g1, · · · , gn}
the free module generated over Un− with a map

δk+1 : Dk+1 −! Ker dk

gi 7−! vi.

Then, since

Dk+1/n−Dk+1

Vec∼= C{g̃1, · · · , g̃n}
has the same dimension as Ker dk/n

−Ker dk, we have

δ̃k+1 : Dk+1/n−Dk+1

∼
↪−!! Ker dk/n−Ker dk

is in particular surjective. By 10.525 this implies

=⇒ δk+1 : Dk+1 −� Ker dk surj,

so that the sequence

Dk+1
δk+1
−! Ck −! · · · −! C0 −! Πλ −! 0

is exact26.
The idea is to extend this exact sequence even further. Now let us take a free resolution (in the

category of n−-modules, i.e. the terms are free over Un−) of Ker δk+1:

· · · −! Dk+3 −! Dk+2
δk+2
−! Ker δk+1 −! 0

so that we may extend

· · · −! Dk+2
δk+2
−! Dk+1

δk+1
−! Ck −! · · · −! C0 −! Πλ −! 0 exact.

Note well that this resolution has terms which are Un−-free modules: the D• are Un−-free by
construction, and the C• are Un−-free since they are direct sums of Vermas, which are Un−-free.

23Being a submodule of a Noetherian module; recall Noetherian module is equivalent to all submodules being
finitely-generated.

24Alternatively, Ck ∈ O since it is a direct sum of modules in O, and Ker dk, being a submodule of an object in
O, is also in O, which implies it is Ug-finitely-generated; moreover it is locally Un+-finite, so that when we mod out
by the ideal action by n−, we obtain a finite-dimensional space.

25This clearly satisfies the conditions of 10.5, as Dk+1 is a free Un−-module with the image of each generator
δk+1(gi) = vi a weight vector.

26Recall it is exact from −1 to k − 1 by induction.
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Recall that in general M ⊗R R/I ∼= M/IM ; in particular, since C ∼= Un−/(n−Un−) as n−-
modules, we have

C⊗Un− M ∼= M/n−M .

Let us compute

TorUn−
k+1 (C,Πλ)

by resolving the second term like we did above. Then by definition Tor is the homology of the
complex

· · · −! C⊗n− Dk+2 −! C⊗n− Dk+1 −! C⊗n− Ck −! · · · −! C⊗n− C0 −! 0,

which is

· · · −! Dk+2/n−Dk+2

δ̃k+2
−! Dk+1/n−Dk+1

δ̃k+1
−! Ck/n−Ck −! · · · −! C0/n−C0 −! 0.

Hence

=⇒ TorUn−
k+1 (C,Πλ) = Hk+1(! C⊗n− Dk+1 !)

= Hk+1(! Dk+1/n
−Dk+1 !)

= Ker δ̃k+1/Img δ̃k+2.

We claim that

δ̃k+1 = δ̃k+2 = 0.

To see the second one, apply C⊗� to the exact sequence

Dk+2
δk+2
−! Dk+1

δk+1
−! Ker dk −! 0 exact

=⇒ C⊗n− �

Dk+2/n−Dk+2

δ̃k+2
−! Dk+1/n−Dk+1

δ̃k+1
−! Ker dk/n−Ker dk −! 0 exact,

where we know the result is still exact since in general tensor products are right-exact. But we saw

earlier that δ̃k+1 is an isomorphism, which forces

=⇒ δ̃k+2 = 0.

To see the first one, similarly apply C⊗n− � to

Dk+1
δk+1
−! Ck

dk−! Ker dk−1 −! 0 exact

=⇒ C⊗n− �

Dk+1/n−Dk+1

δ̃k+1
−! Ck/n−Ck

d̃k−! Ker dk−1/n−Ker dk−1 −! 0 exact.

Strong induction (that is, to get to the point where we know exactness at −1, · · · , k − 1, we must

have along the way shown Lemma 10.627, that d̃i+1 is injective, for all i < k) on Lemma 10.6 tells

us d̃k is injective, which also forces

=⇒ δ̃k+1 = 0.

That δ̃k+1 = δ̃k+2 = 0 implies

TorUn−
k+1 (C,Πλ) = Ker 0/ Img 0 = Dk+1/n−Dk+1,

27And 10.5 and 10.7 as well, but 10.6 is the relevant one here.
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which, since (recall from the beginning of this proof) Dk+1/n
−Dk+1

∼= Ker dk/n
−Ker dk, implies

=⇒ Ker dk/n−Ker dk
∼= TorUn−

k+1 (C,Πλ).

Now we need to cite28 a fact from homological algebra:
Fact. For any Lie algebra g and M,N left Ug-modules, let M † be the right Ug-module defined
by v · ξ := −ξ · v (for ξ ∈ g, extended to Ug appropriately) and M∗ = Hom(M,C) be the right
Ug-module which is the dual representation. Then

ExtnUg(M,N) ∼= TorUg
n (N∗,M)∗ ∼= TorUg

n (M †, N †,∗)∗.

In particular, let us apply this to M = C and N = Π. Since C is the trivial representation, we
have C = C∗ = C†. Meanwhile, since Π∗λ is the representation on which ξ acts by −ρΠ(ξ), we have

Π∗,† ∼= Π∗ as vector spaces is also irreducible (that Π∗λ is irreducible requires complete reducibility,
so that End(Π∗λ) = C =⇒ Π∗λ ∈ irRep g). Then we have

TorUn−
k+1 (C,Πλ) ∼= Extk+1

Un−(C,Π∗,†λ )∗

∼= Hk+1(n− : Π∗,†λ )∗,

whereupon by Bott’s Theorem

=⇒ dim TorUn−
k+1 (C,Πλ) = dimHk+1(n− : Π∗,†λ ) = |Wk+1| = dimCk+1/n−Ck+1,

which combined with the previous Ker dk/n
−Ker dk ∼= TorUn−

k+1 (C,Πλ) implies

=⇒ dim Ker dk/n−Ker dk = dim TorUn−
k+1 (C,Πλ) = |Wk+1| = dimCk+1/n−Ck+1,

precisely as claimed by 10.7. This concludes. �

At last, having proved 10.5, 10.6, and 10.7, we have shown how Weak BGG implies the full BGG.
It lastly remains to show Weak BGG.

5. Proving Weak BGG

In this section we shall prove Weak BGG and also derive its corollary, Bott’s Theorem (stated
and used in the last section).

Recall that the Weak BGG theorem claimed the existence of a resolution of form

0 −! B|R+| −! · · · −! B1 −! B0 −! Πλ −! 0

such that

typBk = {w ◦ λ : w ∈Wk}.

We will first exhibit this resolution for Π0 = C the trivial (irreducible) representation, then use this
exhibition to obtain this resolution for all other irreps.

28I think the most satisfying way to see this is to use that Tor and Ext, being derived functors, are universal delta
functors; it then suffices to check these natural isomorphisms in degree 0, where it is very easy.
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5.1. General Lemmas. First some generalities for arbitrary g. Recall the construction of a reso-
lution of C by

Cn := Ug⊗ g∧n.

There is a variant of this which says

Theorem (9.1). For any Lie algebra g and a ⊆ g a subalgebra, there is a resolution of the trivial
representation

· · · −! C2
d2−! C1

d1−! C0 −! C −! 0

whose terms are
Cn := Ug⊗Ua (g/a)∧n

and whose differentials are

dn : Ug⊗Ua (g/a)∧n −! Ug⊗Ua (g/a)∧n−1

α⊗
∧
ξ̃ 7−!

n∑
i=1

(−1)i+1αξi ⊗
∧
\i

ξ̃ +
∑

1≤i<j≤n
(−1)i+jα⊗ [ξi, ξj ] ∧

∧
\i,j

ξ̃.

Part of the theorem is that this is well-defined.

The well-defined-ness of the differential is an immediate check, and the proof of exactness is very
similar to the one in Professor Gaitsgory’s notes for M222, so we skip it here.

The idea is that we will use this resolution of C to build the weak BGG resolution of C. First
let us note
Fact (9.3).

Ug⊗Ub � : Rep b
exact
−! Rep g

is an exact functor. If V ∈ Rep b moreover has dimV = 1, hv = λv, and n+v = 0, then

Ug⊗Ub V = Mλ.

This is pretty obvious since Ug is Ub-free (recall PBW), and the second bit is definitional (we
include it for completeness since BGG did). Next let us establish some facts about types in moving
to construct weak BGG for C.[
Lemma (9.5). For N ∈ Rep b such that dimN <∞ and N is h-semisimple, we have

typ(Ug⊗Ub N) = wtN.

Proof. Since b is solvable, by Lie’s theorem there exists a filtration of b-modules

∃ 0 = N0 ⊆ · · · ⊆ Nn = N

such that

dimNi/Ni−1 = 1.

To exhibit typ(Ug⊗Ub N) = wtN , let us give a filtration

0 = Ug⊗Ub N0 ⊆ · · · ⊆ Ug⊗Ub Nn = Ug⊗Ub N,

where the quotients are

=⇒ Ug⊗UbNi/Ug⊗UbNi−1
∼= Ug⊗Ub Ni/Ni−1

since Ug⊗Ub is exact and therefore preserves quotients:

0 −! Ni−1 −! Ni −! Ni/Ni−1 −! 0
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=⇒ Ug⊗Ub �

0 −! Ug⊗Ub Ni−1 −! Ug⊗Ub Ni −! Ug⊗Ub Ni/Ni−1 −! 0

which forces the last term of the second sequence to be (Ug⊗Ub Ni)/(Ug⊗Ub Ni−1).
Recall the way Lie was proved was by induction29 on dimV and using

∃ v : bv = χ(b)v

(where it is a formal consequence that χ|[b,b]=n+ = 0), so that Ni/Ni−1 is a 1-dimensional space on

which h acts by a character and on which n+ acts by zero. Therefore

=⇒ Ug⊗Ub Ni/Ni−1
∼= Mµ µ ∈ wtN,

where µ = χ ∈ wtN is a weight of N since there was a vector uv ∈ Ni ⊆ N on whom h (through
which the character must pass since it vanishes on [b, b] = n+) acts by a character µ. It is clear
that, as we run across i, the weights will precisely run across and exhaust all of wtN , exhibiting
the desired claim. �

Next, we will establish a fact about the type of Mϑ (recall the bit about central characters earlier
in Section 2).
Lemma (9.7). For ϑ a central character of M ,

typMϑ = {ψ ∈ typM : ϑψ = ϑ} := typϑM,

where the second equality sign is a definition of the third object and by ϑψ we mean the central
character of the Verma Mψ.

Proof. Let us take a filtration30 exhibiting typM :

0 = M0 ⊆ · · · ⊆Mn = M

such that
Mi/Mi−1

∼= Mψ, ψ ∈ typM.

Recall that the functor �ϑ is exact. Let us then apply it to

0 −!Mi−1 ↪−!Mi −�Mi/Mi−1 −! 0

=⇒ �ϑ

0 −!Mi−1
ϑ ↪−!Mi

ϑ −�
(
Mi/Mi−1

)ϑ
−! 0,

whereupon we obtain a filtration

0 = M0
ϑ ⊆ · · · ⊆Mn

ϑ = Mϑ

with quotients

=⇒ Mi
ϑ/Mi−1

ϑ ∼=
(
Mi/Mi−1

)ϑ ∼= Mψ
ϑ.

However, recall from Section 2 that

Θ(Mψ) = {ϑψ},

29I.e., we exhibited a desired filtration by using this fact.
30Unfortunately our index for the notation here will collide with the place where the highest weight of a Verma

module would be; but hopefully it is clear upon context whether we refer to a filtration index or a highest weight. I
guess this collision was more or less unavoidable, since highest weights are labelled below and central characters are
placed on top.
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so that Mψ
ϑ is either all of Mψ if ϑ = ϑψ or 0 if ϑ 6= ϑψ:

=⇒ Mi
ϑ/Mi−1

ϑ ∼= Mψ
ϑ =

{
Mψ ϑ = ϑψ

0 ϑ 6= ϑψ
.

Note that in the case of 0, we have Mi
ϑ = Mi−1

ϑ, so there is sort of a redundant term.
Then we can appropriately delete all such redundant terms in the filtration

0 = M0
ϑ ⊆ · · · ⊆Mn

ϑ = Mϑ

to obtain a filtration exhibiting the claimed typMϑ = typϑM , as desired. �

Lastly, let us compute the type of the tensor product of a finite-dimensional representation and
a Verma module. Note in particular by taking V = C the trivial representation we obtain the type
of a Verma module (not that this is needed for us).[
Lemma (9.10). For V ∈ Repfd g, ψ ∈ h∗, we have

typ(Mψ ⊗C V ) = {λ+ ψ}λ∈wtV = ψ + wtV.

Proof. Let us take a weight basis of V

V = C{v1, · · · , vn}
ordered so that their corresponding weights are ordered

λ1 ≥ · · · ≥ λn.
Let vψ be the highest weight vector of Mψ.

Consider then the set of vectors
{vψ ⊗ vi}i.

The claim is that these guys are weight vectors. Indeed, compute

h(vψ ⊗ vi) = hvψ ⊗ vi + vψ ⊗ hvi

= ψ(h)vψ ⊗ vi + λi(h)vψ ⊗ vi
= (ψ + λi)(h)(vψ ⊗ vi),

so that in fact
=⇒ vψ ⊗ vi ∈ (Mψ ⊗ V )ψ+λi .

Moreover,

n+(vψ ⊗ vi) = ���n+vψ ⊗ vi + vψ ⊗ n+vi

= vψ ⊗ n+vi,

where n+vi ∈ Span{v1, · · · , vi−1} since n+ raises the eigenvalue.
To exhibited the claimed type, consider now the filtration

0 = N0 ⊆ · · · ⊆ Nn = Mψ ⊗ V
where

Nk := SpanUg{vψ ⊗ v1, · · · , vψ ⊗ vk},
which is clearly a filtration. It is not yet obvious that

Nn = Mψ ⊗ V ;

we will show this. We will also claim that

Nk/Nk−1 = Mψ+λk .
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It is obvious that

Nk/Nk−1 = SpanUg{vψ ⊗ vk}

is generated by a single vector (here we really mean the equivalence class). Moreover, by the above
computations of the action of h and n+, we have

vψ ⊗ vk ∈
(
Nk/Nk−1

)ψ+λk

which is sent under n+ to31

n+ : vψ ⊗ vk 7−! 0 ∈ Nk/Nk−1.

Therefore

=⇒ Nk = SpanUn−{vψ ⊗ v1, · · · , vψ ⊗ vk}.

We claim that this is moreover free over Un−. To see this, let
∑∏

ξ ∈ Un− denote any arbitrary
element in the universal enveloping algebra, and suppose there was a linear dependence relation:

k∑
i=1

(
∑∏

ξ)(vψ ⊗ vi) = 0.

Then, exchanging the sums out and distributing according to Leibniz, we obtain

0 =
∑ k∑

i=1

((
∏

ξ)vψ)⊗ vi

+
∑ k∑

i=1

(
∏

smaller

ξ)vψ ⊗ (
∏

smaller

ξ)vi︸ ︷︷ ︸
absorb into Span{vi+1,···,vn}

+ · · ·+
∑ k∑

i=1

vψ ⊗ (
∏

ξ)vi︸ ︷︷ ︸
absorb into Span{vi+1,···,vn}

.

But now, after converting each instance of an element of Un− acting on vi to a linear combination
of vi’s, the second line in the above is a sum of pure tensors where the second factor is some vi
and the first factor is some element of Un− acting on vψ, where the element is of filtration degree
strictly less than that of the element in the first line. Hence the first line cannot be cancelled out
(recall that vψ ∈ Mψ belongs to a module which is Un−-free), and we have contradiction. Hence
Nk is moreover Un−-free,

=⇒ Nk = Un−{vψ ⊗ v1, · · · , vψ ⊗ vk}.

But then this implies Nk/Nk−1 is free also,

=⇒ Nk/Nk−1 = Un−{vψ ⊗ vk} = Mψ+λk ,

where we recall the weight of this vector is wt(vψ ⊗ vk) = ψ + λk.
Moreover, at k = n, this gives Nn = Un−{vψ ⊗ v1, · · · , vψ ⊗ vn}, i.e. (since Un− acting on vψ

generates all of Mψ)

=⇒ Nn = Mψ ⊗ V.

This completes showing that the filtration we constructed exhibits the claimed type, so we are
done. �

31This is since n+(vψ ⊗ vk) ∈ vψ ⊗ Span{v1, · · · , vk−1} ⊆ Nk−1.

32



5.2. Base Case of Weak BGG. In particular, let us apply these facts (9.10 is not necessary) to
the resolution of C given in 9.1.
Lemma. Weak BGG holds for Π0 = C, i.e. there is a resolution of C with terms in O

Bk(C) =
(
Ug⊗Ub (g/b)∧k

)ϑ0

of type
typBk(C) = {w ◦ 0}w∈Wk

.

Proof. Recall the resolution of C given at the beginning of this section. In particular, we will take
g to be semisimple and a = b to be the Borel subalgebra. This is a resolution of form

· · · −! C2
d2−! C1

d1−! C0 −! C −! 0

where

Cn = Ug⊗Ub (g/b)∧n.

This is by construction finitely-generated over Ug (since (g/b)∧n is finite-dimensional), h-semisimple
by the Cartan root decomposition (g/b = n− has h acts by roots), and is locally Un+-finite since we
can pass Un+ across the tensor ⊗Ub to act on (g/b)∧n, which is finite-dimensional. Hence Cn ∈ O,
and applying the functor �ϑ0 keeps it in O. This checks that the terms are indeed in O.

The claim is that Weak BGG is realized by the resolution

· · · −! C2
ϑ0 −! C1

ϑ0 −! C0
ϑ0 −! C −! 0.

Let us compute the type of these terms:

typCk = typ
(
Ug⊗Ub (g/b)∧k

)
= wt(g/b)∧k

=

 ∑
α∈S⊆R−

α


S⊆R−,
|S|=k

,

where in the last line we have recalled that g/b = n−, so that wt(g/b) = wt(n−) = R−; then it is
a purely linear algebraic fact to see that, with the action of h defined by Leibniz32, the eigenvalues
of the k-th wedge space are the set of sums of k distinct eigenvalues of the 1-st wedge space. In
summary

=⇒ typCk =

{
−
∑
α∈S

α

}
S⊆R+,
|S|=k

.

Since �ϑ is exact, applying this functor gives a resolution

· · · −! C2
ϑ −! C1

ϑ −! C0
ϑ −! C −! 0

where C = Cϑ since it is a one-dimensional space. Then, by Lemma 9.7,

=⇒ typCkϑ = {ψ ∈ typCk : ϑψ = ϑ} = {ψ ∈ wt(g/b)∧k : ϑψ = ϑ}.

In particular, let us take ϑ = ϑ0 the central character of the Verma module of weight 0. Then
typCkϑ0 = {ψ ∈ wt(g/b)∧k : ϑψ = ϑ0}. By the Harish-Chandra theorem (see end of Section 2),

ϑψ = ϑ0 ⇐⇒ ψ = w ◦ 0 for some w.

32I.e. T (v ∧ w) = Tv ∧ w + v ∧ Tw.
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Now recall that

w ◦ 0 = wρ− ρ = −
∑

α∈R+:w−1α∈R−

α

and also that33

`(w) = #{α ∈ R+ : w(α) ∈ R−} = #{α ∈ R+ : w−1(α) ∈ R−} = `(w−1).

Combining all this with our description of typCkϑ and typCk, we have

=⇒ typCkϑ0 =

−∑
α∈S

α : S ⊆ R+, |S| = k, −
∑
α∈S

α = −
∑

α∈R+:w−1α∈R−

α

.
At this point, let us cite some combinatorial lemmas.

Fact (9.8). ∑
α∈R+:w−1α∈R−

α =
∑
α∈S

α
⇐
⇒

S = {α ∈ R+ : w−1α ∈ R−}.

In fact, Exercise 7.7 of Kirillov gives much more precise answers (though we won’t need this here):

Fact. For w−1 = si1 · · · sik a reduced expression,

{α ∈ R+ : w−1α ∈ R−} = {αi1 , si1αi2 , si1si2αi3 , · · · , si1 · · · sik−1
αik}.

9.8 then tells us that

typCkϑ0 =

− ∑
α∈R+:w−1α∈R−

α : w ∈Wk

,
i.e.

=⇒ typCkϑ0 = {w ◦ 0}w∈Wk
.

This shows that the resolution

· · · −! C2
ϑ0 −! C1

ϑ0 −! C0
ϑ0 −! C −! 0

has terms of the type claimed, as desired. �

5.3. Proving Weak BGG. Now we are finally in a position to prove Weak BGG. Let me reproduce
the statement for convenience:

33From the reduced simple word description we can see `(w) = `(w−1).
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

Theorem (Weak BGG, 9.9). For λ ∈ P+ and Πλ ∈ irRepfd g, there is a resolution of g-modules

0 −! B|R+| −! · · · −! B1 −! B0 −! Πλ −! 0

with terms in O
Bk =

((
Ug⊗Ub (g/b)∧k

)ϑ0 ⊗Πλ

)ϑλ
such that

typBk = {w ◦ λ}w∈Wk
.

Proof. We already have the theorem proved for the base case of Π0 = C. Now we will construct a
new resolution of Πλ as follows: take the weak BGG resolution for C and apply to it first �⊗C Πλ

then �ϑλ :

0 −! B|R+|(C) −! · · · −! B1(C) −! B0(C) −! C −! 0

=⇒ �⊗C Πλ

0 −! B|R+|(C)⊗C Πλ −! · · · −! B1(C)⊗C Πλ −! B0(C)⊗C Πλ −! Πλ −! 0

=⇒ �ϑλ

0 −!
(
B|R+|(C)⊗C Πλ

)ϑλ −! · · · −! (
B1(C)⊗C Πλ

)ϑλ −! (
B0(C)⊗C Πλ

)ϑλ −! Πλ −! 0,

where since Πλ is a finite-dimensional vector space we know �⊗C Πλ is exact34, so the composition
of two exact functors35 �ϑλ and �⊗C Πλ is exact. Note that by construction36 these terms live in

the category O. We have also noted C⊗C Πλ = Πλ, as well as Πϑλ
λ = Πλ since Πλ is irreducible37.

Having constructed a resolution, it remains to see each term has the desired type. To exhibit

typ
(
Bk(C)⊗C Πλ

)ϑλ = {w ◦ λ}w∈Wk
,

let us first compute typ(Bk(C)⊗Πλ) by exhibiting a filtration. Recall

typBk(C) = {w ◦ 0}w∈Wk
=⇒ ∃ 0 = Bk(C)0 ⊆ · · · ⊆ Bk(C)n = Bk(C)

: Bk(C)i/Bk(C)i−1
∼= Mwi◦0

for wi ∈Wk; then the filtration of Bk(C)⊗C Πλ given by

0 = Bk(C)0 ⊗C Πλ ⊆ · · · ⊆ Bk(C)n ⊗C Πλ = Bk(C)⊗C Πλ

has each quotient

=⇒ Bk(C)i⊗CΠλ/Bk(C)i−1⊗CΠλ
∼= Bk(C)i/Bk(C)i−1 ⊗C Πλ

∼= Mwi◦0 ⊗C Πλ,

where we have passed the tensor product outside the quotient since � ⊗C Πλ is exact (as Πλ is a
vector space).

For a similar reason38 as in the JH case,

34Recall the huge block proposition in Section 2, where we noted that the tensor product with a finite-dimensional
space is exact and in particular stays in O.

35Since the tensor product stayed in O, we are allowed to use that �ϑλ is an exact functor from O to O.
36We saw that Bk(C) ∈ O, so applying these functors to it keeps things in O.
37Recall Mϑ is a subrep of M .
38Just refine the filtration; see the earlier footnote about JH (I think it’s footnote 17 though of course this changes

as I edit unfortunately).
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
Fact. If

0 = N0 ⊆ · · · ⊆ Nn = M,

then
typM =

⊔
i

typ(Ni/Ni−1).

For this reason, the above filtration of Bk(C)⊗Πλ buys us

typ(Bk(C)⊗CΠλ) =
⊔
i

typBk(C)i⊗CΠλ/Bk(C)i−1⊗CΠλ =
⊔
i

typ(Mwi◦0⊗CΠλ) =
⊔
i

{µ+wi◦0}µ∈wt Πλ ,

where we have appealed to Lemma 9.10 in the last equality. Hence

=⇒ typ
(
Bk(C)⊗C Πλ

)
= {µ+ w ◦ 0}µ∈wt Πλ,

w∈Wk

.

Now let us pass to �ϑλ . By Lemma 9.7,

typ
(
Bk(C)⊗C Πλ

)ϑλ = {ψ ∈ typ(Bk(C)⊗Πλ) : ϑψ = ϑλ} = {µ+ w ◦ 0 : ϑµ+w◦0 = ϑλ}µ∈wt Πλ,
w∈Wk

.

By Harish-Chandra again, we have

ϑµ+w◦0 = ϑλ ⇐⇒ µ+ w ◦ 0 = u ◦ λ for some u.

Now we cite another combinatorial fact about Weyl groups:[
Fact (K8.22b). For any µ ∈ P , the Weyl group orbit (not under the shifted action) of µ contains
exactly one element of P+.

Hence, for any µ+ w ◦ 0 ∈ typ
(
Bk(C)⊗Πλ

)ϑλ , since we know

µ+ w ◦ 0 = u ◦ λ
µ+ wρ− ρ = uλ+ uρ− ρ

u−1(µ+ wρ− uρ) = λ,

where µ + wρ − uρ ∈ P and λ ∈ P+, we know that u−1 is the only element of W which turns
µ+ wρ− uρ into λ, so that there is a one-to-one correspondence between µ+ w ◦ 0 and such u.

Moreover, since the set of weights of a finite-dimensional representation are closed under W 39,
we have

u−1µ ∈ wt Πλ =⇒ u−1µ ≤ λ.
Since ρ− u−1wρ =

∑
α∈R+:w−1uα∈R− α, we also have

u−1wρ ≤ ρ.
Together these two give

u−1µ+ u−1wρ ≤ λ+ ρ.

But as we saw in the last paragraph, this inequality is actually an equality, which forces

u−1µ = λ, u−1wρ = ρ,

39In fact, the full statement is this: for any V ∈ Repfd g and any w ∈W ,

w(χV ) = χV ,

where we define
w(eλ) := ew(λ).

In particular the weights and the dimensions of their weight subspaces are invariant under W . This is Theorem K8.8.
Its proof is very short and can be summarized by “reduce to sl2”, like many other proofs in Kirillov.
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which means

u = w−1.

In particular this means `(u) = `(w) = k, which gives

=⇒ typ
(
Bk(C)⊗C Πλ

)ϑλ = {u ◦ λ}u∈Wk
.

This is precisely as claimed.
We have, at last, shown Weak BGG. �

5.4. A Corollary of Weak BGG. As mentioned (and used!) earlier, Bott’s Theorem40 on Lie
algebra cohomology can be derived as a corollary of Weak BGG;[
Theorem (Bott). For Π ∈ irRepfd g,

dimHk(n− : Π) = |Wk|.

Proof. Recall

Hk(n− : Π) = ExtkUn−(C,Π) = TorUn−
k (Π∗,C)∗ = TorUn−

k (C,Π†,∗)∗.

Let us compute the latter by resolving the second variable

0 −! B|R+|(Π
†,∗) −! · · · −! B1(Π†,∗) −! B0(Π†,∗) −! Π†,∗ −! 0;

then Tor is the homology of (here we suppress the Π)

0 −! C⊗n− B|R+| −! · · · −! C⊗n− B1 −! C⊗n− B0 −! 0,

which is the same thing as writing

0 −! B|R+|/n−B|R+|
−! · · · −! B1/n−B1 −! B0/n−B0 −! 0.

As remarked in a footnote earlier, h acts naturally on this sequence.
By Weak BGG, since Bk ∈ O, we have Bk is Un−-finitely-generated, so that

dimBk/n−Bk <∞.

In particular, Bk/n
−Bk admits a weight space decomposition, where the weight vectors are pre-

cisely41 the quotient images of the highest weight vectors of Bk, which may be obtained by looking
in a filtration

0 = (Bk)0 ⊆ · · · ⊆ (Bk)n = Bk,

where (Bk)i/(Bk)i−1 = Mwi◦λ, and taking the highest weight vector e.g. vwi◦λ ∈ (Bk)i/(Bk)i−1.
Lifting this to a uvwi◦λ ∈ (Bk)i ⊆ Bk, and then projecting down to a ṽwi◦λ ∈ Bk/n−Bk, we obtain
a nonzero weight vector (nonzero since vwi◦λ was taken to be highest weight and so cannot be in
the image of n−). Hence the weights of Bk/n

−Bk are

=⇒ wtBk/n−Bk = {w ◦ λ}w∈Wk
,

and in particular

=⇒ dimBk/n−Bk = |Wk|.

40Interestingly I can’t quite find this online under this name. I thought at first BGG might be using out-of-date
terminology, but Humphreys uses this name also. I’m probably just bad at using the Internet.

41It is clear that the process we describe below gives weight vectors, and moreover all weight vectors must arise
this way since the following: for Bk ∈ O, recall wtBk lies in a finite union of cones. Then, since n− drops the weights,
n−Bk has all the weights of Bk except for the highest ones in each cone, so that Bk/n

−Bk has weights precisely the
highest ones.
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But the maps in the resolution B•/n
−B•, which commute with h (see a previous footnote), must

preserve weight spaces; since w ◦λ 6= u◦λ for w 6= u, we have these maps must actually all be zero,
so that its homology is simply

=⇒ TorUn−
k (C,Π†,∗) = Bk(Π†,∗)/n−Bk(Π†,∗),

and in particular

dimHk(n− : Π) = dim TorUn−
k (C,Π†,∗) = dimBk/n−Bk = |Wk|,

i.e.
=⇒ dimHk(n− : Π) = |Wk|,

as is stated. �

With this we have finally cleared all of our debts; at last we have done what we set out to do.
What a journey!
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