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In this expository note we will follow the 1997 paper of Fomin, Gelfand, and Postnikov, exploring
quantum Schubert polynomials and their relationship with the quantum cohomology of the flag
manifold. We will see that quantum Schubert polynomials correspond to Schubert classes of the
quantum cohomology.
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1. Brief Recollections

In this section we briefly describe the some recollections to set the stage.
Before we begin, some quick notes about notation: the original paper of FGP uses eki to denote the

elementary symmetric polynomial of degree i in k variables; we will instead adopt1 ei[k]. Similarly
FGP use Eki to denote the quantum elementary symmetric polynomial; we will interchangeably use
eqi [k] (or eqi [k]), which is more suggestive. We may also write Z[q[n−1]] for Z[q1, · · · , qn−1] and Z[x[n]]
for Z[x1, · · · , xn], or also the shorter Z[q] and Z[x]. We will use the notation π = [π(1), · · · , π(n)] to
mark where π sends 1, · · · , n. We will also use2 π◦ to denote the permutation of maximal length,
i.e. [n, n − 1, · · · , 1]. By convention we take e0[k] = 1 and ei[k] = 0 for i > k; similarly we take
eqi [k] = 0 for i > k.

Recall that we are concerned with the
(
n
2

)
-dimensional flag manifold Fln, whose points are

complete flags of the space Cn:

Fln := {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn},

where the strict inclusions imply dimVi = i. We had broken this into

Fln =
⊔
π∈Sn

Ωπ,

where for a fixed reference flag E we defined

Ωπ := {W• : dim(Wi ∩ Ej) = rij(π)},

1I suppose it stylistically makes more sense to write ei(x1, · · · , xk) = ei(x[k]), but this is a bit too much, and in

any case, that the variables involved are the x’s is understood and suppressed.
2Perhaps it is more suggestive to write π(n2)

since there is only one permutation of maximal length
(
n
2

)
, but again

this is a bit much.
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where

rij(π) = |{k : 1 ≤ k ≤ i, π(k) ≤ j}| =
∑
µ≤i
ν≤j

P (π)µν .

Recall also the construction

Ω∗π := {W• : dim(Wi ∩ Fj) = rij(π
∗)},

where

π∗ := π◦π, i.e. π∗(i) = n+ 1− π(i).

Recall we had also taken the closure of these to form the “Schubert variety”

Xπ := uΩπ

and the “dual Schubert variety”

X∗π := uΩ∗π;

these enjoy the description

Xπ = {W• : dim(Wi ∩ Ej) ≥ rij(π)}

and

X∗π = {W• : dim(Wi ∩ Fj) ≥ rij(π∗)},
as well as

Xπ =
⋃
τ≤π

Ωτ

and

X∗π =
⋃
τ≥π

Ω∗τ ,

where the inequalities refer to the strong Bruhat order3 on Sn. Recall that

dimXπ = dim Ωπ = `(π) = codim Ω∗π = codimX∗π,

so that we may consider the “Schubert class”

σπ := [X∗π] ∈ H2`(π)(Fln : Z),

where by [X∗π] in cohomology we mean the Poincare dual of the homology fundamental class of the
submanifold. Recall that a consequence of the cell decomposition of Fln was that

H•(Fln : Z) ∼=
⊕
π∈Sn

Zσπ.

Recall that these satisfied the “Monk’s rule”,
Theorem (classical Monk). For sab a transposition of a and b, j ∈ [n− 1], and π ∈ Sn,

σπ · σi =
∑

a,b:
1≤a≤i<b≤n

`(πsab)=`(π)+1

σπsab

�

Recall that the cohomology of Fln is

3Recall one characterization of this is τ ≤ π ⇐⇒ Xτ ⊆ Xπ ⇐⇒ rij(τ) ≥ rij(π); the other was some/every
reduced word for π containing as a subword a reduced word for τ .
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Theorem.

H•(Fln : Z) ∼= Z[x1, · · · , xn]/In
via

σπ  ! Sπ/In.
�

where

In := 〈e1[n], · · · , en[n]〉.

We had constructed the so-called “Schubert polynomials” to construct this isomorphism. Recall
this went thusly: for Sn acting on Z[x1, · · · , xn] via π · f(x) = f(xπ(1), · · · , xπ(n)), we defined a
“divided difference”

∂ijf :=
f − sijf
xi − xj

which sort of “symmetrizes” f in the i-th and j-th variables. We used the shorthand ∂i := ∂i,i+1.
Recall that these satisfied the “nilCoxeter relations”, as well as some others:

Proposition (nilCoxeter relations et al).

∂2i = 0,

∂i∂j = ∂j∂i ∀ |i− j| > 1,

∂i+1∂i∂i+1 = ∂i∂i+1∂i,

and

∂π∂τ =

{
∂πτ `(πτ) = `(π) + `(τ)

0 else
,

and
∂i(fg) = ∂i(f)g + si(f)∂i(g),

and, for a linear form (homogeneous of degree 1) L =
∑
λixi,

∂π(fL) = ∂π(f)π(L) +
∑

i<j:`(πsij)=`(π)−1

(λi − λj)∂πsijf.

�

Compare this to
Proposition (Coxeter relations). For si ∈ Sn simple transpositions,

s2i = id,

sisj = sjsi ∀ |i− j| > 1,

si+1sisi+1 = sisi+1si.
�

Note that in particular ∂i commutes with multiplication by any function symmetric in xi and xi+1.
We then used these to construct the Schubert polynomials:

Sπ := ∂π∗,−1(xδ) = ∂π−1π◦(xn−11 xn−22 · · ·x0n) ,

where we denote δ = (n− 1, n− 2, · · · , 1, 0). Recall that these satisfied
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Proposition. The Schubert polynomials are also uniquely characterized by

Sπ◦ = xδ,

Sπsi = ∂iSπ ∀ `(πsi) = `(π)− 1.

They also enjoy

∂τSπ =

{
Sπτ−1 `(πτ−1) = `(π)− `(τ)

0 else

and a variant of Monk’s
SπSsi =

∑
a,b:

1≤a≤i<b
`(πsab)=`(π)+1

Sπsab .

�

The punchline was that the Schubert classes σπ mapping to Sπ/In exhibited the isomorphism
H•(Fln) ∼= Z[x1, · · · , xn]/In.

2. Quantum Cohomology of the Flag Manifold

In this section we describe the goal of quantum Schubert polynomials.
We can consider the “(small) quantum cohomology”

Definition. Let the (small) quantum cohomology be

QH•(Fln : Z)
ModZ
:= H•(Fln : Z)⊗Z Z[q1, · · · , qn−1]

as Z-modules; the multiplication structure linear over Z[q1, · · · , qn−1] is given by

σπ · στ =
∑
$∈Sn

∑
d

〈σπ, στ , σ$〉dqd11 · · · q
dn−1

n−1 σπ◦$.

Here the “quantum Gromov-Witten invariants” 〈σπ, στ , σ$〉d are defined as thus: For an algebraic
map

f : P1 −! Fln,

we say f has “multidegree d = (d1, · · · , dn−1)” if

f∗[P1] =
∑
i

di[Xsi ],

where [P1] ∈ H2(P1) and [Xsi ] ∈ H2(Fln) are the homology fundamental classes. The “moduli
space” is

Md(P1,Fln) := {f algebraic of multidegree d},

which turns out to be a smooth algebraic variety of complex dimension(
n

2

)
+ 2

n−1∑
i=1

di.

For a subvariety X ⊂ Fln and a point t ∈ P1 then define

X(t) := {f ∈Md(P1,Fln) : f(t) ∈ X};
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it turns out codimMd(P1,Fln)X(t) = codimFln X. Then for π1, · · · , πm ∈ Sn the “Gromov-Witten
invariant of genus 0” is defined by

〈σπ1 , · · · , σπm〉d :=

{∣∣⋂(giXπ∗
i
)(ti)

∣∣ ∑
`(πi) =

(
n
2

)
+ 2

∑
i di

0 else
,

where g1, · · · , gm ∈ GLn are generic elements and t1, · · · , tm ∈ P1 are distinct points. It turns out
the sizes of these

⋂
(giXπ∗

i
)(ti) are finite for

∑
`(πi) =

(
n
2

)
+ 2

∑
i di and independent of choice of t

and g.
By definition this quantum multiplication is commutative; it turns out it is also associative. By

setting q1 = · · · = qn−1 = 0 we recover classical multiplication, since the only surviving terms
are d = 0, in which case an algebraic map of multidegree zero is necessarily constant; then we
are looking for the number of constant maps f : P1 ! Fln (which is equivalent to a choice of a
flag/point inside Fln) which send points ti to inside varieties Xπ∗

i
, i.e. the classical intersection

number. Moreover, by definition

〈σπ, στ , σ$〉d = 0

unless `(π) + `(τ) + `($) =
(
n
2

)
+ 2

∑
i di, i.e. `(π) + `(τ) = `($∗) + 2

∑
i di = `(π◦$) + 2

∑
i di, so

that by setting deg σπ = `(π) and deg q = 2 we have

deg(σπ · στ ) = deg(qdσπ◦$) = `($∗) + 2
∑

di

and so quantum multiplication respects grading.
Letting

Definition. The quantum elementary symmetric polynomial is

eqi [k] := [λi] det

1 + λ


x1 q1

−1
. . .

. . .

. . .
. . . qn−1
−1 xn


,

where [λi] denotes the coefficient in front of λi. The notation Ei[k] may also be adopted.

We may then define a Z[q]-linear ring homomorphism

Z[q[n−1]][x[n]] −! QH•(Fln : Z)

x1 + · · ·+ xi 7−! σsi ,

where we may denote Z[q][x] for the cumbersome Z[q[n−1]][x[n]] and suppress the n. Then it turns
out (and FGP cites)
Theorem. The kernel of this map is

Iqn := 〈eq1[n], · · · , eqn[n]〉,
and there is an induced ring isomorphism

Z[q[n−1]][x[n]]/I
q
n −! QH•(Fln : Z).

�

The punchline is this: quantum Schubert polynomials will be the polynomials corresponding to the
quantum Schubert classes under this isomorphism.
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3. Classical Polynomials

Recall the classical elementary symmetric polynomials in k variables:

ei[k] :=
∑

1≤µ1<···<µi≤k
xµ1 · · ·xµi .

By convention e0[k] = 1 and ei[k] = 0 for i > k and i < 0. These satisfy some properties:

Proposition. The ei[k] satisfy

ei[k] = ei[k − 1] + xkei−1[k − 1],

(ei[k + 1]− ei[k])ej−1[k] = (ej [k + 1]− ej [k])ei−1[k],

ei[k]ej [k] = ei[k + 1]ej [k] +
∑
µ≥1

ei−µ[k + 1]ej+µ[k]−
∑
µ≥1

ei−µ[k]ej+µ[k + 1].

Moreover, in relations to divided differences,

∂6=kei[k] = 0,

[∂ 6=k, ei[k]] = 0,

∂kei[k] = ei−1[k − 1].
�

The proofs of these are just direct computation and so we skip them here. The first two relations
with divided differences are immediate from definition, and the last follows from the pseudo-Leibniz
rule for ∂i(fg) and ei[k] = ei[k − 1] + xkei−1[k − 1], which is also obvious, and from which easily
(ei[k+1]−ei[k])ej−1[k] = (ej [k+1]−ej [k])ei−1[k] follows. The last equation of the first half follows
from induction on i and a computation.

We may also defineDefinition. A standard elementary monomial is, for ~i = (i1, · · · , im) with ik ≤ k,

e~i = ei1,···,im := ei1 [1] · · · eim [m].

By convention if some ik > k we can set e~i = 0. This can be thought of as a product of ei[k] without
repetition of k.

Recall that the elementary symmetric polynomials formed a basis in the ring of symmetric
polynomials. We will prove a result in a similar spirit:
Theorem (straightening). The standard elementary monomials form a Z-basis in Z[x1, · · · , x∞]
the ring of polynomials in infinite variables:

Z[x1, · · · , x∞] = Z{e~i}0≤ik≤k.
�

Proof. First let us see that {e~i}0≤ik≤k spans all polynomials. To do this note that

xi = e1[i]− e1[i− 1];

use this to expand f into a linear combination of products of ei[k], and apply the following straight-
ening algorithm:

If there is a monomial in f which is not standard (i.e. contains a repeated k, or a “bracket index
collision”), we can take the minimal k for which it contains ei[k]ej [k], so that

f = ei[k]ej [k]
∏

eblah[blah] +
∑∏

eblah[blah].

6



Then use

ei[k]ej [k] = ei[k + 1]ej [k] +
∑
µ≥1

ei−µ[k + 1]ej+µ[k]−
∑
µ≥1

ei−µ[k]ej+µ[k + 1]

to replace ei[k]ej [k] with the right-hand side. By minimality of k doing this will only shift collisions
of the bracket indices upwards (e.g. k to k+1). We can try to repeat this until there are no bracket
index collisions left; indeed, this process must terminate since it preserves the number of ei[k] in
each monomial, and (if we order the monomials so that the bracket index increases from left to
right) in moving from k to k + 1 we shift possible collisions to the right; but each monomial of f
can only have finitely many factors. Hence this process, which terminates, will turn f into a linear
combination of standard elementary monomials.

Now let us check linear independence. AFSOC the standard elementary monomials were linearly
dependent, with some ∑∏

eblah[blah] = 0

nontrivial vanishing linear combination of minimal degree. Let k be the minimal bracket index
appearing in this sum, i.e.

ei[k]
∏

eblah[blah] +
∑∏

eblah[blah] = 0;

then by our cited properties of e we have

∂k

( ∑
without k

∏
eblah[blah]

)
= 0

since we can commute ∂k with eblah[blah] until there is only one left, whereupon ∂keblah[blah] = 0.
For those monomials with k, we have

∂k(ei[k]ej [k + 1] · · · ) = ∂k(ei[k])ej [k + 1] · · · = ei−1[k − 1]ej [k + 1] · · · 6= 0,

where again ∂k commutes with everyone after ei[k] (there is no one before it by minimality). Note
well that this drops the degree by 1. Hence by applying ∂k to this vanishing sum we obtain another
nontrivial vanishing sum of smaller degree, contradicting minimality of degree.

Hence e~i forms a basis over Z of all polynomials over Z, as claimed. �

Recall

Theorem. Each of the following forms a Z-basis:

Z[x1, · · · , xn]/In = Z{xa11 · · ·x
an−1

n−1 }ai≤n−i,
= Z{ei1,···,in−1},
= Z{Sπ}π∈Sn ,

where by each polynomial we mean their cosets under quotient by In. Moreover each of these
three families span the same module Ln complementary to the ideal In. In the last case, {Sπ}π∈Sn
moreover forms a basis of Ln.
�

The last of these three was proved in the notes for M269, and the second follows from our above
proof. We skip the proof of the first.
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4. Quantum Polynomials

Recall earlier we had defined

Definition. The quantum elementary symmetric polynomial is

eqi [k] := [λi] det

1 + λ


x1 q1

−1
. . .

. . .

. . .
. . . qn−1
−1 xn


,

where [λi] denotes the coefficient in front of λi. The notation Ei[k] may also be adopted.

where by convention eqi [k] = 0 for i > k or i < 0. It is clear that by taking q = 0 we obtain the
classical ei[k].

We can try to expand the definition of the determinant

det


1 + λx1 λq1

−λ
. . .

. . .

. . .
. . . λqn−1
−λ 1 + λxn

 ,

as an alternating sum, where we would find that, due to all the zeros, the only nonvanishing terms
are for the identity permutation and simple transpositions. For the simple transpositions, the signs
are moreover negated since each simple transposition would activate −λ, whose sign cancels out
sgn(si) = −1. Here’s an example for n = 4:

det


1 + λx1 λq1
−λ 1 + λx2 λq2

−λ 1 + λx3 λq3
−λ 1 + λx4

 = (1 + λx1)(1 + λx2)(1 + λx3)(1 + λx4)

+ λλq1(1 + λx3)(1 + λx4)

+ (1 + λx1)λλq2(1 + λx4)

+ (1 + λx1)(1 + λx2)λλq3

+ λλq1λλq3,

from which the following description4 of eqi [k] becomes clear:

eqi [k] =
∑

(µ,µ+1),(ν) disjoint cover i pts

q~µx~ν ,

where we think of qi as covering (i, i+ 1) and xi as covering (i). For example,

eq2[3] = x1x2 + x1x3 + x2x3 + q1 + q2,

eq3[3] = x1x2x3 + q1x3 + q2x1.

From this description we immediately see that eqi [k] is a homogeneous polynomial of degree i if
we set deg x = 1 and deg q = 2. From the description the first of the following properties is also
transparent.

4Note well that the simple transpositions in the determinant cannot collide.
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Proposition. The quantum elementary symmetric polynomials enjoy

eqi [k] = eqi [k − 1] + xke
q
i−1[k − 1] + qk−1e

q
i−2[k − 2],

and for i, j ≤ k,

eqi [k]eqj [k + 1] + eqi+1[k]eqj [k] + qke
q
i−1[k − 1]eqj [k] = eqj [k]eqi [k + 1] + eqj+1[k]eqi [k] + qke

q
j−1[k − 1]eqi [k].

Since the divided difference operators do not see the q variables, we still have

∂6=ke
q
i [k] = 0,

[∂ 6=k, e
q
i [k]] = 0,

∂ke
q
i [k] = eqi−1[k − 1].

�

The second property follows from the first by subtracting

eqj [k](eqi+1[k + 1]− eqi+1[k]) = eqj [k](xk+1e
q
i [k] + qke

q
i−1[k − 1])

from

eqi [k](eqj+1[k + 1]− eqj+1[k]) = eqi [k](xk+1e
q
j [k] + qke

q
j−1[k − 1]).

Note well that these specialized at q = 0 gives the classical properties we cited earlier.
Similarly to the classical case, we may define
Definition. The quantum standard elementary monomials are

eq~i
= eqi1,···,im := eqi1 [1] · · · eqim [m].

The notation E~i may also be used.

Since standard elementary monomials form a basis of Z[x], we may uniquely expand

Sπ =
∑

ci1,···,in−1ei1,···,in−1 ;

let us then defineDefinition. The quantum Schubert polynomials are

Sq
π :=

∑
ci1,···,in−1e

q
i1,···,in−1

.

By using these properties of eq and a straightening argument in the spirit of the classical case,
one may obtain

Theorem. Each of the following forms a Z[q[n−1]]-basis:

Z[q1, · · · , qn−1][x1, · · · , xn]/Iqn = Z[q[n−1]]{xa11 · · ·x
an−1

n−1 }ai≤n−i,
= Z[q[n−1]]{e

q
i1,···,in−1

},
= Z[q[n−1]]{Sq

π}π∈Sn ,

where by each polynomial we mean their cosets under quotient by Iqn. Moreover each of these three
families span the same module Lqn complementary to the ideal Iqn. In the second and last last cases,
{eqi1,···,in−1

} and {Sq
π}π∈Sn moreover form bases of Lqn.

�
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Proof. The second of these statements can be proved in a similar way to the classical case: we can
apply a straightening algorithm based on

eqi [k]eqj [k + 1] + eqi+1[k]eqj [k] + qke
q
i−1[k − 1]eqj [k] = eqj [k]eqi [k + 1] + eqj+1[k]eqi [k] + qke

q
j−1[k − 1]eqi [k],

which we can relabel to be

eqi [k]eqj [k] = eqj [k]eqi−1[k+1]+eqj+1[k]eqi−1[k]+qke
q
j−1[k−1]eqi−1[k]−eqi−1[k]eqj [k+1]−qkeqi−2[k−1]eqj [k];

note well that the bracket index collision term goes from being eqi [k]eqj [k] to eqj+1[k]eqi−1[k], so that

by repeatedly applying this identity to the bracket collision term eventually the eqi−1[k] becomes

eqi+j [k]eq0[k] = eqi+j [k], eliminating the bracket index collision. Similarly linear independence can be
proved using the divided difference operators.

The third statement follows from the classical case and the first two statements. �

Since eqi [k] is homogeneous of degree i, we have eq~i
is homogeneous of degree

∑
~i. Since the

classical Schubert polynomial Sπ =
∑
c~ie~i is homogeneous of degree `(π), it follows that the

quantum Schubert polynomial Sq
π =

∑
c~ie

q
~i

is also homogeneous of degree `(π), where deg x = 1

and deg q = 2. Since setting q = 0 reduces eq to e, it follows that setting q = 0 reduces Sq
π to Sπ.

We will lastly cite one fact about the quantum Schubert polynomials, which is proved in sections
5 and 6 of FGP. For F ∈ Z[q][x]/Iqn consider

[Sq
π◦ ](F )

the coefficient in front of Sq
π◦ = eq1,···,n−1 = eq1[1] · · · eqn−1[n−1] = x1 ·x1x2 ·x1x2x3 · · · · ·x1 · · ·xn−1 =

xn−11 · · ·x1n−1 = xδ in the expansion of F in the basis of quantum Schubert polynomials. This
coefficient satisfies a certain orthogonality relation:
Theorem (orthogonality). For π, τ ∈ Sn,

[Sq
π◦ ]
(
Sq
πS

q
τ

)
=

{
1 τ = π∗

0 else
,

where recall π∗ = π◦π.
�

We skip this proof for the sake of brevity.

5. Quantum Cohomology and Quantum Polynomials

Throughout this section we work module Iqn. Let Qπ be the quantum polynomials in Z[q][x]/Iqn
corresponding to the Schubert classes under the cited isomorphism

QH•(Fln : Z) ∼= Z[q][x]/Iqn.

As Schubert classes form a basis of cohomology, Qπ will form a basis of Z[q][x]/Iqn. We will show
that

Qπ = Sq
π.

To this end, recall that quantum multiplication respects grading; hence Qπ must be homogeneous
of degree `(π), where deg x = 1 and deg q = 2.

Since setting q = 0 turns quantum cohomology into regular homology, it will send quantum
Schubert classes to classical Schubert classes, and we should want setting q = 0 to turn Qπ into
Sπ.
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Since the Gromov-Witten invariants are nonnegative integers by definition, we require the struc-
ture constants of Z[q][x]/Iqn with respect to the basis {Qπ} (meaning what happens when we expand
a product of two basis elements in the basis) to be nonnegative integers.

Let Z0+ denote the nonnegative integers, and let Z0+[q] denote the set of polynomials in q whose
coefficients are in Z0+. Denote

Q0+ = Z0+[q]{Qπ}π∈Sn

the set of linear combinations of Qπ with coefficients in Z0+[q]; by the nonnegativity of the structure
constants, we have Q0+ is a semiring.

Lastly, we will cite a result from a paper of Ciocan-Fontanine which states that, for a cycle
π = sk−i+1 · · · sk ∈ Sn, we have

Qsk−i+1···sk = eqi [k]

is the quantum elementary symmetric polynomial; in particular this implies that every eqi [k] ∈ Q0+,
which is all we will need. This is an analogue of the classical fact that

Ssk−i+1···sk = ei[k].

In summary,

Lemma. The Qπ will satisfy:

• Qπ is homogeneous of degree `(π), where deg x = 1 and deg q = 2;
• Setting q = 0 turns Qπ into Sπ;
• The structure constants of Z[q][x]/Iqn with respect to the basis {Qπ} are nonnegative inte-

gers; this implies that

[Sq
π◦ ]
(
Qπ1 · · ·Qπm

)
= [Qπ◦ ]

(
Qπ1 · · ·Qπm

)
∈ Z0+[q];

• Each quantum elementary symmetric polynomial belongs to the semiring Q0+, i.e. eqi [k] ∈
Q0+; combined with the previous fact this means all quantum standard elementary poly-
nomials have eq~i

∈ Q0+.
�

The implication of the third bullet point above is true since, by degree considerations (the first two
properties; we will also see this in the proof below), the transition matrix between the bases {Qπ}
and {Sq

π} is unipotent triangular (with respect to, say, an order based on increasing `(π)), so to
find the coefficient corresponding to the longest permutation π◦ it suffices to expand in either basis.

We now prove thatTheorem. Sq
π are the corresponding elements to σπ under the isomorphism

QH•(Fln : Z) ∼= Z[q[n−1]][x[n]]/I
q
n.

�

i.e. that Qπ = Sq
π.

Proof. Let us focus on a length l ≤
(
n
2

)
. By the classical bases of Z[x]/In, the polynomials

{Sπ}`(π)=l are related to {ei1,···,in−1}∑ i=l by an invertible linear transformation.
Moreover, when we write e~i in the basis of Sπ, the coefficients are nonnegative integers since

each e~i is a product of the Schubert polynomials ei[k], and the structure constants of the classical
cases (being intersection numbers) are nonnegative integers.
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Since the linear transformation relating {Sπ}`(π)=l and {ei1,···,in−1}∑ i=l is invertible, each Sπ

must appear in the expansion of at least one e~i. Hence∑
∑
i=l

ei1,···,in−1 =
∑
`(π)=l

cπSπ

for positive constants

cπ > 0.

Quantum-ifying, this becomes ∑
∑
i=l

eqi1,···,in−1
=
∑
`(π)=l

cπS
q
π ∈ Q0+,

where we have used the fourth bullet in the lemma earlier to say that
∑
eq~i
∈ Q0+. Hence∑

`(π)=l

cπS
q
π ∈ Q0+.

As the Qπ form a basis, we can try to expand Sq
π in terms of the Q. By degree considerations

we can only have (since if there isn’t enough degree you can always tack on more q’s, but if there’s
too much then there’s nothing you can do)

Sq
π =

∑
`(τ)≤`(π)

aτQτ

for aτ ∈ Z[q] (so that for `(τ) < `(π), aτ must have q terms for the degrees to match); moreover
by taking q = 0 we see that aπ = 1 necessarily (since Qτ |q=0 = Sπ). Then

Sq
π = Qπ +

∑
`(τ)<`(π)

aτQτ .

A similar expression in the other direction also holds.
Then we can expand all of

∑
`(π)=l cπS

q
π ∈ Q0+ in this basis,∑

`(π)=l

cπS
q
π =

∑
`(π)=l

cπQπ +
∑
`(τ)<l

coeffτQτ ∈ Q0+,

which implies ∑
`(τ)<l

coeffτQτ ∈ Q0+,

which implies ∑
`(π)=l

cπS
q
π −

∑
`(π)=l

cπQπ =
∑
`(π)=l

cπ(Sq
π −Qπ) ∈ Q0+.

Now consider ~j = (j1, · · · , jn−1) with
∑
j >

(
n
2

)
− l; since by the last bullet of the lemma

eq~j
∈ Q0+, we can expand eq~j

=
∑

τ nonnegτQτ for nonnegative coefficients nonnegτ ∈ Z0+[q]. If we

multiply this by Qπ, by the third bullet point we would have

[Sq
π◦ ]

(
Qπ
∑
τ

nonnegτQτ

)
=
∑
τ

nonnegτ [Qπ◦ ](QπQτ ) ∈ Z0+[q],

i.e.

[Sq
π◦ ]
(
eq~j
Qπ

)
∈ Z0+[q]. (∗)
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Indeed, if we multiplied eq~j
=
∑

τ nonnegτQτ by any element of Q0+, we would obtain the same

result; in particular apply this to
∑

`(π)=l cπ(Sq
π −Qπ) ∈ Q0+ to get

[Sq
π◦ ]

eq~j ∑
`(π)=l

cπ(Sq
π −Qπ)

 ∈ Z0+[q].

This can be rewritten as

Z0+[q] 3 [Sq
π◦ ]

eq~j ∑
`(π)=l

cπ(Sq
π −Qπ)


=
∑
`(π)=l

cπ[Sq
π◦ ]
(
eq~j
Sq
π

)
−
∑
`(π)=l

cπ[Sq
π◦ ]
(
eq~j
Qπ

)
= −

∑
`(π)=l

cπ[Sq
π◦ ]
(
eq~j
Qπ

)
,

where

[Sq
π◦ ]
(
eq~j
Sq
π

)
= 0

uses the orthogonality of S quoted at the end of last section (expand eq~j
in terms of the quantum

Schubert polynomials; by homogeneity all subsequent terms have degree i.e. length of labelling
permutation equal to

∑
j), as well as the fact that

∑
j > `(π∗) =

(
n
2

)
− l (so that the condition

for nonvanishing can’t hold). Then

−
∑
`(π)=l

cπ[Sq
π◦ ]
(
eq~j
Qπ

)
∈ Z0+[q]. (∗)

Comparing the two starred equations, and recalling that cπ > 0 are positive, we conclude that
it must be the case that

[Sq
π◦ ]
(
eq~j
Qπ

)
= 0

for any l, any π with `(π) = l, and ~j with
∑
j > `(π∗). Since any Sq

τ∗ for `(τ) < `(π) can be
written as a linear combination of eq~j

for
∑
j = `(τ∗) =

(
n
2

)
− `(τ) >

(
n
2

)
− `(π) = `(π∗), this implies

[Sq
π◦ ](Sq

τ∗Qπ) = 0 ∀ `(τ) < `(π); (∗)

expanding

Qπ = Sq
π +

∑
`(τ)<`(π)

bτS
q
τ ,

we obtain

[Sq
π◦ ](Sq

τ∗S
q
π) +

∑
`($)<`(π)

b$[Sq
π◦ ](Sq

τ∗S
q
$) = 0 ∀ `(τ) < `(π),

which by applying orthogonality as we run across τ = $ with length less than π implies

b$ = 0,

so that

Qπ = Sq
π,

as claimed. �

This completes the proof.
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