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In this expository note we will quickly develop spectral sequences and use them to prove the
symmetry of the Tor functor.
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It seems most common in the literature for spectral sequences to begin on page 1. I suppose it
doesn’t really matter, but it seems as if by starting at page 0 many of the indices in the setup are
greatly simplified. I therefore adopt this approach and hope that I do not mess up any indices in
transitioning.

We begin with some groundwork on spectral sequences; in the interest of length we will not prove
any results about spectral sequences. We will however use them to prove the symmetry of the Tor
functor, a property I used in M231a but which we did not prove.

1. Bare Basics: Bi-things

Recall that the notion of a graded module:

Definition. A graded R-module is an indexed family

M = (Mµ)µ∈Z

of R-modules.
A graded map of degree a between graded modules M and N is

f : M −! N

a family of maps
f =

(
fµ : Mµ −! Nµ+a

)
µ∈Z

where we write deg f = a.

These objects still admit index-wise notions of submodules, quotient modules, kernels, and images
(and therefore exactness). Note as a minor detail that there would need to be some index correction

sometimes; for example, A
f
−! B

g
−! C is exact when Img fµ−deg f = Ker gµ.
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A (homological, i.e. decreasing index) chain complex can then be phrased as a graded module
equipped with a map d such that deg d = −1 and d2 = 0. Recall that given such information we
may then construct homology.

Similarly one can define a bigraded module:

Definition. A bigraded R-module is an indexed family

M = (Mµ,ν)µ,ν∈Z

of R-modules.
A graded map of degree (a, b) between bigraded modules M and N is

f : M −! N

a family of maps
f =

(
fµ,ν : Mµ,ν −! Nµ+a,ν+b

)
µ,ν∈Z

where we write deg f = (a, b).

Just as in the singly-graded case, this admits index-wise notions of submodules1 and quotient mod-
ules and kernels and images and exactness.

There is also an analogous notion of a chain complex, in the sense that here we may also take
homology:

Definition. A differential bigraded module is (M,d) for a bigraded module M and a bigraded map
(the differential) d: M −!M with

d2 = 0.

For deg d = (a, b), we may then construct homology in much the same manner:

Hµ,ν(M,d) := Ker dµ,ν/Img dµ−a,ν−b.

2. Exact Couples

There is the notion of an exact couple:

Definition. An exact couple is (D,E, α, β, γ) where D,E are bigraded modules and α, β, γ are
bigraded maps between them fitting in a diagram

D
α
−! D

β
−! E

γ
−! D

α
−! D

which is exact, i.e.

Kerα = Img γ,

Kerβ = Imgα,

Ker γ = Img β.

The diagram that people usually draw is

D D

E

α

βγ

1E.g. N ⊆ M if Nµν ⊆ Mµν for every index.
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Given an exact couple (which we will denote with (D0, E0)), one can obtain others:

Proposition. Construct the first derived couple (D1, E1, α1, β1, γ1) by

D1 := Imgα0 ⊆ D0,

E1 := H••(E
0, d0),

d0 := β0γ0 : E0 −! E0,

α1 := α0|D1 ,

β1 := [β0(α0)◦−1�],

γ1 := γ0,

where (α0)◦−1 = α0,◦−1 refers to the compositional inverse of α0 in

β1(y) = [β0(α0)◦−1(y)] for y ∈ D1

and
γ1[z] = γ0(z) for [z] ∈ E1.

Note well that D1 ⊆ D0, so the indexing we are taking here is D1
µ,ν := Imgαµ−a1,ν−a2 . Note also

that

degα1 = degα0 = (a1, a2),

deg β1 = deg β0 − degα0 = (b1 − a1, b2 − a2),
deg γ1 = deg γ0.

The content of the claim is that this is still an exact couple.
We can then iterate this construction to obtain (Dk, Ek, αk, βk, γk) the k-th derived couple,

defined recursively as the derived couple of the (k− 1)-th derived couple, which would be (we drop
the zero in α0 = α and similarly for other maps)

Dk = Imgα◦k ⊆ D0

(Dk
µ,ν = Imgαµ−a1,ν−a2αµ−2a1,ν−2a2 · · ·αµ−ka1,ν−ka2),

Ek = H••(E
k−1, dk−1),

dk = βα◦−kγ,

αk = α|Dk ,

βk = βα◦−k,

γk = γ,

with degrees

degαk = degα,

deg βk = deg β − k degα,

deg γk = deg γ.

�

(wow this took up a whole page)
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3. Filtrations

Recall that a filtration of a module M is a family of submodules

· · · ⊆Mµ−1 ⊆Mµ ⊆Mµ+1 ⊆ · · · .

Recall that given such a filtration we could consider

GrµM := Mµ/Mµ−1

and

GrM :=
⊕
µ

GrµM.

Recall that given a complex C, we may consider filtrations:

Definition. A (increasing) filtration of a complex (C,d) is a family of graded submodules

(FµC)µ∈Z

with
· · · ⊆ Fµ−1C ⊆ FµC ⊆ Fµ+1C ⊆ · · ·

which is compatible with d:
d: (FµC)n −! (FµC)n−1.

A filtration is moreover said to be bounded if, for each n, there are a, b depending on n such that

F aCn = 0,

F bCn = Cn.

We may shorten (FµC)n to FµCn. We might also write Cµ for FµC, and Cµn for FµCn, in line
with the philosophy that these things should be considered as filtrations of complexes rather than
complexes of filtrations.

Given a filtration, we may obtain an exact couple by looking at the long exact sequence of a
pair. Namely, by considering

0 −! Fµ−1C
ιµ−1

−! FµC
πµ
−! FµC/Fµ−1C −! 0

we obtain a long exact sequence

· · · Hn+1(F
µC) Hn+1(F

µC/Fµ−1C)

Hn(Fµ−1C) Hn(FµC) Hn(FµC/Fµ−1C)

Hn−1(F
µ−1C) · · ·

α β

γ
α=ιµ−1

∗ β=πµ∗

γ=δ
α
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Proposition. Given a filtration of a complex, we may obtain an exact couple with

Dµ,ν = Hµ+ν(FµC),

Eµ,ν = Hµ+ν(FµC/Fµ−1C),

α = ιµ−1∗ ,

β = πµ∗ ,

γ = δ,

so that the k-th derived exact couple is

Dk
µ,ν = Img

(
Hµ+ν(Fµ−kC)

(ιµ−1···ιµ−k)∗
−! Hµ+ν(FµC)

)
,

Ekµ,ν = Ker dk−1
µ,ν /Img dk−1

µ+k,ν−(k−1)
,

degα = (1,−1),

deg β = (−k, k),

deg γ = (−1, 0),

deg dk = (−k − 1, k).

�

Just so there’s a picture, here is what this looks like at k = 0:

· · · Dµ,ν+1 Eµ,ν+1

Dµ−1,ν+1 Dµ,ν Eµ,ν

Dµ−1,ν · · ·

α β

γ

α β

γ=δ
α

4. Spectral Sequences

Let us define what a spectral sequence is. Again you should be warned that people tend to start
at page 1; because I like to be special I will start at page 02.

Definition. A spectral sequence is a sequence

(Ek,dk)k≥0

of differential bigraded modules such that

Ek = H••(E
k−1,dk−1).

Then, as we saw above, every filtration of a complex produces an exact couple whose derived exact
couples give a spectral sequence.

If the filtration is moreover bounded (recall this means that for each n, eventually F smallCn = 0
and F bigCn = Cn), then we may say something much better:

2Possibly I’ll learn sometime later down the line that there’s actually a generating function associated to these
things and for that reason you should want to start at page 1, but whatever.
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Proposition. If E = (Ek, dk)k is a spectral sequence arising from a bounded filtration of a complex,
then for each (µ, ν) there exists a bound b depending on µ, ν beyond which Eµ,ν stabilizes:

E≥bµ,ν = Ebµ,ν .

In this case, let us define
E∞µ,ν := Ebµ,ν .

�

The punchline is that, in this case, we are able to say something about the homology of the
original complex we started with. Unfortunately we are only able to do this for the Gr of the
homology, but in the case of vector spaces we can then add them all up for the real thing. I guess
if we are not in vector-space-land then things get trickier.

Definition. Given a filtration on C, define a filtration on H•(C) via the following process:
Let ιµ,∞ be the inclusion map

ιµ,∞ : FµC ↪−! C,

with
ιµ,∞∗ : H•(F

µC) −! H•(C);

then define
FµHn(C) := Img ιµ,∞∗ .

This forms a filtration of Hn(C).

Thankfully, if F •C is bounded, it turns out so is F •H(C):

Lemma. If F •C is a bounded filtration of C, then F •H(C) is also bounded with the same bound.
That is, if for each n we have a = a(n) and b = b(n) with

F aCn = 0,

F bCn = Cn,

then

F aHn(C) = 0,

F bHn(C) = Hn(C).

�

The punchline isTheorem. For F •C a bounded filtration with spectral sequence E, we have

E∞µ,ν
∼= GrµHµ+ν(C) = FµHµ+ν(C)/Fµ−1Hµ+ν(C).

�

5. Bicomplexes

We will apply the above to the case of bicomplexes, which are defined as
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Definition. A bicomplex is (M,d ,d#) a bigraded module equipped with bigraded maps

deg d = (−1, 0),

deg d# = (0,−1)

such that

d d = 0,

d#d# = 0,

d d# + d#d = 0,

where the last identity written out in indices would look like

d µ,ν−1d
#
µ,ν + d#µ−1,νd µ,ν = 0.

Given such a bicomplex, one may construct

Definition. The total complex Tot(M) of a bicomplex is a complex with n-th term defined as

Tot(M)n :=
⊕

µ+ν=n

Mµ,ν

with differential

dn :=
∑

µ+ν=n

d#µ,ν + d µ,ν : Tot(M)n −! Tot(M)n−1.

The fact that Tot(M) so equipped with d forms a complex follows from the anticommutativity con-

dition d d# + d#d = 0.
There are two types of filtrations one may endow this bicomplex with: they are

Fµ↖Tot(M)n =
⊕
i≤µ

Mi,n−i

= · · · ⊕Mµ−2,ν+2 ⊕Mµ−1,ν+1 ⊕Mµ,ν

and

Fµ↘Tot(M)n =
⊕
i≤µ

Mn−i,i

= Mν,µ ⊕Mν+1,µ−1 ⊕Mν+2,µ−2 ⊕ · · · .

Pictorially here is what is going on3:

3I think in the literature these are referred to as IFµ Tot(M)n and IIFµ Tot(M)n respectively, but I’m not too
fond of this notation.
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That these are filtrations, i.e. that d: Fµ Tot(M)n −! Fµ Tot(M)n−1, requires checking but is
easily done.

As an aside, given a bicomplex, we may also consider its transpose, i.e. considering (M †, d†, ,d†,#)
with

M †µ,ν = Mν,µ,

d†, µ,ν = d#ν,µ,

d†,#µ,ν = d ν,µ.

Then it is straightforward to see that

Tot(M) = Tot(M †)

and

Fµ↖Tot(M)n = Fµ↘Tot(M)n.

A situation which commonly arises is that of a first quadrant bicomplex, i.e. one for which

Mµ,ν = 0 for µ < 0 or ν < 0.

In this case it is readily apparent (since they get cut off by the axes) that

F •↖Tot(M), F •↘Tot(M)

are both bounded filtrations, in which case the punchline theorem holds, so that

E↖∞µ,ν
∼= Grµ↖Hn(TotM),

E↘∞µ,ν
∼= Grµ↘Hn(TotM).

But Hn(TotM) is only one way in which one might take homology. Another idea is this: since
we are given a bicomplex, we may consider each column separately. Each column (say at x = µ)
Mµ,• is a complex, so that we may take its homology:

H(Mµ,•).

In other words, we are taking the double-indexed homology of the differential bigraded module
with respect to d#:

H#µ,ν := Hν(Mµ,•) = Hµ,ν(M,d#).

After doing so, we may lay these homologies down in a row (say the nu-th row) with

· · · − Hν(Mµ−1,•)
d µ,ν
 − Hν(Mµ,•)

d µ+1,ν
 − Hν(Mµ+1,•) − · · ·
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where the arrows are for example

Hν(Mµ,•) −! Hν(Mµ−1,•)

[z] 7−! [d µ,ν(z)]

which we will also denote by d µ,ν (it is a straightforward check that this is well-defined). Hence we
can take homology yet again; we will denote this second homology by

H µ H
#
ν (M) := Hµ(H#•,ν(M)).

Analogously, we may consider each row and consider its homology

H µ,ν := Hν(M•,µ) = Hµ,ν(M,d );

we can arrange these in the µ-th column as

...

Hµ(M•,ν+1)

Hµ(M•,ν)

Hµ(M•,ν−1)

...

d#µ,ν+1

d#µ,ν

d#µ,ν−1

whereupon we may again take the homology to obtain

H#µH
 
ν (M) := Hµ(H ν,•(M)).

The punchline is then that
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Theorem. For M a bicomplex contained in the first quadrant, we have

E↖∞µ,ν
∼= Grµ↖Hn(TotM) = Fµ↖Hn(TotM)/Fµ−1

↖ Hn(TotM),

E↘∞µ,ν
∼= Grµ↘Hn(TotM) = Fµ↘Hn(TotM)/Fµ−1

↘ Hn(TotM).

Moreover, the first two pages are

E↖0
µ,ν = H#µ,ν(M),

E↖1
µ,ν = H µ H

#
ν (M)

and

E↘0
µ,ν = H µ,ν(M),

E↘1
µ,ν = H#µH

 
ν (M).

In the case that E1 lies entirely on either the horizontal or the vertical axis, we actually have

E1 ∼= E∞.

If it is the horizontal axis, then
E1
n,0
∼= Hn(TotM);

if it is the vertical axis, then
E1

0,n
∼= Hn(TotM).

�

6. Application to Tor

Finally, we shall use all this machinery to prove the symmetry of the Tor functor. Recall that
the Tor functor came from the following process: to compute TorRn (M,N) for M,N R-modules, we
take a projective resolution of the first module M :

· · · −! P1 −! P0 −!M −! 0

and consider its deleted form

· · · −! P1 −! P0;

then apply the tensor product ⊗RN (which is covariant)

· · · −! P1 ⊗N −! P0 ⊗N −! 0

which is a complex; then define

TorRn (M,N) := Hn(P• ⊗R N).

As the tensor product is symmetric, one might ask whether it matters if the first variable is resolved
or if the second variable is. To answer this we give the following:[
Fact. The Tor functor is symmetric.
�

Proof. All tensor products will be taken over R, which we drop for brevity.
Take P,Q to be projective resolutions of M,N respectively:

· · · −! P2
dP2−! P1

dP1−! P0 −!M −! 0

and

· · · −! Q2
dQ2−! Q1

dQ1−! Q0 −! N −! 0.
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Consider then the bicomplex formed as follows: at the (µ, ν)-th place let us place down Pµ⊗Qν ,
so

Mµ,ν := Pµ ⊗Qν ,
and let

d µ,ν := dPµ ⊗ 1,

d#µ,ν := (−1)µ1⊗ dQν .

Pictorially, here is what this bicomplex looks like:

...
...

· · · Pµ−1 ⊗Qν Pµ ⊗Qν · · ·

· · · Pµ−1 ⊗Qν−1 Pµ ⊗Qν−1 · · ·

...
...

(−1)µ−11⊗dQν

dPµ⊗1

(−1)µ1⊗dQν
dPµ⊗1

It is clear that the rows and columns formed this way are exact; this is moreover a bicomplex, i.e.
each square moreover anticommutes, precisely due to the (−1)µ sign; this is evident from looking
at the diagram. Since the resolutions are labelled by nonnegative integers, this bicomplex is a first
quadrant complex. Moreover note well that its total complex is the traditional one-dimensional
tensor product of two chain complexes:

Tot(P ⊗Q) = P• ⊗Q•

with the correct differential d = dP ⊗ 1 + (−1)µ1⊗ dQ.
Let us compute some iterated homologies. Fixing a column x = µ, let us consider its homology;

it must vanish in degree above zero since Q• was exact, and tensoring with Pµ (which is projective,
implying it is flat) preserves exactness, so

H>0(Pµ ⊗Q•) = 0.

At the zeroth degree it is

H0(Pµ ⊗Q•) = Coker(Pµ ⊗Q1 ! Pµ ⊗Q0);

as the sequence

· · · −! Q2
dQ2−! Q1

dQ1−! Q0 −! N −! 0

is exact, so is its tensor with the flat module Pµ

· · · −! Pµ ⊗Q2
1⊗dQ2−! Pµ ⊗Q1

1⊗dQ1−! Pµ ⊗Q0 −! Pµ ⊗N −! 0,

so that the cokernel we desire is given by

H0(Pµ ⊗Q•) = Pµ ⊗N.
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Hence we have the zeroth page with respect to the first filtration (that this is the zeroth page is
the content of a theorem which we cite from before)

E↖0
µ,ν = H#µ,ν(M) =

{
Pµ ⊗N ν = 0

0 ν > 0
.

Taking the homology of this again, we obtain (again that this is equal to the first page is a theorem
from before which we utilize)

E↖1
µ,ν = H µ H

#
ν (M) =

{
Hµ(P• ⊗N) ν = 0

0 ν > 0
,

i.e.
E↖1 collapses onto the horizontal axis, where it is Hn(P• ⊗N). (∗)

On the other hand, we can consider taking the horizontal homology first, and then taking ho-
mology vertically; i.e. we can try to compute the pages for the second filtration. To this end, fixing
a row y = ν, the homology of

· · · −! Pµ+1 ⊗Qν −! Pµ ⊗Qν −! Pµ−1 ⊗Qν −! · · ·
again vanishes in positive degree, again since Qν is projective which implies it is flat. At degree
zero it is

H0(P• ⊗Qν) = Coker(P1 ⊗Qν −! P0 ⊗Qν),

which we can compute since

· · · −! P2
dP2−! P1

dP1−! P0 −!M −! 0

being exact implies

· · · −! P2 ⊗Qν
dP2 ⊗1−! P1 ⊗Qν

dP1 ⊗1−! P0 ⊗Qν −!M ⊗Qν −! 0

is exact, so that
H0(P• ⊗Qν) = M ⊗Qν .

This gives

E↘0
µ,ν = H µ,ν(M) =

{
M ⊗Qµ ν = 0

0 ν > 0
,

which taking homology again gives

E↘1
µ,ν = H#µH

 
ν (M) =

{
Hµ(M ⊗Q•) ν = 0

0 ν > 0
,

i.e.
E↘1 collapses onto the horizontal axis, where it is Hn(M ⊗Q•). (∗)

But recall that the first page collapsing onto an axis implies that that axis is precisely Hn(TotM),
which does not depend on which filtration we take. Hence we have

Hn(P• ⊗N) ∼= E↖1
n,0
∼= Hn(TotM) ∼= E↘1

n,0
∼= Hn(M ⊗Q•), (∗∗)

so that
Hn(P• ⊗N) ∼= Hn(M ⊗Q•)

and it does not matter which variable we resolve, as desired. Note incidentally that these two
quantities are also equal to Hn(TotM), where TotM is the complex obtained by resolving both
variables at once and tensoring the complexes together; this is sort of a neat characterization which
fell out as a side-product. �
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