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In this expository paper we will consider the idea of a combinatorial species (which is defined as
a functor) and its analytic functor (a left Kan extension) and use the theory of symmetric functions
to prove a fundamental result on the cycle index series of a composition of species. We will then
demonstrate its power by annihilating the Cayley tree theorem.
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1. Combinatorial Species

1.1. Vanilla Species. The definition of a combinatorial species will succinctly make rigorous the
idea of a “family of combinatorial structures”.Definition. A (set)-species is a functor

F : Cor(fnt Set) −! Cor(fnt Set)

from the category of finite sets with bijections to itself (here we use the Cor notation from nLab).

The functoriality of this definition succinctly encapsulates the following information: the species F
will

• associate to each set U (the underlying set) a set of structures1 F [U ]:

F : U 7−! F [U ]

in a way such that

1This is the notation used in literature.
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• if σ : U ! V is a bijection (thought of as a renaming) then there is a map (sometimes called
the transport of structures)

F [σ] : F [U ] −! F [V ]

which satisfies
F [σ ◦ π] = F [σ] ◦ F [π], F [idU ] = idF [U ].

That is, a renaming of the underlying set produces an appropriate renaming on the structure set.

Example: An example of a species is the species of sets. This species Set will associate to every
underlying set U :

Set[U ] = U.

It is clear that this is functorial, with Set[σ] = σ.

Example: Another example is X, which has

X[U ] =

{
U |U | = 1

∅ else
.

It is also clear this is functorial.

The point of a species is that it allows us to count the number of a certain type of structures.
To this end, a common construction given a species F is to associate the exponential formal series

F (x) :=
∞∑
n=0

|F [n]|x
n

n!
,

where we use the shorthand F [n] = F [[n]] the set of structures built on the set [n]. It is clear that
the number of structures is independent of names of the underlying set (σ a bijection gives rise to
F [σ] in the core category of finite sets which must therefore also be a bijection, so F [U ] and F [V ]
are equal in size).

The idea is that species formalizes the relationship between relations between combinatorial
structures and relations between their formal series. For example, if we wanted to count the
number of permutations, we could note that permutations are sets of cycles (composition, so to
speak), compose their power series, and read off the coefficients to obtain an answer.

But there is a finer construction, which we will jump to. Given a permutation σ on the underlying
set, the corresponding F [σ] permutation on F [U ] will have a cycle type depending only on that of
σ. This follows from functoriality, as F [πσπ−1] = F [π] ◦ F [σ] ◦ F [π]−1, so that F [πσπ−1] is the
same cycle type as F [σ]. Hence2 given a vector3 of nonnegative integers λ describing a cycle type,
it makes sense to speak of fixF [λ] = (F [λ])1.

To a species F we then associate
Definition. The cycle index series of F is given by

ZF =
∑
λ

fixF [λ]
pλ

Zλ+λ!
,

where λ is a vector of nonnegative integers, pλ =
∏
i p
λi
i for pi(X) =

∑
x∈X x

i with X the (infinite)

set of variables, and Zλ+λ! =
∏
n n

λnλn! is a shorthand.

Note that this is then a symmetric function on the infinite set of variables X by construction. This
will be crucial in what follows. At first it may seem that this definition of pλ is strange, but note

2Note in the above we could have taken V
π
! U

σ
! U

π−1

! V to show this does not depend on the label set U
either.

3Note we do not require λ to be a partition in the sense that λ1 ≥ λ2 ≥ · · · .
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that here we have no weakly decreasing condition on λ and that λ conveys a cycle type; if we
rearrange this information into λ` = {|cycle|}cycle∈σ, this is then a partition, and it is clear that
pλ = pλ` where the latter is as defined in pλ` =

∏
i pλ`i

. For example, λ = (1, 2, 1) gives a partition

λ` = (3, 2, 2, 1). I hope the reader agrees this is a reasonable abuse of notation. Note also the
resemblance to the formula for the Schur functions:

Sλ =
∑
µ`|λ|1

χΣλ(µ)
pµ

Zµ+µ!
.

This expository paper will be dedicated to proving a property of ZF . It turns out that discussion
of ZF subsumes discussion of F (x), since one can observe4

ZF (p1, · · · , p∞)|(x,0,···) = ZF (x, 0, · · ·) =
∑
λ1

fixF [(λ1, 0, · · ·)]
xλ1

λ1!
=
∑
n

|F [n]|x
n

n!
,

where we observe that fixF [(λ1, 0, · · ·)] = |F [λ1]| since all structures are fixed by the permutation
with λ1 1-cycles and nothing else.

1.2. Operations on Species. A large part of the allure of species comes from the way in which
it handles operations. Some examples of operations are as such:

Definition. Given F ,G species, we define:

• the sum F + G as

(F + G)[U ] = F [U ]
∐
G[U ],

(F + G)[σ](s) =

{
F [σ](s) s ∈ F [U ]

G[σ](s) s ∈ G[U ]
,

where σ : U −! V ;
• the product F · G as

(F · G)[U ] =
∐

U1,U2�U

F [U1]× G[U2],

(F · G)[σ](s) =
(
F [σ|U1 ](f),G[σ|U2 ](g)

)
,

where U1 and U2 partition U (denoted by �), σ|U1 is the restriction of the bijection to U1,
and f, g are F ,G structures;
• the derivative F ′ as

(F ′)[U ] = F [U + {∗}],
(F ′)[σ](s) = F [uσ](s),

where uσ is the natural extension to U + {∗} defined by uσ|U = σ and uσ(∗) = ∗;
• the composition F ◦ G as

(F ◦ G)[U ] =
∐
π�U

F [π]×
∏
πi∈π
G[πi],

(F ◦ G)[σ](s) = (uσ(π),F [uσ](f), {G[σ|πi ]gi}i),
where s = (π, f, {gi}i) and uσ is the induced map on the partition π, so that uσ(π) � V .

There are many other operations one could consider, such as pointing, Cartesian product, functorial
composition, etc., but for basic enumerative purposes the above moves will suffice.

4The inclusion of p∞ below means nothing and is purely stylistic.
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The magical thing is that the above correspond to moves on the cycle index series. It is a fact
that

Theorem.

ZF+G = ZF + ZG ,

ZF· G = ZFZG ,

ZF ′ =
∂

∂p1
ZF ,

ZF◦G = ZF ◦ ZG .
�

The last statement may seem difficult to make sense of; that is the object of this paper. In contrast,
the other three relations are not difficult to show, and as the proofs do not have as much to do with
symmetric function theory we will skip them. They are included above mostly for completeness’
sake.

It turns out proving the composition rule just for the series F (x) =
∑∞

n=0 |F [n]|xnn! is not so
difficult, but the result for the cycle index series is a little less trivial and also of greater theoretical
importance. It is not hard to believe that ZF contains more information than just F (x), and indeed
one example of a greater power lent by the cycle index is its information on what is called the “type
generating series”. We will not have space to cover that here.

1.3. Weighted Species. We can also consider a variation on the vanilla flavor of species. For a
commutative ring with unit R ⊇ Q, we can define the category SetR as follows:

Definition. Let SetR be the category with the following information:

Obj(SetR) =
{

(A,w) s.t. w : A! R, |A|w :=
∑
a∈A

w(a) ∈ R
}
,

Hom(SetR) =
{
f : (A,w)! (B, v) s.t. v(f(a)) = w(a) ∀ a

}
.

We can then define a weighted species.Definition. A weighted species is a functor

F : Cor(fnt Set) −! SetR.

It follows from functoriality again that we can speak of |FixF [λ]|w := fixw F [λ] for a cycle type λ.
This is because F [σ ◦ σ−1] = F [σ] ◦ F [σ−1] implies F [σ] is a bijection of sets, and moreover as a
morphism in SetR must preserve weights, so F [σ] is a weight-preserving bijection. This way

|FixF [σ]|w =
∑

s∈FixF [σ]

w(s)

=
∑

F [π]−1(s)∈FixF [σ]

w(F [π]−1(s))

=
∑

F [π]−1(s)∈FixF [σ]

w(s)

=
∑

s∈FixF [πσπ−1]

w(s)
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= |FixF [πσπ−1]|w,

where we note F [π]−1(s) ∈ FixF [σ] ⇐⇒ F [σ]F [π]−1(s) = F [π]−1(s) ⇐⇒ F [π]−1F [σ]F [π](s) =
F [πσπ−1](s) = s.

One can then constructDefinition. The cycle index series for a weighted species F is given by

ZF =
∑
λ

fixw F [λ]
pλ

Zλ+λ!
.

Remark : For an m-sort weighted species F : Cor(fnt Set)×m −! SetR, one can define

ZF(X1,···,Xm) =
∑
· · ·
∑

λ1,···,λm

fixw F [λ1, · · · , λm]
pλ1(X1)

Zλ1+ λ1!
· · · pλm(Xm)

Zλm+ λm!
,

where X1, · · · , Xm are distinct sets of variables and λi are each vectors. We will not pursue this
track further.
Remark : Note we can set w(S) = |S| to get back the vanilla species.

It is fairly obvious by chasing categorical definitions that if F and G are naturally isomorphic
species, then ZF = ZG . It suffices to check that fixw F [σ] = fixw G[σ], which is true since the
diagram is

Since the αU are isomorphisms, we get a bijection between FixF [σ] and FixG[σ]; since the isomor-
phisms αU are moreover required to be weight preserving (being morphisms in SetR), we get the
sum of weights over FixF [σ] and over FixG[σ] are the same. This gives that the cycle index series
are also the same.

2. Analytic Functors

2.1. Abstract Nonsense (can be skipped). Before we go on to give the concrete way to think
of analytic functors, we should maybe say that this analytic functor is a specific instance of a more
general, more abstract phenomenon named the “Kan extension”. In particular we consider the
“left Kan extension of F along G”, which we call LanG F . Here the setup is we have F : A −! C,
G : B −! C, and then the left Kan extension is a functor LanG F : B −! C. The universal property
is captured via the following picture (unfortunately very difficult to tex)
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When B is a closed monoidal category and C is enriched over B and when copowers5 exist, we can
write this as the coend6

LanG F(�) =

∫ X∈A
HomB(GX,�) • FX.

If B is enriched in Set, then we can moreover write this as

LanG F(�) =

∫ X∈A ∐
f∈HomB(GX,�)

FX.

We should also briefly explain the coend. Unfortunately this takes a lot of definitions, so we’ll
try to rush it. a “dinatural transformation” is β such that

β : F =⇒ G,

where

F ,G : Aop ×A −! B,
consisting of

βX : F(X,X) −! G(X,X)

such that, for a diagram X
f
−! Y in A, the following diagram commutes:

F(X,X) G(X,X)

F(Y,X) G(X,Y )

F(Y, Y ) G(Y, Y )

βX

G(id,f)F(f,id)

F(id,f)
βY

G(f,id)

Then one can define the “coend” of a functor

F : Aop ×A −! B

to be the initial dinatural transformation from the constant functor to F , namely∫ A
F = B ∈ B

such that

5These things are, for B ∈ B and C ∈ C,
B • C ∈ C

such that

HomC(B • C,�)
nat∼= HomB(B,HomC(C,�)).

6To be explained later.
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ConstB′

F ConstBβ

β′

∃!

i.e. the initial object such that the diagram

F(X,X)

F(Y,X)

∫ A
F

F(Y, Y )

βXF(f,id)

F(id,f) βY

commutes.
If B is cocomplete (i.e. small colimits exist) and A is small (i.e. the objects and morphisms are

sets), then the coend can be described as the coequalizer∐
X
f
!Y

F(Y,X)
∐
X∈A

F(X,X)

∫ A
F

F(f,id)

F(id,f)

In more concrete terms, this is saying∫ A
F =

∐
X∈A

F(X,X)
/
F(f, id)s ∼ F(id, f)s.

Then, the analytic species associated to a species is simply

F̃ : Set −! Set

defined by

F̃ := LanιF

in the diagram

Set

Set

Cor(fnt Set)

Lanι F

ι

F

Of course everything described above is rather abstract and maybe doesn’t actually give any
intuition for what these things actually are, unless one has already drank a lot of categorical juice.
So in the next section we discuss how to think about these things concretely. But it is very
useful/helpful to read the following below and keep in mind the general form of the coend as this
coequalizer, i.e. this coproduct modded out by some relations. In fact this is secretly precisely
what the first definition in Section 2.2 is saying.
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2.2. Analytic Functors Associated to Species. Given a species F , consider the action of the
symmetric group on F [n]×HomSet([n], A):

Sn : F [n]×HomSet([n], A) −! F [n]×HomSet([n], A)

(s, f) 7−! (F [σ](s), f ◦ σ−1),

where A is an arbitrary set. We can then define the analytic functor via:

Definition. To each species F associate the analytic functor

F̃ : Set −! Set

defined via

F̃(A) =
∞∐
n=0

F [n]×HomSet([n],A)/Sn,

where for g : A −! B in the Set category the transport is

F̃(g) : F̃(A) −! F̃(B)

orbSn(s, f) 7−! orbSn(s, g ◦ f).

It is readily obvious that a map so defined is indeed a functor7 and moreover F̃(g) is well-defined8

(independent of representation). We can generalize this to weighted species, too: the way we give
(s, f) ∈ F [n]×Hom([n], A) a weight is by giving weight

w(f) =
∏
a∈A

w(a)|f
−1(a)| = w(f(1)) · · ·w(f(n))

to f and giving weight
w(s, f) = w(s)w(f)

to the pair (s, f). More precisely

Definition. To each weighted species F associate the weighted analytic functor

F̃ : SetR −! SetR

defined via

F̃(A) =

∞∐
n=0

F [n]×HomSet([n],A)/Sn,

where for g : A −! B in the Set category the transport is

F̃(g) : F̃(A) −! F̃(B)

orbSn(s, f) 7−! orbSn(s, g ◦ f).

To put a SetR structure on this, define

w(orbSn(s, f)) = w(s)w(f(1)) · · ·w(f(n)) = w(s)
∏
a∈A

w(a)|f
−1(a)|.

It is not hard to see that the above weight definition does not depend on choice of representative
since F [σ] is weight-preserving and (f ◦ σ−1)−1(a) = σ(f−1(a)), where σ is a permutation, so that
|σ(f−1(a))| = |f−1(a)|.

7If g = id then clearly this acts identically, and if h : B ! C is another map then clearly F̃(h ◦ g) = F̃(h) ◦ F̃(g).
8For (s, f) and (F [σ](s), f ◦ σ−1) in the same orbit, the former is sent to (s, g ◦ f) while the latter is sent to

(F [σ](s), g ◦ f ◦ σ−1), and it’s clear the two are in the same orbit.
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One can then define the type series
Definition. Given a weighted analytic functor F̃ and a set A ∈ SetR, define the type series to be

ZF̃(A)
:= |F̃(A)|w =

∑
orb∈F̃(A)

w(orb).

We will next connect this with the cycle index series ZF .

2.3. Relation to the Cycle Index Series. Take R = Q[[x1, · · · , x∞]] = Q[[xZ+ ]] the ring of
formal power series in infinitely many variables. Consider

(Z+, w) ∈ SetQ[[xZ+ ]]

with w defined by
w(n) = xn.

Then, for a weighted species
F : Cor(fnt Set) −! SetQ[[xZ+ ]],

construct the weighted analytic functor F̃ . Then an orbit orb(s, f) ∈ F(Z+) gets weight

w(orb(s, f)) = w(s)
∏
n∈Z+

w(n)|f
−1(n)| = w(s)x

|f−1(1)|
1 · · ·x|f−1(∞)|

∞ .

We shall show in this section thatTheorem.
ZF̃(Z+)

= ZF .

�

Proof. To compute the type series
∑

orbw(orb) of F̃(Z+), we will need the following fact from
group theory:

Theorem. For G×H a product of groups acting on S ∈ SetR, we can consider the action of G× id
on S; then

w(orbG×id(s)) = w(s)

is well-defined, and if we consider id×H acting on S/G×id, then

fixw(h) =
1

|G|
∑
g∈G

fixw(g, h).

�

The left-hand-side makes sense because of the first half of the theorem. Note that we can plug in
H the trivial group to recover
Theorem (Burnside). ∑

orb∈S/G

w(orb) =
1

|G|
∑
g∈G

fixw(g).

�

This theorem is entirely a group-theoretic result, and it doesn’t make too much sense to include its
proof here, so we will skip it.
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We now have the tool we need to compute ZF̃(Z+)
; we will do so by finding the sum of fixw(σ)

for σ ∈ Sn. If σ fixes (s, f), we must have F [σ](s) = s and f ◦σ−1 = f , that is, f must be constant
on each cycle of σ−1 and therefore σ. Note that the two happen independently. Let σ have cycle
type λ; then for each cycle we can color it uniformly with some xi, so that the weight of the cycle

is xlength of cycle
i . This is done independently for each cycle of σ, so we obtain

fixw(σ) =
∑

(s,f)∈Fix(σ)

w(s, f)

=
∑

(s,f)∈Fix(σ)

w(s)w(f)

=
∑

s∈Fix(F [σ])

w(s)
∑

f :f◦σ−1=f

w(f)

= fixw F [σ](x1
1 + x1

2 + x1
3 + · · · )λ1(x2

1 + x2
2 + x2

3 + · · · )λ2(x3
1 + x3

2 + x3
3 + · · · )λ3 · · ·

= fixw F [σ]pλ11 pλ22 pλ33 · · ·
= fixw F [σ]pλ.

Burnside will then give us ∑
orb∈F[n]×Hom([n],Z+)/Sn

w(orb) =
1

n!

∑
σ∈Sn

fixw(σ)

=
1

n!

∑
σ∈Sn

fixw F [σ]pλ

=
∑
λ�n

fixw F [λ]
pλ

Zλ+λ!
,

where we again recall fixw F [σ] depends only on the cycle type of σ and use the fact that there are
n!

Zλ+λ!
many permutations of cycle type λ. Here λ � n is short for |λ|1 = λ1 + λ2 + · · · = n. We can

then see

ZF̃(Z+)
=

∑
orb∈

∐
n
F[n]×Hom([n],Z+)/Sn

w(orb)

=

∞∑
n=0

∑
orb∈F[n]×Hom([n],Z+)/Sn

w(orb)

=

∞∑
n=0

∑
λ�n

fixw F [λ]
pλ

Zλ+λ!

=
∑
λ

fixw F [λ]
pλ

Zλ+λ!

= ZF ,

as we claimed. �

We will next use this to prove the result on the cycle index series of a composition of species.

3. The Cycle Index of a Composition

3.1. Plethysm of Symmetric Functions. Consider the graded algebra of symmetric functions,
Λ(X). Recall that {pλ : λ ` n ∃ n ∈ Z} is a basis of this algebra; in fact, we showed {pλ : λ ` n}
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is a basis of Λn(X). Hence we can define plethysm f ◦ g as follows:

Definition. Define the plethysm operation

◦ : Λ(X)× Λ(X) −! Λ(X)

by requiring
pn ◦ pm = pm ◦ pn = pmn

and bilinearity
f ◦ (g + h) = f ◦ g + f ◦ h, (f + g) ◦ h = f ◦ h+ g ◦ h

and multiplicativity

f ◦ (gh) = (f ◦ g)(f ◦ h), (fg) ◦ h = (f ◦ h)(g ◦ h).

For example, this definition will lend us that

f ◦ pm =

(∑
λ

aλpλ

)
◦ pm

=
∑
λ

aλ

(∏
i

pλi

)
◦ pm)

=
∑
λ

aλ
∏
i

(pλi ◦ pm)

=
∑
λ

aλ
∏
i

pλim

=
∑
λ

aλ
∏
i

pλi(x
m
1 , · · · , xm∞)

= f(xm1 , · · · , xm∞)

and similarly for pm ◦ f , so thatFact.
f ◦ pn = pn ◦ f = f(xn1 , · · · , xn∞).

�

And now the statement from earlier that

ZF◦G = ZF ◦ ZG

finally makes sense. We now move towards proving this.

3.2. Proving the Composition Relation. The desired relation is proved in two steps, the for-
mer of which we will follow closely. We will discuss the latter briefly later.Theorem. For F ,G weighted species with associated analytic functors F̃ , G̃,

ZF̃(G̃(Z+))
= ZF̃(Z+)

◦ ZG̃(Z+)
= ZF ◦ ZG .

�
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Proof. Again we use Burnside to compute

ZF̃(G̃(Z+))
=

∑
orb∈

∐
n
F[n]×Hom([n],G̃(Z+))/Sn

w(orb) =
∞∑
n=0

∑
orb∈F[n]×Hom([n],G̃(Z+))/Sn

w(orb).

To apply Burnside, we will find

fixw(σ),

where σ ∈ Sn acts on F [n]× Hom([n], G̃(Z+)). In order for (s, f) to be fixed, again we must have
F [σ](s) = s and f ◦ σ−1 = f , which happen independently. Note the latter is true if and only if f
is constant on the cycles of σ−1, i.e. of σ.

Since f must be constant per cycle of σ, f will send a cycle c to some orb(t, g) ∈ G̃(Z+). This
contributes weight w(orb(t, g))length of c to the weight of f ; since this is done independently per
cycle, we can see

∑
f :f◦σ−1=f

w(f) =

 ∑
orb∈G̃(Z+)

w(orb)1

λ1 ∑
orb∈G̃(Z+)

w(orb)2

λ2 ∑
orb∈G̃(Z+)

w(orb)3

λ3

· · · .

Recall from earlier that

w(orb(t, g)) = w(t)w(g) = w(t)
∏
Z+

x|f
−1(n)|

n

is a monomial; hence, when we raise w(orb)k to a power, it is equivalent to substituting xkn into
w(orb). But this is precisely the action of plethysm with pk. Hence we see

∑
orb∈G̃(Z+)

w(orb)k =

 ∑
orb∈G̃(Z+)

w(orb)

 ◦ pk = pk ◦

 ∑
orb∈G̃(Z+)

w(orb)

 = pk ◦ ZG̃(Z+)
,

so that ∑
f :f◦σ−1=f

w(f) = (p1 ◦ ZG̃(Z+)
)λ1(p2 ◦ ZG̃(Z+)

)λ2(p3 ◦ ZG̃(Z+)
)λ3 · · ·

= (pλ11 pλ22 pλ33 · · · ) ◦ ZG̃(Z+)

= pλ ◦ ZG̃(Z+)
.

We conclude

fixw(σ) =
∑

(s,f)∈Fix(σ)

w(s, f)

=
∑

s∈FixF [σ]

w(s)
∑

f :f◦σ−1=f

w(f)

= fixw F [σ]pλ ◦ ZG̃(Z+)
,
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so that Burnside tells us ∑
orb∈F[n]×Hom([n],G̃(Z+))/Sn

w(orb) =
1

n!

∑
σ∈Sn

fixw F [σ](pλ ◦ ZG̃(Z+)
)

=
∑
λ�n

fixw F [λ]
1

Zλ+λ!
(pλ ◦ ZG̃(Z+)

),

ZF̃(G̃(Z+))
=

∞∑
n=0

∑
orb∈F[n]×Hom([n],G̃(Z+))/Sn

w(orb)

=
∞∑
n=0

∑
λ�n

fixw F [λ]
1

Zλ+λ!
(pλ ◦ ZG̃(Z+)

)

=

(∑
λ

fixw F [λ]
pλ

Zλ+λ!

)
◦ ZG̃(Z+)

= ZF̃(Z+)
◦ ZG̃(Z+)

,

as to be shown. The last equality in the claim follows from our earlier conclusion that ZF̃(Z+)
=

ZF . �

Before we can conclude that ZF◦G = ZF ◦ ZG , we still need one last detail:Theorem. For weighted species F ,G,F ◦ G, the analytic functors F̃ ◦ G̃ and F̃ ◦ G are naturally
isomorphic.
�

The proof of this theorem does not relate as much to symmetric polynomials, so we skip it. In fact,
even though this is a categorical statement, since our definition of the F ◦ G functor is somewhat
“dirty” (i.e. not categorical), one should expect the proof to also be dirty (not categorical). This
is indeed the case, and the proof is mostly just defining a map and checking details.

Once we have this, we can directly seeTheorem (Main Theorem: Composition Law).

ZF◦G = ZF ◦ ZG .
�

since

ZF◦G = ZF̃◦G(Z+)
= ZF̃(G̃(Z+))

= ZF ◦ ZG ,
as desired.

4. Application

“Now witness the firepower of this fully armed and operational battle station.”
The result on the composition of cycle index series in particular implies that (F ◦G)(x) = F (G(x))

by plugging in (x, 0, · · · ).
Note that the species of rooted trees can be written as

rtTree = X · (Set ◦ rtTree)

since every rooted tree can be broken down into smaller rooted trees by taking away its root. This
is schematically represented below.
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Since the generating series for Set is
∑

n
xn

n! = ex (for each U , |Set[U ]| = |{U}| = 1) and since the
generating series for the X is x, we get the series relation

T (x) = xeT (x).

We can then apply a theorem from analysis. Recall Lagrange inversion says that if y = xf(y), f(0) =
1, then

[xn]{y(x)} =
1

n
[yn−1]{f(y)n}.

Applying this to f(y) = ey, y = T (x), we get the coefficient in front of xn in T (x), [xn]{T (x)}, is

given by 1
n [yn−1]{eny} = 1

n
nn−1

(n−1)! = nn−1

n! , so that

T (x) =
∞∑
n=0

nn−1x
n

n!
,

which gives nn−1 many rooted trees on n vertices, as desired.
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