
COMPUTING THE RESOLUTION COEFFICIENTS IN A
CONJECTURED COMBINATORIAL RESOLUTION CATEGORIFYING

THE JACOBI-TRUDI DETERMINANT FORMULA

Fan Zhou
Winter 2019

fanzhou@college.harvard.edu

Contents

1. Summary 1
1.1. Background and Motivation 1
1.2. A short explanation of why this question and some other questions 3
2. Setup 3
2.1. The Objects 3
2.2. The Resolution 4
2.3. The Combinatorial Diagram 4
3. The Maps 8
4. Prelude: A Quick Bit of Counting 9
5. The Coefficients a 12
6. The Punchline: Generating Functions 13
7. Towards Higher Dimensions 14
8. References 15

1. Summary

The goal is to categorify the Jacobi-Trudi determinant formula as a BGG-esque resolution.
For 3-part partitions of n given by (λ1, λ2, λ3) ` n, we present a conjecture for a combinatorial
model of a resolution for the irreducible representations of the symmetric group Sn associated
to the partition λ. This resolution consists of permutation modules (which can be thought
of as free functors applied to species). When the maps in this resolution are expanded as
linear combinations of certain natural maps between these permutation modules, we have
calculated what the coefficients ought to be (i.e. necessary conditions for exactness). This
is not an explicit formula, but a generating function for it; in particular one could write a
program to find what they are. We conjecture that this resolution is exact (i.e. that these
conditions are sufficient).

1.1. Background and Motivation. It is well-known that the irreducible representations
Πλ of the symmetric group Sn are labeled by partitions λ of n, and that the characters
are the Schur functions sλ, which are described by the Jacobi-Trudi determinant formula
as sλ = det(hλi+j−i)ij. Here hk is the complete homogeneous symmetric polynomial, which
is also the character of the permutation representation Ek of Sk. So it is true on the level
of characters that the irreducible representations of Sn are given by some alternating sum
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of (induction-) products of permutation representations, and it is natural to ask whether
one can “categorify” this by giving a resolution of Πλ by permutation representations whose
alternating sum of characters gives the Jacobi-Trudi determinant formula.

In 1988 (and in 1992 in a follow-up paper by Akin), Zelevinsky [1] and Akin [2] inde-
pendently described how to obtain a resolution of the irreducible representations of the
symmetric groups which categorifies Jacobi-Trudi. They do so by taking the BGG resolu-
tion of an irreducible representation of the general linear group, applying a special functor
(tensor with a fixed representation, quotient by the nilpotent subalgebra n−, and take the
weight space at a fixed weight), and then appealing to Schur–Weyl duality. Akin’s second
paper [3] moreover described how one could theoretically describe the differential maps in
this resolution in terms of Shapovalov elements, but the maps are not very explicit. In 2011
Boltje and Hartmann [4] gave a conjectured resolution which is different than that of Akin
and Zelevinsky, and this conjecture was proved by Santana and Yudin [5] in 2012 with the
help of the bar resolution and the Schur functor.

In summer of 2019 at PRISE (a Harvard research program for its students), I thought
about this problem through the lens of combinatorial species, which is a theory of calculus
on functors (called species) between the core of the category of finite sets and the category
of sets. By composing a species with the free functor from the category of sets to that of
vector spaces, one obtains a representation of the symmetric groups; under this scheme, the
permutation representations are obtained by the “set species”. By categorifying the Jacobi-
Trudi determinant formula, one is able to build irreducible representations (and therefore
all representations) of the symmetric group from formal alternating sums of permutation
representations in a meaningful way.

I derived a conjecture for a combinatorial resolution of the irreducible representations of Sn
over characteristic zero corresponding to a partition of length 3 (lower length cases are much
easier). The objects in this resolution are the (induction products of) permutation represen-
tations prescribed by the Jacobi-Trudi determinant – namely, letting Eλ be the induction
product IndSnSλ1×···×Sλk

(Eλ1⊗· · ·⊗Eλk), the i-th term of the resolution is
⊕

`(w)=iEw◦λ (where

w ◦λ denotes the affine action of the Weyl group on weights; note the similarity to the BGG
resolution, where the terms are instead direct sums of Verma modules) – but the differential
maps are more complicated and are obtained from a combinatorial model. Roughly, the
combinatorial model places Ew◦λ (where w ∈ S3) in a hexagonal shape (the shape of the
affine Weyl action orbit on the weights), fills in the interior with other appropriate auxiliary
permutation representations (labeled by weights in the convex hull of the affine Weyl action
orbit), and has certain natural maps between two adjacent permutation representations. (In
general, for partitions with a higher number of parts, this shape would be a permutohedron.)
The differential maps of the resolution are then linear combinations of compositions along
appropriate paths of these natural maps. I was able to use combinatorial species to calculate
the coefficients in this linear combination as coefficients of a generating function involving
Catalan-like series, and with these coefficients the sequence forms a complex; however, ex-
actness proved to be difficult, and I was unable to prove that this sequence was exact. I
believe that this proposed resolution is secretly the same as that of Akin and Zelevinsky (but
introduces new combinatorial structure) and different from the one proposed by Boltje and
Hartmann.
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1.2. A short explanation of why this question and some other questions. Some
further notes: this project grew out of a fascination I have for combinatorial species, which
are defined as functors F : Cor(fntSet) −! Set from the groupoid of finite sets to the category
of sets, i.e. set-valued, or discrete, representations (of the symmetric groups). In particular,
by applying the free functor from the category of sets to the category of vector spaces to a
species, one obtains an actual representation.

Like for representations, there is also a notion of “irreducible species” (called “molecular
species” in the literature1) Irreducible species enjoy a beautifully simple classification theo-
rem (though perhaps on some level this is expected, since species is really just group actions
on sets): irreducible species concentrated on degree n are in bijection with conjugacy classes
of subgroups of Sn, with the bijection given by

H ⊆ Sn  ! Xn/H.

I was then curious as to why this difference in simplicity exists between species and rep-
resentations, as well as how one might obtain irreducible representations from irreducible
species. This “resolution” that I propose here is one way to do so, for the terms in this
resolution (and the Jacobi-Trudi determinant formula) are indeed free functors applied to
irreducible species (indeed, Eµ = X |µ|/Sµ1 × · · · × Sµk).

However, I had found other examples too of obtaining irreps from irreducible species, for
example the sign representation

Π(1,···,1) = Free(E±n − En).

Unfortunately I do not know how to generalize these.
Some questions present themselves. What of representations of other groups/algebras (for

example classical Lie groups/algebras)? How would classical phenomena such as Schur-Weyl
present themselves in this context? What of species over finite fields? Could species be
generalized to other groups in a meaningful way which presents rich theory? If there are
other ways (other than the Jacobi-Trudi determinant, which we explored a little in this note)
to go from irreducible species to irreducible representations, is there a way to classify these
constructions?

2. Setup

2.1. The Objects. Let Πλ be the irreducible representation of Sn associated to the partition
λ ` n. Let λ be a 3-part partition. From the Jacobi-Trudi determinant formula, we know
that the Schur function can be expressed in terms of the complete homogeneous functions:

sλ = det

 hλ1 hλ1+1 hλ1+2

hλ2−1 hλ2 hλ2+1

hλ3−2 hλ3−1 hλ3

 .

Since characters determine representations, this means

Πλ = det

 Eλ1 Eλ1+1 Eλ1+2

Eλ2−1 Eλ2 Eλ2+1

Eλ3−2 Eλ3−1 Eλ3

 , (∗)

1As I understand it, this terminology is borrowed from chemistry.
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where by Ek we mean an abuse of notation: Ek is usually the set species (i.e. a set repre-
sentation), outputting the set [k] on input [k] and the empty set on everything else. The Ek
here, being a vector space representation, is the free functor applied to the set species above
and in particular a representation of Sk. As there is only one element in the species, it is
clear that applying the free functor gives us the trivial representation.

This determinant equation for Πλ is a priori only true as an equality of virtual represen-
tations; a resolution will, so to speak, breathe life into it.

Let us make the shorthand

Ea,b,c := EaEbEc,

the product of species (or rather the free functor applied to it). For example, the vector space

E1,2 is the free functor applied to the set
{(

1
2,3

)
,
(

2
1,3

)
,
(

3
1,2

)}
. Note that, as representations,

this is the induction product of three trivial representations:

Ea,b,c = Ind
Sa+b+c
Sa×Sb×Sc(triva⊗ trivb⊗ trivc).

2.2. The Resolution. The resolution we propose is

0

Eλ3−2,λ2,λ1+2

Eλ3−2,λ1+1,λ2+1 ⊕ Eλ2−1,λ3−1,λ1+2

Eλ1,λ3−1,λ2+1 ⊕ Eλ2−1,λ1+1,λ3

Eλ1,λ2,λ3

Πλ1,λ2,λ3

0

∂3

∂2

∂1

∂0

Note that the terms are precisely those in the Jacobi-Trudi determinant. In other words,
the resolution looks like

0
⊕
`(w)=3

Ew◦λ
⊕
`(w)=2

Ew◦λ
⊕
`(w)=1

Ew◦λ Eλ Πλ 0
∂3 ∂2 ∂1 ∂0

where the sums are over w ∈ S3 and w ◦ λ denotes the affine action of the Weyl group S3.

2.3. The Combinatorial Diagram. There’s also a combinatorial picture for the resolution
above here. Perhaps an example will illustrate this best.

4



2.3.1. An Example. Let λ = (3, 3, 2) ` 8 and consider the diagram (combinatorial rule will
be described next paragraph)

0

E0,3,5 E0,4,4

E1,2,5 E1,3,4 E1,4,3

E2,1,5 E2,2,4 E2,3,3 E2,4,2

E3,1,4 E3,2,3 E3,3,2

Π3,3,2

0

then one can see that the underlined terms are precisely the terms in the resolution we desire,
where we direct sum E0,4,4 and E2,1,5 together and direct sum E2,4,2 and E3,1,4 together to
get the resolution. Note the structure here of two isosceles triangles of possibly different
“lengths” i.e. number of segments.

Roughly, the rule here is to start on the top left with (λ3 − 2, λ2, λ1 + 2) and move either
to the east or the south (or southeast when appropriate), shifting a number from the third
slot to the second slot on every move to the east and shifting a number from the second slot
to the first slot on every move south (a move southeast will directly shift a number of the
third slot to the first slot). Do this until all six desired members of the resolution are hit,
and take the convex hull.

2.3.2. In General. Let [π(1)π(2)π(3)] denote the permutation (1, 2, 3) 7! (π(1), π(2), π(3)).
In general, we build the combinatorial diagram as follows. We place the results of the affine
Weyl actions on the weight2 λ in the plane3 in h(sl3)

∗ and add it to the diagram:

2Considered as a weight of sl3, technically λ is considered the same up to multiples of (1, 1, 1); but we can
figure out what the original partition is given the requirement λ ` n.

3Perhaps it is more customary to place the dominant weight in the top right, but here it is in the bottom
right.
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[321] ◦ λ [312] ◦ λ

[231] ◦ λ [213] ◦ λ

[132] ◦ λ [123] ◦ λ = λ

This is the starting point for our diagram.
Recall that the positive roots for sl3 are α1 = φ1 − φ2 = (1,−1, 0), α2 = φ2 − φ3 =

(0, 1,−1), α3 = φ1 − φ3 = (1, 0,−1) = α1 + α2, where φi outputs the i-th diagonal term of
a matrix in sl3.

Then, for every `(u) = `(w) − 1, consider all ordered4 tuples (ij)j, where ij ∈ {1, 2, 3},
such that

u ◦ λ = w ◦ λ+
∑
j

αij .

For each such tuple, add the weights (ranging k from 0 to the length of the tuple)

w ◦ λ+
∑
j≤k

αij

to the diagram. Pictorially, we place w ◦ λ+
∑

j≤k+1 αij to the south of w ◦ λ+
∑

j≤k αij if
αik+1

= α1; east if αik+1
= α2; and southeast if αik+1

= α3.
Lastly, add an arrow between w ◦ λ +

∑
j≤k αij and w ◦ λ +

∑
j≤k+1 αij (which, again,

points south if ik+1 = 1; east if ik+1 = 2; and southeast if ik+1 = 3).
This completes our combinatorial diagram.
Then, replace each weight µ with Eµ′ , where µ′ ≡ µ in h(sl3)

∗ but we choose µ′ ` n. The
arrows become maps which we describe in the next section5.

Let us draw a general picture. We omit the non-underlined auxiliary terms. Then the
resolution looks like6

4It is important that it is ordered; we consider (1, 2, 1, 2) to be different from (1, 1, 2, 2), even though
w ◦ λ+ α1 + α2 + α1 + α2 = w ◦ λ+ α1 + α1 + α2 + α2.

5One way to think of this is as a functor from a diagram of weights to representations.
6The scheme for labelling is this: the subscript denotes the index of the map in the resolution, and the

super script has 1 for down and 2 for right.
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0

E[321]◦λ E[312]◦λ

E[231]◦λ E[213]◦λ

E[132]◦λ E[123]◦λ

Πλ

0

∂23

∂13
∂212

∂12

∂22

∂122
∂11

∂21

∂0

Here the number of segments in the left half of the hexagon is given by

δ1 := λ1 − λ2 + 1, (∗)

while the number of segments in the right half is given by

δ2 := λ2 − λ3 + 1. (∗)

The segments involved in this diagram are either going right, down, or diagonally right-down.
Here’s a handdrawn picture:
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As an abuse of notation, we may also denote any of the ∂’s to be the set of paths going
only right and/or down and/or diagonally right-down along segments between them. For
example, we may denote ∂23 to be the set of (necessarily horizontal) paths between E[321] and
E[312] (of which there is only one), and ∂212 to be the set of paths along segments between E[312]

and E[213] (this would be a Catalan number except diagonal paths are allowed). Similarly,
∂212 ◦ ∂23 may also denote the set of paths going from E[321] to E[312] to E[213]. We apologize
in advance for this notation.

It remains now to describe the differential maps ∂ : Ew◦λ −! Eu◦λ.

3. The Maps

Now that we have described the objects of this resolution and the shape of the maps
between them, we must describe the actual maps.

To each segment in the diagram is associated a natural symmetrizing map which is a map
of representations. For example, the map associated to

E0,3,5 −! E0,4,4

sends

ϕ0,3,5!0,4,4 :

 1, 2, 3
4, 5, 6, 7, 8

 7−!
1, 2, 3, 4

5, 6, 7, 8

+

1, 2, 3, 5
4, 6, 7, 8

+

1, 2, 3, 6
4, 5, 7, 8

+

1, 2, 3, 7
4, 5, 6, 8

+

1, 2, 3, 8
4, 5, 6, 7

 .

Let shiftk be an operation on tuples of numbers shifting one from the k-th spot to the
k − 1-th spot. That is,

shiftk : (a1, · · · , ak−1, ak, · · · , am) 7−! (a1, · · · , ak−1 + 1, ak − 1, · · · , am).

Then the maps between Eµ and Eshiftmk (µ) are given by

∂µ!shiftmk (µ) : Eµ −! Eshiftmk (µ)

v 7−!
1

m!
©

µ!shiftmk (µ)

ϕ(v), (∗)

where ©µ!shiftmk (µ)ϕ is the composition over all segments in µ ! shiftmk (µ) of the natural
symmetrizing maps associated to each segment.

In particular, this means that for example the map between E[321] and E[312] is given by

∂23 =
1

δ1!
©
γ∈∂23

ϕ , (∗)

where here in ©γ∈∂23 ϕ the ∂23 is the set of the singular path γ between E[321] and E[312] and
the ©ϕ means the composition of all natural maps associated to each segment in the path.

On the other hand, the diagonal paths are given by for example

∂212 = −
∑
γ∈∂212

adiag γ©
γ
ϕ , (∗)

where diag γ denotes the number of diagonal “shortcuts” taken in the path γ. The coefficients
adiag γ here are yet to be determined, and we will describe them next.
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4. Prelude: A Quick Bit of Counting

Before we can describe the coefficients a above, let us first define some auxiliary objects.
The vector space E[321] = Eλ3−2,λ2,λ1+2 has a natural basis given by the elements of

the set species Eλ3−2Eλ2Eλ1+2. For example, the vector space E1,2 has a natural basis{(
1
2,3

)
,
(

2
1,3

)
,
(

3
1,2

)}
. For a path γ ∈ ∂212 ◦ ∂23 , the map

1

δ1!
©
γ
ϕ

then sends each vector in this natural basis to a linear combination of similar such natural
basis vectors. We can then count the number of natural basis vectors in the image with
precisely i numbers moving from the third slot directly to the first slot. Let this number be
aptly called

# vec#imp=i(γ),

where a number moving from the third slot directly to the first slot is aptly called an
“impurity”, shortened here to imp.

Perhaps an example will illustrate things better.

0

E0,2,4 E0,3,3

E1,1,4 E1,2,3 E1,3,2

E2,1,3 E2,2,2

Π2,2,2

0

Let X denote moving right, Y denote moving down, and T denote moving diagonally. Let
γ ∈ ∂212 ◦ ∂22 be given by XT (read left to right); then

1

δ1!
©
γ
ϕ :

 1, 2
3, 4, 5, 6

 7−!
 4

1, 2, 3
5, 6

+

 5
1, 2, 3
4, 6

+

 6
1, 2, 3
4, 5

+

 3
1, 2, 4
5, 6

+

 5
1, 2, 4
3, 6

+

 6
1, 2, 4
3, 5



+

 3
1, 2, 5
4, 6

+

 4
1, 2, 5
3, 6

+

 6
1, 2, 5
3, 4

+

 3
1, 2, 6
4, 5

+

 4
1, 2, 6
3, 5

+

 5
1, 2, 6
3, 4

 ,
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so that we may see

# vec#imp=0(γ) = 0,

# vec#imp=1(γ) = 12.

Inspection will reveal that the reason for # vec#imp=0(γ) = 0 is because we moved diagonally;
moving diagonally is by definition going directly from the third slot to the first slot, and so
of course we have impurities.

Let

ci,d :=
∑

diag γ=d
γ∈∂212 ◦∂23

# vec#imp=i(γ) (∗)

for d ≤ i.
For a path γ ∈ ∂212 ◦ ∂23 , we can choose to decorate certain segments. Let us decorate it

in such a way that we decorate an arbitrary number of pairs of segments (one right and one
down) such that the down segment always comes after the right segment in a pair. Let

hook γ

denote the number of such pairs we decorate. Let such a pair be called a hook. Here’s a
drawn example for δ1 = 0:

Here’s a drawn example for δ1 = 3:
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Then some combinatorics7 gives

ci,d =

(
λ1 + 2

δ1

)(
λ2

1, · · · , 1︸ ︷︷ ︸
δ2−i

, λ2 − δ2 + i

)(
λ2 + 1

1, · · · , 1︸ ︷︷ ︸
δ2

, λ2 − δ2 + 1

)
·#{γ ∈ ∂212 ◦∂23 : diag γ = d, hook γ = i−d},

(∗)
where

#{γ ∈ ∂212 ◦ ∂23 : diag γ = d, hook γ = i− d}δ1,δ2

=

(
2(δ2 − d) + d

d

)
#{γ ∈ ∂212 ◦ ∂23 : diag γ = 0, hook γ = i− d}δ1,δ2−d

=

(
2δ2 − d
d

)
#{γ ∈ ∂212 ◦ ∂23 : diag γ = 0, hook γ = i− d}δ1,δ2−d

=

(
2δ2 − d
d

)
hcat^:i−d

δ1,δ2−d,

where we have created the shorthand

hcat^:h
δ1,δ2

:= #{γ ∈ ∂212 ◦ ∂23 : diag γ = 0, hook γ = h}δ1,δ2 . (∗)

Note for example that hcat^:0
δ1,δ2

= catδ2 .

7Each hook is supposed to be us taking a number from the third slot and marking it for impurity i.e.
moving to the first slot later, which is why we require the down move to be after the right move. Indeed,
for every path γ with the prescribed number of diagonals and hooks, to count the number of vectors with

i impurities, we have
(
λ1+2
δ1

)
from traversing along ∂23 ,

( λ2

1, · · · , 1︸ ︷︷ ︸
δ2−i

,λ2−δ2+i
)

to choose in what order should the

original members of the second slot move to the first slot, and
( λ2+1
1, · · · , 1︸ ︷︷ ︸

δ2

,λ2−δ2+1

)
to choose the order in which

the required δ2 numbers leave the last slot. Note that in this scheme we do not worry about who should
the impurities be and in what order, and this is because the path γ already has decorated hooks; we simply
prescribe in what orders the numbers should leave, and whichever number should get assigned to a hook will
naturally become an impurity.
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In conclusion,

ci,d =
∑

diag γ=d
γ∈∂212 ◦∂23

(
2δ2 − d
d

)
hcat^:i−d

δ1,δ2−d . (∗)

The name hcat is supposed to be suggestive: h here stands for horizontal extension. In
words, the number hcat^:h

δ1,δ2
counts the number of Dyck paths on 2δ2 segments with an

extended horizontal beginning of length δ1 such that there are h hooks.

5. The Coefficients a

We now have the pieces necessary to describe a.
For the sequence we have described to be exact, it is necessary that

a0c0,0 =

(
λ2
δ2

)(
λ1 + 2

δ1 + δ2

)
,

i∑
d=0

adci,d = 0 1 ≤ i ≤ δ2. (∗)

This is obtained by formally setting every natural basis vector to 1 and requiring ∂∂ = 0,
i.e. by counting the number of vectors with precisely i impurities (noting that ∂22 ◦ ∂13 has
no impurities).

Solving this system of linear equations gives

a0 =
δ1!

δ2!(δ1 + δ2)! catδ2
,

ai = −
∑i−1

d=0

(
2δ2−d
d

)
hcat^:i−d

δ1,δ2−d ad(
2δ2−i
i

)
catδ2−i

1 ≤ i ≤ δ2. (∗)

By induction, there exist κi numbers such that

ai = a0
κi(

2δ2−i
i

) =
δ1!

δ2!(δ1 + δ2)! catδ2

κi(
2δ2−i
i

) , (∗)

where

κ0 = 1.

By using the inductive formula above for ai, we get an inductive formula for κi given by

κi = −
∑i−1

d=0 hcat^:i−d
δ1,δ2−d κd

catδ2−i
1 ≤ i ≤ δ2. (∗)

Written in matrix form, this is

[κδ2−i]
δ2−1
i=0 = −[hcat^:j−i

δ1,j
]δ2−1i,j=0

−1
[hcat^:δ2−i

δ1,δ2
]δ2−1i=0 . (∗)

Induction gives

κi =
i−1∑
µ1=0

− hcat^:i−µ1
δ1,δ2−µ1

catδ2−i
·
µ1−1∑
µ2=0

− hcat^:µ1−µ2
δ1,δ2−µ2

catδ2−µ1
·
µ2−1∑
µ3=0

− hcat^:µ2−µ3
δ1,δ2−µ3

catδ2−µ2
· · · . (∗)
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Hence

ai =
δ1!

δ2!(δ1 + δ2)! catδ2
(
2δ2−i
i

) i−1∑
µ1=0

− hcat^:i−µ1
δ1,δ2−µ1

catδ2−i
·
µ1−1∑
µ2=0

− hcat^:µ1−µ2
δ1,δ2−µ2

catδ2−µ1
·
µ2−1∑
µ3=0

− hcat^:µ2−µ3
δ1,δ2−µ3

catδ2−µ2
· · · .

(∗)
This completely characterizes the a.

As an example,

a0 =
δ1!

δ2!(δ1 + δ2)! catδ2
and8

a1 = − δ1!

δ2!(δ1 + δ2)! catδ2

(
2δ1δ2
δ2 + 1

+ δ2 + 1− 4δ2(
2δ2
δ2

)).
The complexity in the expression for a1 and the generating functions to come later makes
us suspect that no closed form is available. But first let us explain how we got this formula
for a1 in the first place, and how one could conceivably compute all the coefficients (if one
really wanted to...).

6. The Punchline: Generating Functions

Let X denote moving right and undecorated, Y denote moving down and undecorated,
and T denote both decorated Xs and decorated Y s. Consider the species

Cat^:k(X, Y, T )

of Catalan paths with precisely k hooks and

hCat^:k(X, Y, T )

the species of Catalan paths with horizontal extension and precisely k hooks. For example,
we would have

Cat^:k(X, Y, T ) =
∞∑

n,h=0

hcat^:h
0,n+hX

nY nT 2h.

Then their generating series satisfy

Cat^:k(X, Y, T ) =

∑k−1
i=1 XY Cat^:i Cat^:k−i +

∑k
j=1

∑k−j
i=0 j!(T∂Y )◦j(XY Cat^:i)(T∂X)◦j(Cat^:k−j−i)

1− 2XY Cat
(∗)

and

hCat^:k(X, Y, T ) =

∑k
i=1XY Cat^:i hCat^:k−i +

∑k
j=1

∑k−j
i=0 j!(T∂Y )◦j(XY Cat^:i)(T∂X)◦j(hCat^:k−j−i)

1−XY Cat
.

(∗)

8Remark: I have found that a1 here is associated to https://oeis.org/search?q=1%2C8%2C47%2C244&

sort=&language=english&go=Search, which referenced the papers https://www.combinatorics.org/

ojs/index.php/eljc/article/view/v19i1p62 and https://arxiv.org/pdf/1601.07988.pdf. I am not
sure what the combinatorial ramifications of this are.
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Of course here

Cat^:0(X, Y, T ) = Cat(X, Y ) =
1−
√

1− 4XY

2XY
.

Notice that by computing the generating functions for every value of k between 0 and what
we need, the above two equations allow us to find all the hcats we need, since the recursion
for Cat^:k never calls k itself. For example, a1 above was computed in this way.

The above starred expressions for the generating series are obtained in a similar way to the
recursion for the Catalan generating function. In short, every path we are concerned with
can be broken off at its last contact point with the main diagonal, and we can do casework
based on the number of hooks broken apart by this contact point.

To some degree (assuming one is willing to sit down and compute some generating func-
tions), we have finished our description of our complex. The our claim is that

Conjecture. The complex

0 Eλ3−2,λ2,λ1+2 Eλ3−2,λ1+1,λ2+1 ⊕ Eλ2−1,λ3−1,λ1+2
∂3

Eλ1,λ3−1,λ2+1 ⊕ Eλ2−1,λ1+1,λ3 Eλ1,λ2,λ3 Πλ1,λ2,λ3 0
∂2 ∂1 ∂0

or more compactly

0
⊕
`(w)=3

Ew◦λ
⊕
`(w)=2

Ew◦λ
⊕
`(w)=1

Ew◦λ Eλ Πλ 0
∂3 ∂2 ∂1 ∂0

is exact, where the differential maps are as prescribed in our work above.

7. Towards Higher Dimensions

We attempted to see what this resolution we propose would look like in three dimensions
(i.e. for 4-part partitions), and we see that instead of a simple diamond/crystal shape, the
shape of the resolution looks like
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We conjecture that the choice of signs associated to each map in the resolution to make sure
that every diamond has a plus and minus sign cancelling out (i.e. necessary for exactness)
is given by

(−1)dim of the convex hull of the vertices involved.

We have not explored this very much, but it seems to hold for the partition (1, 1, 1, 1) ` 4.
If our idea is correct, the coefficients in this case would roughly be given by some higher-
dimensional modification of Catalan numbers.

This shape (or at least something very similar to it) is named the “permutohedron”. When
grading this permutohedron by the number of inversions, the permutohedron for Sk can be
formally written as repeated tensor products (0, 1) ⊗ (0, 1, 2) ⊗ · · · ⊗ (0, 1, · · · , k − 1). This
appear to be a formal consequence of the combinatorial identity∑

σ∈Sn

ql(σ) = 1(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1);

perhaps this is useful somehow. Also perhaps this can be categorified via the permutohedron
somehow if we pick the right spaces to put on the vertices.
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